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Distributions of Branch Points of Some Algebroid Functions

Yingying Huo, Yinying Kong and Min Wu*

Abstract. In this paper, we investigate the distribution of branch points of some

algebroid functions with infinitely many branch points. A sufficient condition that

algebroid function has infinitely many branch points is given. By the Ahlfors’ theory of

covering surfaces, we also obtain the relationship between the Borel cluster directions

of branch points and the Borel directions.

1. Introduction

The value distribution of meromorphic functions due to R. Nevanlinna (see [16] for stan-

dard references) was extended to the corresponding theory of algebroid functions by H. Sel-

berg [8], E. Ullrich [13], and G. Valiron [14] in the 1930s. In the theory of algebroid

functions, one main difference is processing branch points, compared with the meromor-

phic functions. The branch points theorem established by G. Valiron [14] is one of the

important theorems in this field. It shows that the valence function of branch points for

algebroid function is less than its characteristic function. Many results on the existence

of singular directions for algebroid functions are based on the branch points theorem,

see [4, 6, 12, 15]. Up to now, lots of important theorems for meromorphic functions have

not been extended to algebroid functions for their multivaluedness and the complexity of

their branch points. For some algebroid functions, their branch points are easy to find.

One of the examples is the square root
√
z. And there exist some algebroid functions with

infinitely many branch points, see Example 2.1 and Example 2.3. But usually, one does

not know the number of branch points and their distributions by their definitions. The

purpose of this paper is to study the distribution of branch points of those algebroid func-

tions with infinitely many branch points. We give a sufficient condition that an algebroid

function has infinitely many branch points. The relationship between the Borel cluster

direction of branch points and the Borel direction is obtained.
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Suppose that A0(z), A1(z), . . . , Ak(z) are analytic functions in a simply connected re-

gion D without any common zeros and Ak(z) 6≡ 0, then the bivariate complex function

(1.1) Ψ(z,W ) = Ak(z)W
k +Ak−1(z)W

k−1 + · · ·+A0(z) = 0

defines a k-valued algebroid function W (z) in the region D (see [3, 10]). If k = 1, we get

a meromorphic function by (1.1). If the above equation is irreducible, W (z) is said to

be an irreducible algebroid function. Most results on algebroid functions (see [3, 7, 10]),

for example the first and second fundamental theorem, are based on the hypothesis that

they are irreducible. However, it is difficult to judge whether an algebraic equation is

irreducible. Even an irreducible algebroid function in a region D may become reducible

in a smaller region. For convenience, we represent (1.1) as

(1.2) Ψ(z,W ) = Ψ1(z,W ) ·Ψ2(z,W ) · · ·Ψt(z,W ) = 0, t ≥ 1,

where Ψj(z,W ) (j = 1, . . . , t) are irreducible polynomials in the region D. If t = 1, we

get an irreducible algebroid function in D. The algebroid function defined by (1.2) is said

to be a general algbroid function [9].

From now on we will confine our consideration to the general algebroid functions. For

the general algbroid function W (z) defined by (1.2), the resultant of each irreducible factor

Ψj(z,W ) (j = 1, 2, . . . , t) and its partial derivative ΨjW (z,W ) verifies R(Ψj ,ΨjW )(z) 6≡
0. Obviously, points in the set QW = QW (D) :=

⋃t
j=1{z ∈ D | R(Ψj ,ΨjW )(z) = 0}

are isolated. We say that the points in the sets QW (D), PW (D) := {z | Ak(z) = 0},
SW (D) := PW (D)∪QW (D) and TW (D) := D−SW (D) are multiple points, poles, critical

points and regular points, respectively. For a regular point z0 ∈ TW (D), there are k

regular function elements of W (z), which are {(wj(z), Br(z0))}kj=1. For a ∈ SW (D), there

is a critical function element (q(z), Br(a)), where q(z) can be expanded to Puiseux series

q(z) =
∞∑
n=u

Bn(z − a)n/s, Bu 6= 0

in Br(a) := {|z − a| < r} ⊂ D. If u < 0, the pair (q(z), Br(a)) is called a pole element of

W (z) (in particular when s = 1, it is a meromorphic function element). When s > 1, the

pair (q(z), Br(a)) is an algebraic function element and a is a branch point of order s− 1.

When s = 1 and u ≥ 0, the pair (q(z), Br(a)) is a regular function element. Therefore,

the domain of an irreducible algebroid function composed by these function elements is a

connected Riemann surface, see [1]. And different sheets are connected by the algebraic

function elements. The domain of a general algebroid function can be decomposed into

finitely many connected Riemann surfaces. The first fundamental theorem, the second

fundamental theorem and the branch points theorem are also true for the case of general

algebroid functions, see [10].
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For an angular domain E = ∆(θ, ε) =: {z | θ − ε < arg z < θ + ε}, we denote by

n(r, E,W ) and n(r, E,W ) the number of, respectively, poles repeated according to their

multiplicities and the distinct poles in {|z| < r} ∩ E. Similarly, n(r, E,W = a) is the

number of roots of the equation W (z) = a in {|z| < r} ∩ E. We shall breviate notation

n(r,W ) for n(r, C,W ). Let

m(r,W ) =
1

2kπ

∫ 2π

0
ln+ |W (reiθ)|dθ,

N(r,W ) =
1

k

[∫ r

0

n(t,W )− n(0,W )

t
dt+ n(0,W ) ln r

]
,

Nχ(r,W ) =
1

k

[∫ r

0

nχ(t,W )− nχ(0,W )

t
dt+ nχ(0,W ) ln r

]
,

S(r,W ) =
1

π

k∑
n=1

∫∫
|z|≤r

(
|w′j(reiθ)|

1 + |wj(retθ)|2

)2

r drdθ,

T0(r,W ) =
1

k

∫ r

0

S(t,W )

t
dt and T (r,W ) = N(r,W ) +m(r,W ),

where nχ(r,W ) is the number of branch points in |z| ≤ r, counting with their orders.

Moreover, S(r,W ) is a conformal invariant and is called the mean covering number of

|z| ≤ r into W -sphere. We call T0(r,W ) the Ahlfors-Shimzu characteristic function of

W (z). It is known from [3,9] that

T0(r,W ) = N(r,W ) +m(r,W ) +O(1).

Definition 1.1. (1) Let n(r) be a non-negative continuous function on interval (0, 1), the

order of n(r) is defined as

p(n(r)) := lim sup
r→1−

lnn(r)

− ln(1− r)
.

(2) Let n(r) be a non-negative continuous function on interval (0,∞), the order of n(r)

is defined as

p(n(r)) := lim sup
r→∞

lnn(r)

ln r
.

Remark 1.2. (1) Let W (z) be a general algebroid function in the complex plane or the

unit disc. The order of T (r,W ) is called the order of function W (z), denoted by ρ(W ) =:

p(T (r,W )) = ρ. Especially, if ρ ∈ (0,+∞), W (z) is said to be of finite order. If ρ = ∞,

W (z) is said to be of infinite order.

(2) For a k-valued general algebroid function in the complex plane of order ρ ∈ (0,+∞],

if there exists a ray L(θ0) = {z | arg z = θ0} such that for any ε > 0 and a ∈ C ∪ {∞}
with at most 2k exceptional values, the order of n(r,∆(θ0, ε),W (z) = a) is ρ, then L(θ0)
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is said to be the Borel direction of W (z). Correspondingly, the exceptional value is said

to be the Borel exceptional value.

(3) For a k-valued general algebroid function in the whole plane of order ρ ∈ (0,+∞],

if there exists a half line L(θ0) = {z | arg z = θ0} such that for any ε > 0, the order of

nx(r,∆(θ0, ε),W (z)) is ρ, then L(θ0) is said to be the Borel cluster direction of branch

points.

In this paper, we shall obtain the following results:

Theorem 1.3. Suppose that W (z) is a k-valued (k > 1) algebroid function of order

ρ ∈ (0,+∞] defined by (1.2) in the complex plane. If there are 3 distinct Borel exceptional

values of W (z), that is,

(1.3) lim sup
r→+∞

lnn(r,W = aj)

ln r
< ρ, j = 1, 2, 3,

then there exists at least one Borel cluster direction of branch points.

Remark 1.4. This theorem gives a sufficient condition that an algebroid function has

infinitely many branch points. Examples 2.1 and 2.2 show that Theorem 1.3 is sharp.

Theorem 1.5. Suppose that W (z) is a k-valued algebroid function of order ρ ∈ (0,+∞]

defined by (1.2) in the complex plane. If the half line L(θ0) is a Borel direction of W (z),

then there are only 2 possibilities:

(1) L(θ0) is a Borel direction with 2 exceptional values at most,

(2) L(θ0) is a Borel cluster direction of branch points.

Theorem 1.6. Suppose W (z) is a k-valued algebroid function of order ρ ∈ (1/2,+∞)

defined by (1.2) in the complex plane. For η ∈ (π/(2ρ), π), if there is some η′ ∈ (0, η),

such that

lim sup
r→∞

lnnχ(r,∆(θ0, η
′),W )

ln r
= ρ,

then for any a ∈ C ∪ {∞} with 2k exceptional values at most,

(1.4) lim sup
r→+∞

lnn(r,∆(θ0, η),W = a)

ln r
= ρ.

Remark 1.7. (1) Example 2.3 shows the angular domain ∆(θ0, η) is precise, where η ∈
(π/(2ρ), π).

(2) The authors do not know whether there is a Borel direction of W (z) in the domain

∆(θ0, η).

Theorem 1.8. Suppose W (z) is a k-valued algebroid function of infinite order defined

by (1.2) in the complex plane. Then the Borel cluster direction of branch points is also a

Borel direction of W (z).
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2. Examples

Example 2.1. Consider the following equation

Ψ(z,W1) = (ez − 1)W 2
1 − 1 = 0.

Then W1(z) satisfies the hypothesis of Theorem 1.3.

Proof. Under the given assumption, we have

W1(z) =
1√
ez − 1

.

And W1(z) is a 2-valued algebroid function in the complex plane. By [11], the order of

W1(z) is

ρ(W1) = ρ(ez − 1) = 1.

For ez 6= 0,∞, we can obtain that 0,±i are 3 Borel exceptional values of W1(z). By [4],

the function ez − 1 has at least one Borel direction L(θ0) of order 1. This implies that for

all ε > 0 and a ∈ C ∪ {∞} (with 2 exceptional values at most), we have

lim sup
r→+∞

lnn(r,∆(θ0, ε), e
z − 1 = a)

ln r
= 1.

Since ez − 1 6= −1,∞ and

nχ(r,∆(θ0, ε),W1(z)) = n(r,∆(θ0, ε), e
z − 1 = 0),

we have the order of nχ(r,∆(θ0, ε),W ) is p(nχ(r,∆(θ0, ε),W )) = 1. Therefore, L(θ0) is a

Borel cluster direction of W1(z).

Example 2.2. Consider the equation

Ψ(z,W2) = ezW 2
2 − 1 = 0,

which defines a general algebroid function W2(z) of order 1. It has 2 Borel exceptional

values, that is, 0, ∞. And W2(z) has no branch points in the complex plane. Note that

W2(z) is a reducible algebroid function.

Example 2.3. Let W3(z) =
√
A(z) be a 2-valued algebroid function defined by the

equation

(2.1) Ψ(z,W3) = W 2
3 −A(z) = 0,

where

A(z) =

∏∞
n=2

(
1− z

n ln2 n

)
∏∞
n=2

(
1 + z

n ln2 n

) =
∞∏
n=2

n ln2−z
n ln2 +z

.
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Then ρ(W3) = 1 and L(0) is the Borel cluster direction of branch points of order 1.

Further, for all η ∈ (π/2, π) and a ∈ C ∪ {∞} (with at most 4 exceptional values), we

deduce that the equality (1.4) holds, that is,

lim sup
r→+∞

lnn(r,∆(0, η),W3(z) = a)

ln r
= 1.

But for any η ∈ (0, π/2], there are infinitely many complex numbers such that (1.4) does

not hold in the angular domain ∆(0, η).

Proof. We first estimate ρ(W3). It follows from an example in [2, p. 29] that the order of

holomorphic function

Π(z) =
∞∏
n=2

(
1 +

z

n ln2 n

)
is 1. According to the Jensen formula, we have

T (r,Π(z)) = T

(
r,

1

Π(z)

)
+O(1).

Further,

ρ

(
1

Π(z)

)
= 1.

Noticing that ρ(Π(z)) = ρ(Π(−z)) = 1, we obtain that ρ(A(z)) ≤ 1.

On the other hand, let Π(−z) = 0, we have zn = n ln2 n and arg zn = 0. Further, the

multiplicity of zn is 1. Choosing rn = n ln2 n+ 1/2, then for all ε > 0, we have

n(rn,∆(0, ε), A(z) = 0) = n.

Hence, we have

1 ≥ ρ(A(z)) ≥ lim sup
r→+∞

lnn(r,∆(0, ε), A(z) = 0)

ln r

≥ lim
r→+∞

lnn(rn,∆(0, ε), A(z) = 0)

ln rn
= 1.

Therefore, ρ(A(z)) = ρ(W3) = 1.

Let us turn to prove the second part. For all ε > 0, according to (2.1), given that

W3(z) =
√
A(z), we have

lim sup
r→+∞

lnnχ(r,∆(0, ε),W3)

ln r
= lim sup

r→+∞

lnn(r,∆(0, ε), A(z) = 0)

ln r
= 1.

This asserts that L(0) is a Borel cluster direction of branch points.

By ρ(A(z)) = 1 and a theorem in [4], we can obtain there is at least one Borel direction

of A(z) on the whole plane, denoted by L(θ0). For Re(z) > 0, we have |A(z)| < 1.
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Similarly, |A(z)| > 1 when Re(z) < 0. Then there are no Borel directions in the domain

∆(0, π/2) nor in ∆(π, π/2). Hence θ0 = π/2 or θ0 = −π/2. This means that for any ε > 0

and b ∈ C ∪ {∞} (with 2 exceptional values at most), we have

lim sup
r→+∞

lnn(r,∆(θ0, ε), A(z) = b)

ln r
= 1.

Hence for all η ∈ (π/2, π), a = b2 ∈ C ∪ {∞} (with 4 exceptional at most), choosing

ε = η/2− π/4 > 0, we have

∆(0, η) ⊃ ∆(θ0, ε).

Therefore,

1 ≥ p(2n(r,∆(0, η),W3 = b))

= p(n(r,∆(0, η),W3 = b) + n(r,∆(0, η),W3 = −b))

≥ p(n(r,∆(θ0, ε), A = b2)) ≥ 1.

But in the angular domain ∆(0, π/2), it is easy to see that |W (z)| < 1. This implies that for

any η ∈ (0, π/2] and any complex number a verifying |a| ≥ 1, we have p(n(r,∆(0, η),W =

a)) = 0 < 1.

3. Some lemmas

The next two lemmas are proved by G. Valiron [14], when W (z) is an irreducible algebroid

function.

Lemma 3.1 (The branch points theorem). Let W (z) be a k-valued algebroid function in

{|z| < R}, then for r ∈ (0, R),

Nχ(r,W ) ≤ 2(k − 1)T (r,W ).

Lemma 3.2 (The second fundamental theorem). Suppose W (z) is an irreducible k-valued

algebroid function in the unit disc B := {|z| < 1} defined by (1.1). Let aj (j = 1, 2, . . . , q)

be q distinct finite or infinite complex numbers. Then for r ∈ (0, 1), we have

(q − 2)T (r,W ) <

q∑
j=1

N(r,W = aj) +Nx(r,W ) + E(r,W ).

Here the error term E(r,W ) satisfies

E(r,W ) = O

{
lnT (r,W ) + ln

1

1− r

}
,

when r → 1−, outside a set E0 of r such that
∫
E0
dr/(1 − r) ≤ 2. In particular the

above equation holds for some r in the interval (τ, τ ′) provided that τ ∈ (0, 1), τ ′ ∈
(1− (1− τ)/e2, 1).
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Remark 3.3. It has been proved that two lemmas above are also true for general algbroid

functions [10].

Lemma 3.4. [5] Suppose that W (z) is an irreducible k-valued algebroid function in the

complex plane. Let a1, a2, . . . , aq (q ≥ 3) be q distinct complex numbers on the sphere with

radius δ ∈ (0, 1/2). For ε > ε′ > 0 and r > r′ > 2, we have

(q − 2)S(r′,∆(θ0, ε
′),W )) ≤ nχ(r,∆(θ0, ε),W ) +

q∑
j=1

n(r,∆(θ0, ε),W = aj)

+
256kπ24 ln r

δ38(ε− ε′)(ln r − ln r′)
+ (q − 2)S(1/r′,∆(θ0, ε

′),W ).

Remark 3.5. By [10], we can also prove that Lemma 3.4 is true for general albegroid

function.

Let θ0 ∈ [0, 2π), η ∈ (0, π]. The function

h(z) =
(ze−iθ0)π/(2η) − 1

(ze−iθ0)π/(2η) + 1

maps the angular domain ∆(θ0, η) onto the unit disc |h| < 1. Let

z(h) = eiθ0
(

1 + h

1− h

)2η/π

be its inverse mapping, which maps the unit disc |h| < 1 onto the angular domain ∆(θ0, η).

Lemma 3.6. For the mapping h(z), we have

(a) for all η′ ∈ (0, η) and r > 1,

{
h(peiθ) | p ∈ [1, r], θ ∈ (θ0 − η′, θ0 + η′)

}
⊂

{
|h| <

√
1− r−π/(2η) cos

η′π

2η

}
;

(b)
{
|h| <

√
1− 4r−π/(2η)

}
⊂ {h(peiθ) | p ∈ (0, r), θ ∈ (θ0 − η, θ0 + η)}, r > 1.

Proof. Without loss of generality, we assume θ0 = 0. Since

|h(peiθ)| =

∣∣∣∣∣p
π/(2η) cos θπ2η − 1 + ipπ/(2η) sin θπ

2η

pπ/(2η) cos θπ2η + 1 + ipπ/(2η) sin θπ
2η

∣∣∣∣∣ =

√√√√pπ/η + 1− 2pπ/(2η) cos θπ2η

pπ/η + 1 + 2pπ/(2η) cos θπ2η
,

then

|h(peiθ)|2 =
2pπ/η + 2

pπ/η + 1 + 2pπ/(2η) cos θπ2η
− 1 = 1−

4pπ/(2η) cos θπ2η

pπ/(2η) + 1 + 2pπ/(2η) cos θπ2η
.
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(a) We first estimate the maximum of {|h(peiθ)|2 | p ∈ [−η, η′], p ∈ [1, r]}:

max{|h(peiθ)|2 | θ ∈ [−η′, η], p ∈ [0, r]}

= max

{
1−

4 cos θπ2η

pπ/(2η) + p−π/(2η) + 2 cos θπ2η

∣∣∣∣ θ ∈ [−η′, η′], p ∈ [1, r]

}

≤ max

{
1−

4 cos η
′π
2η

pπ/(2η) + p−π/(2η) + 2

∣∣∣∣ p ∈ [1, r]

}

≤ 1−
4 cos η

′π
η

rπ/(2η) + 3
≤ 1− r−π/(2η) cos

η′π

2η
.

(b) We then turn to estimate the minimum of {|h(peiθ)|2 | θ ∈ [−η, η], p ∈ [0, r]}:

min{|h(peiθ)| | θ ∈ [−η, η], p ∈ [0, r]}

= min

{
2rπ/η + 2

rπ/η + 1 + 2rπ/(2η) cos θπ2η
− 1

∣∣∣∣ θ ∈ [−η, η]

}

=
2rπ/η + 2

rπ/η + 1 + 2rπ/(2η)
− 1 = 1− 4

rπ/(2η) + r−π/(2η) + 2
≥ 1− 4r−π/(2η).

Lemma 3.7. Suppose that n(r) is a non-negative continuous function defined on interval

(0, A). Let

N(r) =

∫ r

0

n(t)− n(0)

t
dt+ n(0) ln r.

Then the order of n(r) and N(r) satisfy

(1) when A = +∞, p(n(r)) = p(N(r));

(2) when A = 1, p(n(r))− 1 = p(N(r)).

Proof. We suppose that B and δ are some constants. They may be different when they

appear in different places.

(1) When A = +∞, we can obtain the desired result by the two inequalities:

n(r) ln 2 ≤
∫ 2r

r

n(t)

t
dt ≤ N(2r)

and

N(r)−B =

∫ r

δ

n(t)

t
dt ≤ n(r) ln r.

(2) When A = 1, by

n(r)
1− r

2
≤
∫ (1+r)/2

r

n(t)

t
dt ≤ N

(
1 + r

2

)
,
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we have p(n(r))− 1 ≤ p(N(r)).

Now we prove p(n(r)) − 1 ≥ p(N(r)). Otherwise, there exists some ε0 > 0 such that

when r is sufficiently close to 1−, we have

N(r)−B =

∫ r

δ

n(t)

t
dt <

∫ r

δ

(1− t)−p(N(r))−1+ε0

t
dt

≤ 1

δ
(1− r)−p(N(r))−1

∫ r

δ
(1− t)ε0 dt

<
1

δ(1 + ε0)

(
1

1− r

)p(N(r))−ε0
+B,

or

p(N(r)) < p(N(r))− ε0,

which is a contradiction.

4. Proofs of theorems

Proof of Theorem 1.3. Case 1. We first prove that Theorem 1.3 is true when W (z) is of

finite order ρ ∈ (0,+∞).

Step 1. Now we prove for m angular domains ∆θim = {z | | arg z − (2iπ)/m| < 2π/m}
(i = 1, 2, . . . ,m− 1, m ∈ Z+), there is at least a domain ∆θimm such that

lim sup
r→+∞

lnnχ(r,∆θimm ,W )

ln r
≥ ρ.

Otherwise, for every ∆θim (i = 0, 1, . . . ,m− 1), we have

lim sup
r→+∞

lnnχ(r,∆θim,W )

ln r
< ρ.

Then there is a σ0 ∈ (0, ρ), such that when r is sufficiently large, we have

nχ(r,∆i
m,W ) < rρ−σ0 .

It follows from (1.3) that for the σ0 and r above,

n(r,W = aj) < rρ−σ0 , j = 1, 2, 3.

Set ∆′(θim) = {z | | arg z − (2iπ)/m| ≤ π/m}. According to Lemma 3.4, we have

S(r,∆′θim,W ) ≤
3∑
j=1

n(2r,∆θim,W = aj) + nχ(2r,∆θim,W ) +O(ln r)

≤
3∑
j=1

n(2r,∆θim,W = aj) + rρ−σ0 +O(ln r).
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Adding the above inequality from i = 0 to m− 1, it follows that

S(r,W ) ≤ 2

3∑
j=1

n(2r,W = aj) +mrρ−σ0 +O(ln r)

< (6 +m)(2r)ρ−σ0 +O(ln r).

Dividing both sides by r and letting r → +∞, we have

lim sup
r→∞

lnT (r,W )

ln r
= lim sup

r→∞

lnS(r,W )

ln r
≤ ρ− σ0 < ρ,

which is a contradiction.

Step 2. Choose a subsequence of {θimm }, denoted by {θm} such that

lim
m→+∞

θm = θ0.

Then for all ε > 0, we have

lim sup
r→∞

lnnχ(r,∆(θ0, ε),W )

ln r
≥ ρ.

It follows from Lemmas 3.1 and 3.7 that

ρ = p(T (r,W )) ≥ p(Nχ(r,W )) = p(nχ(r,W )) ≥ p(nχ(r,∆(θ0, ε),W )) ≥ ρ.

Case 2. When ρ(W ) = +∞, we can obtain the desired result by replacing ρ in Case 1

with any sufficiently large positive number M .

Proof of Theorem 1.5. We just need to prove (2) holds when ρ ∈ (0,∞). First, we prove

that for any ε′ ∈ (0, ε0),

lim sup
r→∞

lnS(r,∆(θ0, ε
′),W (z))

ln r
≥ ρ.

For ε′ we mentioned above and all σ ∈ (0, ρ), there exists some sequence {rn} such that

for any a ∈ C ∪ {∞} with 2k exceptional values at most,

n(rn,∆(θ0, ε
′),W (z) = a) > rρ−σn .

Let

En = {a ∈ S | n(rn,∆(θ0, ε
′)) > rρ−σn },

where S is the complex sphere. Then

πS(rn,∆(θ0, ε
′),W ) > rρ−σn m(En),

where m(En) is the Lebesgue measure of En. Since #{S−En} < 2k, further m(En) = π,

then we have

lim sup
r→+∞

lnS(r,∆(θ0, ε
′),W (z))

ln r
≥ ρ.

Replacing r′ and r in Lemma 3.4 with r and 2r, we can obtain the desired result.
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Proof of Theorem 1.6. Without loss of generality we suppose θ0 = 0. The mapping

h(z) =
(ze−iθ0)π/(2η) − 1

(ze−iθ0)π/(2η) + 1

maps the angular domain ∆(0, η) onto the unit disc {|h| < 1}. Set

R′ =

√
1− cos

η′π

2η
r−π/(2η).

By Lemma 3.6(a), we have

ρ = lim sup
r→+∞

lnnχ(r,∆(0, η′),W )

ln r
≤ lim sup

R→1−

lnnχ(R′,W (z(h)))

− ln(1−R′)
· π

2η
.

Applying Lemmas 3.1 and 3.7(2), we have the order of T (R,W (z(h))) in |h| < 1 is

p(T (R,W (z(h)))) ≥ p(Nχ(R,W (z(h)))) = p(nχ(R,W (z(h))))− 1 ≥ 2ηρ

π
− 1 > 0.

According to Lemmas 3.2 and 3.7, we have for any a ∈ C ∪ {∞} with 2k exceptional

values at most,

p(n(R,W (z(h)) = a)) = p(N(R,W (z(h)) = a)) + 1 ≥ 2ηρ

π
.

Let

r′ =

(
4

1−R2

)π/(2η)
.

By Lemma 3.6(b), we have

2ηρ

π
≤ lim sup

R→1−

lnn(R,W (z(h)) = a)

− ln(1−R)
= lim sup

r′→+∞

lnn(r′,∆(0, η),W (z) = a)
π
2η ln r′

.

Hence for any a ∈ C ∪ {∞} with 2k exceptional values at most, we have

p(n(r,∆(0, η),W (z) = a)) = ρ.

Proof of Theorem 1.8. Suppose that L(0) is a Borel cluster direction of W (z). Let ε be a

sufficiently small positive number. Then for any ε > ε′ > 0 and M > π/(2ε), we have

p(nχ(r,∆(0, ε′),W (z))) > M.

Replacing η, η′ and ρ in Theorem 1.6 with ε, ε/2 and M respectively yields

p(n(r,∆(0, ε),W (z) = a)) ≥M,

where a is any finite or infinite complex numbers with 2k exceptional values at most. This

attains our purpose.
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