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Abstract. In this paper, we improve estimations in a previous work [3] (Arch. Rat.

Mech. Anal. 2003) about estimations for the action functional of the N -body problem.

Our method is based on repeated applications of binary decompositions for the N -

body system, and is applicable to more general particle systems.

1. Introduction

The Newtonian N -body problem concerns the motion of N (≥ 2) mass points m1,m2, . . . ,

mN moving in Rd in accordance with Newton’s law of gravitation:

(1.1) mkẍk =
∂

∂xk
U(x), k = 1, . . . , N,

where xk ∈ Rd is the position of mk and

U(x) = U(x1, . . . , xN ) =
∑

1≤i<j≤N

mimj

|xi − xj |

is the potential energy. The kinetic energy is given by

K(ẋ) =
N∑
k=1

1

2
mk|ẋk|2.

Equations (1.1) are the Euler-Lagrange equations for the action functional A defined by

A(x) =

∫ T

0
K(ẋ) + U(x) dt,

where T is a positive constant. In this article we will restrict A to the Sobolev space

H1(R/TZ, (Rd)N ).
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The discovery of the figure-8 orbit for the three-body problem by Chenciner-Montgomery

[11] has attracted considerable attention. It inspires many follow-up works based on vari-

ational techniques. Many symmetric solutions of the N -body problem with equal masses

were found by proper selection of the group action and careful estimation of the action

functional A. Analysis of the action functional near singularities has also cause grow-

ing attention to variational approaches for problems with fixed centers. We refer readers

to [19,23,24] for a comprehensive introductions and bibliography.

In a previous work [3], we define binary decompositions for the N -body problem and

use it to decompose U , K, and A into pairs. The purpose is to provide a flexible way

to estimate A, as one may put extra weights to colliding pairs to “penalize” the action

functional. The decomposition makes no presumption on location of mass centers, and

is therefore applicable to more general particle systems without conservation of linear

momentum, such as systems with fixed centers. Such kind of decomposition in conjunction

with Gordon’s formula [17] (or its variants [3, Proposition 1]) allows us to provide effective

lower bound estimates for the action value of collision paths in several spaces of symmetric

loops.

The purpose of this paper is to improve estimates in [3]. The main idea is to treat

geometric centers of some subsystems as real masses. Even though these “masses” are

not there, certain parts of the action functional can be regarded as the action due to

motions of such fictitious bodies. When masses are all equal, collisions of the original

system has a one-to-one correspondence with collisions of geometric centers of subsystems

with N − 1 masses. We then recursively rewrite part of the action functional in terms

of these geometric centers, and geometric centers of those geometric centers, and so on.

Finer estimates were obtained by this iterative procedure.

As preparation, in Section 2 we begin with descriptions of symmetry constraints and

some simple observations about geometric centers of subsystems. In Section 3 we quickly

review the concept of binary decomposition. Details of the above stated recursive process

are given in Section 4. We will use the figure-8 orbit [11] as example, and compare our

improved estimates with previous estimates.

2. Symmetries and geometric centers of subsystems

Let H = H1(R/TZ, (Rd)N ) be the space of T -periodic H1-loops in Rd. Given a finite

group G, an orthogonal representation ρ of G on Rd, an action τ of G on the circle

ST = R/TZ by isometries, and an action σ of G on symbols {1, 2, . . . , N}. Consider the

following action of G on H (see [9]) by orthogonal transformations: for any g ∈ G,

(g · x)k(t) = ρ(g)xσ(g−1)(k)(τ(g−1)t), k = 1, . . . , N.
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The space of G-invariant loops

HG = {x ∈ H : g · x = x for all g ∈ G}

is clearly a closed subspace of H. If [0, T/m] is a fundamental domain of the G action,

then the action value of any loop x in HG over time interval [0, T ] is equal to m times its

action value over [0, T/m].

It is well-known that the action functionalA is weakly sequentially lower semi-continuous,

and if it is G-invariant, then regular critical points of A restricted to HG are also crit-

ical points of A on the larger space H (see [21]). In practice, the requirement of being

G-invariant often leads to the restriction of equal masses.

Many recent works along this direction have devoted their efforts into proper selection

of the group action and careful estimation of the action functional A. Estimation of the

action functional A is meant to distinguish minimizing loops in HG from collision loops

in there. Namely, we hope the following inequality holds:

(2.1) inf
x∈HG

A(x) < inf
x∈HG

x has collision

A(x).

As long as A is G-invariant and coercive (i.e., A(x) → ∞ as ‖x‖ → ∞), a standard

argument of variational calculus shows that the inequality guarantees existence of mini-

mizers in HG, and these minimizers are classical solutions of (1.1). This inequality are

usually proven by local deformation arguments (see for instance, [4, 14, 16, 22, 25, 26]) or

global estimates (see for instance, [5–7,11,27]). Here we focus on the later case.

Let x∗k be the geometric center of the subsystem with xk removed; that is,

x∗k =
1

N − 1

∑
i 6=k

xi.

Let x∗ = (x∗1, . . . , x
∗
N ). Below is a simple observation which will be useful later.

Theorem 2.1. If x ∈ HG, then so is x∗. Moreover, xj(t) = xk(t) if and only if x∗j (t) =

x∗k(t).

Proof. Given x ∈ HG and g ∈ G. For any k ∈ {1, 2, . . . , N},

(g · x∗)k(t) = ρ(g)x∗σ(g−1)(k)(τ(g−1)t)

=
1

N − 1

∑
i 6=σ(g−1)(k)

ρ(g)xi(τ(g−1)t)

=
1

N − 1

∑
i : σ(g)(i) 6=k

ρ(g)xσ(g−1)σ(g)(i)(τ(g−1)t)
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=
1

N − 1

∑
j 6=k

ρ(g)xσ(g−1)(j)(τ(g−1)t)

=
1

N − 1

∑
j 6=k

xj(t) = x∗k(t).

Thus x∗ is also in HG.

The other statement in the theorem is quite obvious:

x∗j (t)− x∗k(t) =
1

N − 1

∑
i 6=j

xi(t)−
1

N − 1

∑
i 6=k

xi(t) =
1

N − 1
(xk(t)− xj(t)).

3. Binary decompositions of the N -body system

In [3] we define binary decompositions for system of masses m1, . . . ,mN (N ≥ 2), and use

it to provide lower bounds for the action functional over collision paths. We recall the

definition here. To make the idea as simple as possible, we omit gravitational constants

appeared in [3] and will put emphasis on planar systems with equal masses.

A binary decomposition of the system of N masses m1,m2, . . . ,mN is a selection of

two nonnegative N ×N matrices M = [mij ] and Λ = [λij ] satisfying

mii = λii = 0 for any i,

mij > 0 for any i 6= j,

0 ≤ λij = λji ≤ 1 for any i 6= j, and

N∑
j=1

mij = mi for any i.

As pointed out earlier, we do not assume the mass center of the loop is at the origin,

so that same ideas are applicable to systems involving fixed centers. The idea of the

decomposition is to treat {mij}i 6=j as a system of distinct N(N − 1) elementary particles,

where mij and mji constitute a pair of particle-antiparticle which do not interact with any

other particle. For fixed i, the subsystem {mij : j 6= i} were binded to the same position

xi. Each binary decomposition corresponds to a decomposition of the action functional

into Keplerian action functionals.

Consider the simplest case: N = 2. The action functional A defined on H1(R/TZ,C2)

takes the form

A(x) =

∫ T

0

1

2
(m1|ẋ1|2 +m2|ẋ2|2) +

m1m2

|x1 − x2|
dt

= A0(x) +A1(x),



Estimations for the Action Functional of the N -body Problem 507

where

A0(x) =

∫ T

0

m1m2

2(m1 +m2)
|ẋ1 − ẋ2|2 +

m1m2

|x1 − x2|
dt,

A1(x) =

∫ T

0

m1 +m2

2
|ẋ12|2 dt.

Here x12 is the mass center. Granting that linear momentum is an integral of motion, it is

customary to drop the integral A1 and consider critical points of A0 (called the Keplerian

action functional) over loops r = x2 − x1 in H1(R/TZ,C).

Now, consider N ≥ 3. Define Uii = Kii = 0 for each i, and

Uij(x) =
mimj

|xi − xj |
, Kij(ẋ) =

1

2
(mij |ẋi|2 +mji|ẋj |2), Aij(x) =

∫ T

0
Kij(ẋ) + Uij(x) dt.

Then we have

U(x) =
∑
(i,j)
i<j

Uij(x), K(ẋ) =
∑
(i,j)
i<j

Kij(ẋ), A(x) =
∑
(i,j)
i<j

Aij(x).

Let xij = 1
mij+mji

(mijxi +mjixj) be the mass center of the binary {mij ,mji}. Then each

Kij can be further split into two parts:

Kij(ẋ) = K0
ij(ẋ) +K1

ij(ẋ),(3.1)

K0
ij(ẋ) =

mijmji

2(mij +mji)
|ẋi − ẋj |2, K1

ij(ẋ) =
mij +mji

2
|ẋij |2.

Likewise, each Uij can be split into two parts:

Uij(x) = U0
ij(x) + U1

ij(x),(3.2)

U0
ij(x) =

λijmimj

|xi − xj |
, U1

ij(x) =
(1− λij)mimj

|xi − xj |
.

Accordingly, each Aij is split into two parts:

Aij(x) = A0
ij(x) +A1

ij(x),(3.3)

A0
ij(x) =

∫ T

0
K0
ij(ẋ) + U0

ij(x) dt, A1
ij(x) =

∫ T

0
K1
ij(ẋ) + U1

ij(x) dt.

Let

(3.4) A0(x) =
∑
(i,j)
i<j

A0
ij , A1(x) =

∑
(i,j)
i<j

A1
ij .

Then

A(x) = A0(x) +A1(x).
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The purpose of such decomposition is to find good lower bound estimates for the

right-hand side of (2.1), by estimating each A0
ij , A1

ij . In [3] we provided lower bound

estimates for both A0 and A1. In the next section we will show how estimates in [3] can

be substantially improved.

With the presence of symmetry, colliding pairs often have more “contribution” to the

action value, so the freedom of choosing mij and λij allows us put extra weights to badly

behaved (colliding) pairs, and make the lower bound estimate for A over collision paths

sharper. In principle, this will yield good estimates when action values of colliding pairs are

substantially higher than non-colliding pairs. In practice, it would be quite complicated if

one has to optimize the selection of mij and λij for each possible type of collision. Among

applications in [3], the following convenient choice, called standard binary decomposition,

were adopted:

λij = λ, mij =
mi

N − 1
for any i 6= j.

Comparing with the relatively simple decomposition when confining to loops with

center of mass at origin: (M is total mass)

(3.5) A(x) =
1

M

∑
i<j

mimj

∫ T

0

1

2
|ẋi − ẋj |2 +

M

|xi − xj |
dt,

the decomposition (3.1)–(3.4) is complicated. In applications to well-known examples,

such as the figure-8 orbit for the three-body problem, estimates obtained in [3] are not

as sharp as the one which uses (3.5). In the next section, with improvement of estimates

in [3], we will see that estimates using our binary decomposition are actually as sharp.

4. Improvement of estimates in [3]

Let us begin with a summary of the estimates in [3] for the case of standard binary

decomposition. Although many arguments in [3] can be extended to non-planar loops, we

only consider planar loops and identify R2 by C.

We say a loop x ∈ H1(R/TZ,CN ) has d-fold rotation symmetry, d ≥ 2, if

xk(t) = e2πi/dxk

(
t+

T

d

)
for any t ∈ R, k ∈ {1, . . . , N}.

We say a loop x ∈ H1(R/TZ,CN ) has mirror symmetry if there is a straight line L in C
such that x(t) and x(t + T/2) are symmetric with respect to L for any t. Many recent

discoveries of simple or multiple choreographic solutions belong to either categories.

Given x ∈ H1(R/TZ,CN ). Following notations in [3], “i ./ j” means xi(t) = xj(t) for

some t, and the set Ix of collision indexes of x is given by

Ix = {(i, j) : i < j and i ./ j}.
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Theorem 4.1. [3] Consider a systems of N equal masses m1 = · · · = mN = 1 with

positions x1, . . . , xN ∈ C. Let x = (x1, . . . , xN ) and Ix be collision indexes of x. Let A0,

A1 be as in (3.1)–(3.4), and λij = λ, mij = 1/(N − 1) for any i 6= j. If x has d-fold

rotation symmetry, then

A0(x) ≥ 3

(
λ2π2

4(N − 1)

)1/3(
(d2/3 − 1)|Ix|+

(
N

2

))
T 1/3,(4.1)

A1(x) ≥ 3

(
(1− λ)2π2

16(N − 1)

)1/3(
(d2/3 − 1)|Ix|+

(
N

2

))
T 1/3.(4.2)

If x has mirror symmetry, then

A0(x) ≥ 3

(
λ2π2

4(N − 1)

)1/3(
(22/3 − 1)|Ix|+

(
N

2

))
T 1/3,(4.3)

A1(x) ≥ 3

(
(1− λ)2π2

16(N − 1)

)1/3(
(22/3 − 1)|Ix|+

(
N

2

))
T 1/3.(4.4)

Combination of (4.1), (4.2) provides a lower bound for the right-hand side of (2.1)

if all loops in HG have d-fold symmetry, and combination of (4.3), (4.4) offers a lower

bound if loops in HG must have mirror symmetry. This lower bound has a parameter λ.

Maximize the bound over λ ∈ [0, 1], we conclude [3, Theorems 1 & 2]

A(x) ≥ 3

(
5π2

16(N − 1)

)1/3(
(d2/3 − 1)|Ix|+

(
N

2

))
T 1/3

when x has d-fold rotation symmetry, and

A(x) ≥ 3

(
5π2

16(N − 1)

)1/3(
(22/3 − 1)|Ix|+

(
N

2

))
T 1/3

when x has mirror symmetry.

For the special case N = 3, we have

(4.5) A(x) ≥ 3

(
5π2

32

)1/3 (
(22/3 − 1)|Ix|+ 3

)
T 1/3.

Now we show how this lower bound can be improved:

Theorem 4.2. Let N = 3. Under the assumptions of Theorem 4.1, if x has d-fold rotation

symmetry, then

A(x) ≥ 2

(
3π

4

)2/3 (
(d2/3 − 1)|Ix|+ 3

)
T 1/3.

If x has mirror symmetry, then

(4.6) A(x) ≥ 2

(
3π

4

)2/3 (
(22/3 − 1)|Ix|+ 3

)
T 1/3.
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Proof. We only prove the case with d-fold rotation symmetry, as the proof for the case

with mirror symmetry is similar. The idea is to apply the decomposition A = A0 + A1

to A1, writing A1 = A10 +A11, then decompose A11 by writing A11 = A110 +A111, then

A111 = A1110 +A1111, and so on.

The action functional is

(4.7) A(x) =

∫ T

0

1

2

3∑
k=1

|ẋk|2 +
∑
(i,j)
i<j

1

|xi − xj |
dt.

The first part of the decomposition A = A0 +A1 is

(4.8) A0(x) =
∑
(i,j)
i<j

∫ T

0

1

8
|ẋi − ẋj |2 +

λ

|xi − xj |
dt.

Use the fact that x12 = x∗3, x23 = x∗1, x13 = x∗2, and |xi − xj | = 2|x∗i − x∗j | for every i,

j, we can write the second part of A as

A1(x) =
∑
(i,j)
i<j

∫ T

0

1

2
|ẋij |2 +

1− λ
|xi − xj |

dt

=

∫ T

0

1

2

3∑
k=1

|ẋ∗k|2 +
1− λ

2

∑
(i,j)
i<j

1

|x∗i − x∗j |
dt.

(4.9)

This is similar to the formulation (4.7). Imitate the decomposition (4.8), (4.9) for A,

consider the system {x∗1, x∗2, x∗3} and let x∗∗k be the geometric center of subsystem with x∗k
removed, then we can write A1 = A10 +A11, where

A10(x) =
∑
(i,j)
i<j

∫ T

0

1

8
|ẋ∗i − ẋ∗j |2 +

1− λ
2

λ

|x∗i − x∗j |
dt,

A11(x) =

∫ T

0

1

2

3∑
k=1

|ẋ∗∗k |2 +

(
1− λ

2

)2∑
(i,j)
i<j

1

|x∗∗i − x∗∗j |
dt.

Repeat this process, we obtain a sequence A(n)0 = A1···10 with n 1’s in the superscript,

and a sequence A(n+1) = A1···1 with n + 1 1’s in the superscript. Denote the geometric

centers obtained from x∗ = (x∗1, x
∗
2, x
∗
3) by x(2∗) = (x

(2∗)
1 , x

(2∗)
2 , x

(2∗)
3 ), those obtained from

x(2∗) by x(3∗), and so on. Then

A(n)(x) = A(n)0(x) +A(n+1)(x),
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A(n)0(x) =
∑
(i,j)
i<j

∫ T

0

1

8

∣∣∣ẋ(n∗)i − ẋ(n∗)j

∣∣∣2 +

(
1− λ

2

)n λ∣∣∣x(n∗)i − x(n∗)j

∣∣∣ dt,
A(n+1)(x) =

∫ T

0

1

2

3∑
k=1

∣∣∣ẋ((n+1)∗)
k

∣∣∣2 +

(
1− λ

2

)n+1∑
(i,j)
i<j

1∣∣∣x((n+1)∗)
i − x((n+1)∗)

j

∣∣∣ dt.
By Theorem 2.1, collision indexes Ix(n∗) of x(n∗) is the same as Ix for every n ∈ N.

Therefore, we can apply (4.1) to each A(n)0(x):

A(x) ≥ A0(x) +

∞∑
n=1

A(n)0(x)

≥ 3

(
λ2π2

8

)1/3 (
(d2/3 − 1)|Ix|+ 3

)
T 1/3

∞∑
n=0

(
1− λ

2

)2n/3

=
3

2
π2/3

(
(d2/3 − 1)|Ix|+ 3

)
T 1/3 (2λ)2/3

22/3 − (1− λ)2/3
.

This is valid for every λ ∈ [0, 1]. The theorem follows by taking λ = 3/4.

We will show the application of this result to the famous figure-8 orbit with three equal

masses. Estimates for several other examples in [3] can be also improved by following the

same idea, but we shall skip discussions here.

Example 4.3. The figure-8 orbit for the three-body problem with equal masses was

first numerically discovered by Moore [20]. In addition to Chenciner-Montgomery’s first

proof [11], it has received several proofs for its existence [2, 3, 8, 18, 27]. See [1, 10, 12, 15]

for some interesting advances and open questions.

The figure-8 orbit is the minimizing solution on the space of G-invariant loops, where

G is the group of orthogonal transformations on H = H1(R/Z,C3) generated by g1, g2:

g1 · (x1, x2, x3)(t) = −(x3, x1, x2)(t+ T/6),

g2 · (x1, x2, x3)(t) = −(x2, x1, x3)(−t).

It is easy to check that G is isomorphic to the Dihedral group of order 12. The g21-

invariance implies x1(t) = x2(t+T/3) = x3(t+ 2T/3) for all t. Solutions with this feature

are known as simple choreographic solutions. In particular, this implies |Ix| is either 0 or

3. The g31-invariance implies loops in HG have mirror symmetry.

The estimate (4.5) shows that, for any collision path x ∈ HG,

A(x) ≥ 9

2
(5π2)1/3T 1/3 ≈ 16.5058T 1/3.
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The sharper estimate in [27] based on (3.5) reads

A(x) ≥ 3

2
(12π)2/3T 1/3 ≈ 16.8647T 1/3.

It is exactly the same as the estimate (4.6) in Theorem 4.2. In any case, the estimate is

well above the numerical value (≈ 13.2078T 1/3) of the action of T -periodic figure-8 orbit.
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