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The Number of Cusps of Complete Riemannian Manifolds with Finite

Volume

Thac Dung Nguyen, Ngoc Khanh Nguyen and Ta Cong Son*

Abstract. In this paper, we count the number of cusps of complete Riemannian

manifolds M with finite volume. When M is a complete smooth metric measure

spaces, we show that the number of cusps in bounded by the volume V of M if

some geometric conditions hold true. Moreover, we use the nonlinear theory of the

p-Laplacian to give a upper bound of the number of cusps on complete Riemannian

manifolds. The main ingredients in our proof are a decay estimate of volume of cusps

and volume comparison theorems.

1. Introduction

Let E be an end of a Riemannian manifold Mn and λ1(M) be the first Dirichlet eigenvalue

of the Laplacian on M . It is well-known that information of λ1(M) tells us some geometric

properties of the manifold. For example, if λ1(M) > 0 then M must have infinite volume,

or if λ1(E) > 0 then either E has finite volume, namely E is a cusp; or E is non-parabolic

end with volume of exponent growth. In [2], Cheng considered complete manifolds (Mn, g)

of dimension n with RicM ≥ −(n− 1) and gave an upper bound of λ1(M):

λ1(M) ≤ (n− 1)2

4
.

Later, Li and Wang showed in [5] that if RicM ≥ −(n − 1) and λ1(M) is maximal then

either M has only one end or; M is a topological cylinder with certain warped metric

product. Since λ1(M) is maximal, M must have infinite volume. Hence, Li-Wang’s result

says that we can count the number of ends of complete Riemannian manifold M with

RicM ≥ −(n− 1) provided λ1(M) obtains its maximal value. In this case, M has at most

two ends.

Interestingly, when M is a complete Riemannian manifold of finite volume, Li and

Wang proved in [8] that one can count ends (cusps) via the bottom of Neumann spectrum
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µ1(M) defined by

µ1(M) = inf
φ∈H1(M),

∫
M φ=0

∫
M |∇φ|

2∫
φ2

.

Note that µ1(M) plays the role of a generalized first non-zero Neumann eigenvalue, al-

though µ1(M) might not necessarily be an eigenvalue. However, if M is compact then

µ1(M) is itself a positive eigenvalue called the first (Neumann) eigenvalue of the Laplacian

(see [9, 14]). As in [8, 14], variational principle implies

µ1(M) ≤ max{λ1(Ω1), λ1(Ω2)}

for any two disjoint domains Ω1 and Ω2 of M , where λ1(Ω1) and λ1(Ω2) are their first

Dirichlet eigenvalues respectively. Li and Wang counted cusps on complete manifolds with

finite volume as follows.

Theorem 1.1. [8] Let Mn be a complete Riemannian manifold with Ricci curvature

bounded from below by RicM ≥ −(n − 1). Assume that M has finite volume given by V ,

and

µ1(M) ≥ (n− 1)2

4
.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a constant

C(n) > 0 depending only on n, such that,

N(M) ≤ C(n)

(
V

Vo(1)

)2

ln
V

Vo(1)

where Vo(1) denotes the volume of the unit ball centered at any point o ∈M .

Due to Cheng’s upper bound of λ1(M) and variational characteristic of µ1(M), one

can see that in Theorem 1.1, µ1(M) is maximal. This means that instead of λ1(M), we

can use µ1(M) to count the number of cusps of complete Riemannian manifolds with

finite volume. We would like to mention that to count cusps of complete manifolds, Li

and Wang used a decay volume estimate and a volume comparison theorem.

Motivated by the beauty of Theorem 1.1, in this paper, we want to estimate the

number of cusps on smooth metric measure spaces (Mn, g, e−fdv) with finite f -volume

Vf . Recall that a smooth metric measure space (Mn, g, e−fdv) is a complete Riemannian

manifold (Mn, g) of dimension n with f ∈ C∞(M) is a smooth weighted function and

e−fdv is the weighted volume. Here dv is the volume form with respect to the metric g.

On (M, g, e−fdv), we consider the weighted Laplacian

∆f · = ∆ · −〈∇f,∇ · 〉
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which is a self-adjoint operator. Associated to the weighted Laplacian, we define the

Bakry-Émery curvature by

Ricf := RicM + Hess f

where RicM is the Ricci curvature of M and Hess f is the Hessian of f . Following the

same strategy as in [8], we first give a decay estimate for the weighted volume and use a

volume comparison theorem in [11] to prove the next theorem.

Theorem 1.2. Let (Mn, g, efdv) be a complete smooth metric measure space with Ricci

curvature bounded from below by

Ricf ≥ −(n− 1).

Assume for some nonnegative constants α such that

|∇f |(x) ≤ α

for x ∈M and that M has finite volume given by Vf , moreover

µ1(M) ≥ (n− 1 + α)2

4
.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a constant

C(n) > 0 depending only on n, such that,

N(M) ≤ C(n)

(
Vf

Vf (B(o, 1))

)2

ln

(
Vf

Vf (B(o, 1))

)
where Vf (B(o, 1)) denotes the f -volume of the unit ball centered at any fixed point o ∈M .

On the other hand, our second aim in this paper is to count the number of cusps

on complete Riemannian manifold (Mn, g) with finite volume via the nonlinear theory of

p-Laplacian for 1 ≤ p < ∞. On a complete Riemannian manifold, for any u ∈ W 1,p
loc , the

p-Laplacian denoted by ∆p acting on u as follows:

∆pu = div(|∇u|p−2∇u).

If λ satisfies

∆pu = −λ|u|p−2u

then λ is said to be an eigenvalue of p-Laplacian and u is called an eigenfunction with

respect to λ. As in [9, 14], we define

µ1,p(M) = inf

{∫
M |∇φ|

p∫
φp

;φ ∈W 1,p(M), φ 6= 0 and

∫
M
|φ|p−1φ = 0

}
.
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For any couple of nonempty disjoint open subsets Ω1, Ω2 of M , Veron proved, in his

paper [14] (see also [9]), the following result

µ1,p(M) ≤ max{λ1,p(Ω1), λ1,p(Ω2)}

where λ1,p(Ω1) and λ1,p(Ω2) are their first Dirichlet p-eigenvalues, respectively. As in

[12,13] we know that if M satisfies RicM ≥ −(n− 1) then λ1,p is bounded from upper by

λ1,p(M) ≤
(
n− 1

p

)p
.

For further discussion on p-Laplacian and its eigenvalues, we refer the reader to [9,12–14]

and the references therein. Now, we can count the number of cusps as follows.

Theorem 1.3. Let (Mn, g) be a complete with finite volume given by V . Assume that the

Ricci curvature is bounded from below by

RicM ≥ −(n− 1)

and

µ1,p(M) ≥ (n− 1)p

pp
.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a constant

C(n, p) > 0 depending only on n and p such that,

N(M) ≤ C(n, p)

(
V

Vo(1)

)2

lnα(p)
(

V

Vo(1)

)
where α(p) = max{1, p/2} and Vo(1) denotes the volume of the unit ball centered at a fixed

point o ∈M .

As noticed in the previous part, two main ingredients in our proof are a decay estimate

for volume and a relative comparison volume theorem. Moreover, it is also worth to note

that µ1,p(M) in Theorem 1.3 is maximal. When λ1,p(M) is maximal, it is proved in [12,13]

that M has at most two ends. In fact, in [12, 13], the authors pointed out that either M

must have only one end or; M is a topological cylinder provided that RicM ≥ −(n − 1)

and λ1,p is maximal.

The paper is organized as follows. In Section 2, we introduce an estimate of volume

decay rate on smooth metric measure spaces which can be considered as a generalization

of volume decay rate in [7,8]. In Section 3, we will count the number of cusps on complete

smooth metric measure spaces with finite volume. Finally, we use the nonlinear theory

of p-Laplacian in Section 4 to estimate the number of cusps on Riemannian manifolds.

Several complete manifolds of finite volume are investigated in this section.
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2. Smooth metric measure spaces with weighted Poincaré inequality

Let (Mn, g, e−fdv) be a smooth metric measure space with a weighted positive function

ρ ∈ C(M). We define the ρ-metric by

ds2ρ = ρ ds2.

Thanks to this metric, we can define the ρ-distance function to be

rρ(x, y) = inf
γ
`ρ(γ),

where the infimum is taken over all smooth curves γ joining x and y, and ` is the length

of γ with respect to ds2ρ. For a fixed point o ∈ M , we denote rρ(x) = rρ(o, x) to be the

ρ-distance to o. As in [7], we know that |∇rρ|2(x) = ρ(x).

Throughout this article, we denote

Bρ(o,R) = {x ∈M | rρ(o, x) < R}

to be the geodesic ball centered at o ∈M with radius R. We also denote the geodesic ball

B(o,R) = {x ∈M | r(o, x) < R}

to be the set of points in M that has distance less than R from point o with respect to

the background metric ds2M . To simplify the notation, sometime, we will suppress the

dependency of o and write Bρ(R) = Bρ(o,R) and B(R) = B(o,R). Finally, suppose that

E is an end of M , we denote Eρ(R) = Bρ(R) ∩ E.

Lemma 2.1. Let (M,ds2ρ, e
−fdv) be a complete smooth metric measure space. Suppose E

is an end of M satisfying there exists a nonnegative function ρ(x) defined on E with the

property that ∫
E
ρφ2e−f ≤

∫
E
|∇φ|2e−f −

∫
E
µφ2e−f

for any compactly supported function φ ∈ C∞c (E) and µ a function defined on E. Let u

be a nonnegative function defined on E such that the differential inequality

∆fu ≥ −µu

holds true. If u has the growth condition∫
Eρ(R)

ρu2e−2rρe−f = o(R)

as R→∞, then it must satisfy the decay estimate∫
Eρ(R+1)\Eρ(R)

ρu2e−f ≤ C(1 + (R−R0)
−1)e−2R

∫
Eρ(R0+1)\Eρ(R0)

e2rρu2e−f

for some constant C > 0 and for all R ≥ 2(R0 + 1).
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Proof. To prove Lemma 2.1, we will combine both arguments in [7, 8]. Let φ(rρ(x)) be a

nonnegative cut-off function with support in E, where rρ(x) is the ρ-distance to the fixed

point p. Then for any function h(rρ(x)), integration by parts implies∫
E
|∇(φe2hu)|2e−f

=

∫
E
|∇(φeh)|2u2e−f +

∫
E

(φeh)2|∇u|2e−f + 2

∫
E

(φeh)u〈∇(φeh),∇u〉e−f

=

∫
E
|∇(φeh)|2u2e−f +

∫
E
φ2|∇u|2e2he−f +

1

2

∫
E
〈∇(φ2e2h),∇u2〉e−f

=

∫
E
|∇(φeh)|2u2e−f +

∫
E
φ2|∇u|2e2he−f − 1

2

∫
E
φ2∆f (u2)e2he−f

=

∫
E
|∇(φeh)|2u2e−f −

∫
E
φ2u(∆fu)e2he−f

≤
∫
E
|∇φ|2u2e2he−f + 2

∫
E
φ〈∇φ,∇h〉u2e2he−f

+

∫
E
φ2|∇h|2u2e2he−f +

∫
E
φ2µu2e2he−f .

(2.1)

On the other hand, by assumption, we have∫
E
ρφ2e−f ≤

∫
E
|∇φ|2e−f −

∫
E
µφ2e−f ,

hence using (2.1), we obtain

(2.2)∫
E
ρφ2u2e2he−f ≤

∫
E
|∇φ|2u2e2he−f + 2

∫
E
φe2h〈∇φ,∇h〉u2e−f +

∫
E
φ2|∇h|2u2e2he−f .

From now, we divide the proof into three steps.

Step 1: We claim that for any 0 < δ < 1, there exists a constant 0 < C1 < ∞ such

that, ∫
E
ρe2δrρu2e−f ≤ C1.

Indeed, let us now choose

φ(rρ(x)) =



rρ(x)−R0 on Eρ(R0 + 1) \ Eρ(R0),

1 on Eρ(R) \ Eρ(R0 + 1),

R−1(2R− rρ(x)) on Eρ(2R) \ Eρ(R),

0 on E \ Eρ(2R).

It is easy to see that

|∇φ|2(x) =


ρ(x) on Eρ(R0 + 1) \ Eρ(R0),

R−2ρ(x) on Eρ(2R) \ Eρ(R),

0 on (Eρ(R) \ Eρ(R0 + 1)) ∪ (E \ Eρ(2R)).
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Moreover, we also choose

h(rρ(x)) =

δrρ(x) for rρ ≤ K/(1 + δ),

K − rρ(x) for rρ ≥ K/(1 + δ)

for some fixed K > (R0 + 1)(1 + δ). When R ≥ K/(1 + δ), we have

|∇h|2(x) =

δ2ρ(x) for rρ ≤ K/(1 + δ),

ρ(x) for rρ ≥ K/(1 + δ)

and

〈∇φ,∇h〉(x) =


δρ(x) on Eρ(R0 + 1) \ Eρ(R0),

R−1ρ(x) on Eρ(2R) \ Eρ(R),

0 otherwise.

Substituting these into (2.2), we infer∫
E
ρφ2u2e2he−f ≤

∫
Eρ(R0+1)\Eρ(R0)

ρu2e2he−f +R−2
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f

+ 2δ

∫
Eρ(R0+1)\Eρ(R0)

ρu2e2he−f + 2R−1
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f

+ δ2
∫
Eρ(

K
1+δ

)\Eρ(R0)
ρφ2u2e2he−f +

∫
Eρ(2R)\Eρ( K

1+δ
)
ρφ2u2e2he−f .

Therefore, by rearrangement of the above inequality, we obtain∫
Eρ(

K
1+δ

)\Eρ(R0+1)
ρu2e2he−f

≤
∫
Eρ(

K
1+δ

)
ρφ2u2e2he−f

≤
∫
Eρ(R0+1)\Eρ(R0)

ρu2e2he−f +R−2
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f

+ 2δ

∫
Eρ(R0+1)\Eρ(R0)

ρu2e2he−f + 2R−1
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f

+ δ2
∫
Eρ(

K
1+δ

)\Eρ(R0)
ρu2e2he−f .

Thus

(1− δ2)
∫
Eρ(

K
1+δ

)\Eρ(R0+1)
ρu2e2he−f

≤ (1 + δ)2
∫
Eρ(R0+1)\Eρ(R0)

ρu2e2he−f +R−2
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f

+ 2R−1
∫
Eρ(2R)\Eρ(R)

ρu2e2he−f .
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Due to the definition of h and the assumption on the growth condition of u, we see that

the last two terms on the right-hand side tend to zero as R → ∞. Hence, we have the

estimate ∫
Eρ(

K
1+δ

)\Eρ(R0+1)
ρu2e2δrρe−f ≤ (1 + δ)2

1− δ2

∫
Eρ(R0+1)\Eρ(R0)

ρu2e2δrρe−f .

Note that the right-hand side does not depend on K, by letting K →∞ we conclude that

(2.3)

∫
E\Eρ(R0+1)

ρu2e2δrρe−f ≤ C1,

where

C1 =
(1 + δ)2

1− δ2

∫
E(R0+1)\E(R0)

u2e2δrρe−f .

Step 2: We want to prove that, there exists a constant C2 > 0 such that

(2.4)

∫
Eρ(R)

ρu2e2rρe−f ≤ C2R.

To do this, our first aim is to improve (2.3) by setting h = rρ in the previous arguments.

Now, suppose that h = rρ, by (2.2), we infer

−2

∫
E
φe2rρ〈∇φ,∇rρ〉u2e−f ≤

∫
E
|∇φ|2u2e2rρe−f .

For R0 < R1 < R, we choose

φ(x) =


rρ(x)−R0

R1−R0
on Eρ(R1) \ Eρ(R0),

R−rρ(x)
R−R1

on Eρ(R) \ Eρ(R1).

Plugging φ in the above inequality, we obtain

2

R−R1

∫
Eρ(R)\Eρ(R1)

(
R− rρ(x)

R−R1

)
ρu2e2rρe−f

≤ 1

(R1 −R0)2

∫
Eρ(R1)\Eρ(R0)

ρu2e2rρe−f +
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

ρu2e2rρe−f

+
2

(R1 −R0)2

∫
Eρ(R1)\Eρ(R0)

(rρ −R0)ρu
2e2rρe−f .

Observe that for any 0 < t < R−R1, the following inequality

2t

(R−R1)2

∫
Eρ(R−t)\Eρ(R1)

ρu2e2rρe−f ≤ 2

(R−R1)2

∫
Eρ(R)\Eρ(R1)

(R− rρ)ρu2e2rρe−f
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holds true. Therefore, we conclude that

2t

(R−R1)2

∫
Eρ(R−t)\Eρ(R1)

ρu2e2rρe−f

≤
(

2

R1 −R0
+

1

(R1 −R0)2

)∫
Eρ(R1)\Eρ(R0)

ρu2e2rρe−f

+
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

ρu2e2rρe−f .

(2.5)

Now, by taking R1 = R0 + 1, t = 1, and setting

g(R) =

∫
Eρ(R)\Eρ(R0+1)

ρu2e2rρe−f ,

the inequality (2.5) becomes

g(R− 1) ≤ C3R
2 +

1

2
g(R),

where

C3 =
3

2

∫
Eρ(R0+1)\Eρ(R0)

ρu2e2rρe−f

is independent of R. Iterating this inequality, we obtain that for any positive integer k

and R ≥ 1

g(R) ≤ C3

k∑
i=1

(R+ i)2

2i−1
+ 2−kg(R+ k)

≤ C3R
2
∞∑
i=1

(1 + i)2

2i−1
+ 2−kg(R+ k)

= C4R
2 + 2−kg(R+ k)

where

C4 = C3

∞∑
i=1

(1 + i)2

2i−1
.

Note that in our previous estimate (2.3), we have proved the following inequality∫
E
ρu2e2δrρe−f ≤ C1

for any δ < 1. Thus, this implies that

g(R+ k) =

∫
Eρ(R+k)\Eρ(R0+1)

ρu2e2rρe−f

≤ e2(R+k)(1−δ)
∫
Eρ(R+k)\Eρ(R0+1)

ρu2e2δrρe−f

≤ C1e
2(R+k)(1−δ).
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Now, if we choose 2(1− δ) < ln 2, then

2−kg(R+ k)→ 0

as k →∞. Consequently, we obtain

(2.6) g(R) =

∫
Eρ(R)\Eρ(R0+1)

ρu2e2rρe−f ≤ C4R
2

for all R ≥ R0 + 1.

Finally, using inequality (2.5) again and by choosing R1 = R0 + 1 and t = R/2 this

time, we infer

R

∫
Eρ(

R
2
)\Eρ(R0+1)

ρu2e2rρe−f ≤ C5R
2 +

∫
Eρ(R)\Eρ(R0+1)

ρu2e2rρe−f .

Observe that the second term on the right-hand side is bounded by (2.6), we have∫
Eρ(

R
2
)\Eρ(R0+1)

ρu2e2rρe−f ≤ C6R for all R ≥ 2(R0 + 1).

Therefore, the claim is proved.

Step 3: In this step, we will complete the proof of Lemma 2.1 by using (2.4). Indeed,

letting t = 2 and R1 = R− 4 in (2.5), we obtain∫
Eρ(R−2)\Eρ(R−4)

ρu2e2rρe−f

≤
(

8

R−R0 − 4
+

4

(R−R0 − 4)2

)∫
Eρ(R−4)\Eρ(R0)

ρu2e2rρe−f

+
1

4

∫
Eρ(R)\Eρ(R−4)

ρu2e2rρe−f .

Thanks to (2.4), the first term on the right-hand side is estimated by

C2(1 + (R−R0 − 4)−1)

for R− 4 ≥ 2(R0 + 1). Hence, by renaming R, the above inequality can be rewritten as∫
Eρ(R−2)\Eρ(R−4)

ρu2e2rρe−f ≤ C2(1 + (R−R0)
−1) +

1

3

∫
Eρ(R)\Eρ(R−2)

ρu2e2rρe−f .

Iterating this inequality k times, we conclude that∫
Eρ(R+2)\Eρ(R)

ρu2e2rρe−f ≤ C2(1 + (R−R0)
−1)

k−1∑
i=0

3−i

+ 3−k
∫
Eρ(R+2(k+1))\Eρ(R+2k)

ρu2e2rρe−f .
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However, using (2.4) again, we deduce that the second term is bounded by

3−k
∫
Eρ(R+2(k+1))\Eρ(R+2k)

ρu2e2rρe−f ≤ C23
−k(R+ 2(k + 1))

which tends to 0 as k →∞. This implies∫
Eρ(R+2)\Eρ(R)

ρu2e2rρe−f ≤ C(1 + (R−R0)
−1)

for some constant C > 0 independent of R, and the lemma follows.

Remark 2.2. Recently, in [10], Munteanu et al. introduced a parabolic version of decay

estimate for weighted volume and used it to investigate Poisson equation on complete

smooth metric measure spaces.

Corollary 2.3. Let E be an end of a complete smooth metric measure space (M, g, e−fdv).

Suppose that λ1,f (E) > 0, i.e.,

λ1,f

∫
E
ϕ2e−f ≤

∫
E
|∇ϕ|2e−f

for any compactly supported function ϕ ∈ C∞0 (E). Let u be a nonnegative function defined

on E such that

(∆f + µ)u ≥ 0

for some constant µ satisfying λ1,f − µ > 0. If u has the growth condition∫
E(R)

u2e−2are−f = o(R)

as R→∞, where a =
√
λ1,f − µ, then u must satisfy the decay estimate∫

E(R+1)\E(R)
u2e−f ≤ C(1 + (R−R0)

−1)e−2aR
∫
E(R0+1)\E(R0)

e2aru2e−f

for some constant C > 0 depending on f , and a.

Proof. By variational principle for λ1,f , we have

(λ1,f − µ)

∫
E
ϕ2e−f ≤

∫
E
|ϕ|2e−f −

∫
E
µϕ2e−f .

Let ρ = a2, the distance function with respect to the complete metric ρ ds2 is given by

rρ(x) = ar(x).

Now, we can apply Lemma 2.1 to complete the proof.
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Note that if u ≡ 1, we obtain the following decay estimate.

Corollary 2.4. Suppose that E is an f -parabolic end of smooth metric measure space

(M, g, e−fdv) with λ1,f (E) > 0. Denote by VE,f (R) the weighted volume of E(R), then

the following decay estimate

VE,f (R+ 1)− VE,f (R)

≤ C(λ1,f (E))

(
1 +

1

R−R0

)
e2
√
λ1,f (R−R0)(VE,f (R0 + 1)− VE,f (R0))

holds true. Here R0 is a given positive number and C(λ1,f (E)) is some positive constant

depending on λ1,f (E).

It is worth to mention that in [1], Buckley and Koskela also proved earlier a version of

decay estimate for f -volume in a more general setting.

3. Counting cusps on smooth metric measure spaces of finite f -volume

As what we mentioned in the introduction part, in order to estimate the number of cusps

we must have a decay estimate of the f -volume proved in Section 2 and a volume com-

parison theorem. Hence, first we introduce a volume comparison result given by Wei and

Wylie in [15].

Lemma 3.1. [15, Theorem 1.2] Let (Mn, g, e−fdv) be a complete smooth metric measure

space with Ricf ≥ −(n− 1). Suppose there exists a nonnegative constant α such that the

weighted function satisfies

|∇f |(x) ≤ α

for all x ∈M . Then there exists a constant C > 0 such that the volume upper bound

Vf (B(o,R)) ≤ Ce(n−1+α)RVf (B(o, 1))

holds for all R > 0. Here Vf (B(o,R)) stands for the weighted volume of B(o,R).

Now, we will combine Lemma 3.1 and Corollary 2.4 to count the number of cusps.

The first result is as follows.

Theorem 3.2. Let (Mn, g, e−fdv) be a smooth metric measure space with Ricf ≥ −(n−1).

Suppose there exists a nonnegative constant α such that the weighted function satisfies

|∇f |(x) ≤ α

for all x ∈M . If M has finite f -volume given by Vf , and

λ1,f (M \B(o,R0)) ≥
(n− 1 + α)2

4
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for some R0 > 0, then

N(M) ≤ Ce(n−1+α)R0
Vf

Vf (B(o, 1))
.

Here C > 0 is a constant depending on λ1,f .

Proof. To simplify the notation, we denote Vo,f (R) to be the weighted volume of the

geodesic ball B(o,R), then for all R > 2(R0 + 1), we have

Vo,f (R+ 2)− Vo,f (R)

≤ C
(

1 +
1

R−R0

)
e(n−1+α)(R0−R)(Vo,f (R0 + 1)− Vo,f (R0)).

(3.1)

Here we use Corollary 2.4.

On the other hand, if y ∈ ∂B(o,R + 1) then B(o, 1) ⊂ B(y,R + 2). Hence, we use

Lemma 3.1 to obtain

(3.2) Vo,f (1) ≤ Vy,f (R+ 2) ≤ C1e
(n−1+α)RVy,f (1).

Suppose thatM\B(o,R) hasN(R) unbounded components, then there existN(R) number

of points {yi ∈ ∂B(o,R + 1)} such that B(yi, 1) ∩ B(yj , 1) = ∅ for i 6= j. In particular,

applying (3.2) to each of the yi and combining with (3.1), we have

N(R)C−11 e−(n−1+α)RVo,f (1) ≤
N(R)∑
i=1

Vyi,f (1)

≤ Vo,f (R+ 2)− Vo,f (R)

≤ C
(

1 +
1

R−R0

)
e(n−1+α)(R0−R)(Vo,f (R0 + 1)− Vo,f (R0)).

This implies that

N(R) ≤ CC1(1 + (R−R0)
−1)e(n−1+α)R0(Vo,f (R0 + 1)− Vo,f (R0))V

−1
o,f (1).

Note that N(R) is the number of ends of M with respect to B(o,R), letting R→∞, we

complete the proof.

Next, we will derive a weighted version of a Li-Wang’s result in [8] to estimate λ1,f (Bo(R))

of a geodesic ball centered at o with radius R in terms of the weighted volume of the ball.

It is worth to mention that as in [8], we do not require any curvature assumptions on M .

Lemma 3.3. Let (M, g, efdv) be a complete smooth metric measure space. Then for any

0 < δ < 1, R > 2 and o ∈M , we have

λ1,f (B(o,R)) ≤ 1

4δ2(R− 1)2

(
ln

(
Vf (B(o,R))

Vf (B(o, 1))

)
+ ln

(
81

1− δ

))2

.
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Proof. Observe that
4

R2
≤ 1

4δ2(R− 1)2
ln2

(
81

1− δ

)
.

Hence, we may assume λ1,f (B(o,R)) ≥ 4/R2.

To simplify the notation, let us use λ1,f to denote λ1,f (B(o,R)). By the variational

characteristic of λ1,f (B(o,R)), we have

λ1,f

∫
M
φ2 exp(−2δ

√
λ1,fr)e

−f

≤
∫
M
|∇(φ exp(−δ

√
λ1,fr))|2e−f

=

∫
M
|∇φ|2 exp(−2δ

√
λ1,fr)e

−f − 2δ
√
λ1,f

∫
M
φ exp(−2δ

√
λ1,fr)〈∇φ,∇r〉e−f

+ δ2λ1,f

∫
M
φ2 exp(−2δ

√
λ1,fr)e

−f

for any nonnegative Lipschitz function φ with support in B(o,R). Consequently,

λ1,f (1− δ2)
∫
M
φ2 exp(−2δ

√
λ1,fr)e

−f

≤
∫
M
|∇φ|2 exp(−2δ

√
λ1,fr)e

−f − 2δ
√
λ1,f

∫
M
φ exp(−2δ

√
λ1,fr)〈∇φ,∇r〉e−f .

In particular, for R > 2, we choose

φ =


1 on B(o,R− λ1/21,f ),√
λ1,f (R− r) on B(o,R) \B(o,R− λ1/21,f ),

0 on M \B(o,R),

then φ = 1 on B(o, 1) since R − λ1/21,f ≥ R/2 > 1. Plugging φ in the above inequality, we

obtain

(1− δ2)λ1,f exp(−2δ
√
λ1,f )Vf (B(o, 1))

≤ (1− δ2)λ1,f
∫
M
φ2 exp(−2δ

√
λ1,fr)e

−f

=

∫
M
|∇φ|2e−2δ

√
λ1,f re−f − 2δ

√
λ1,f

∫
M
φe−2δ

√
λ1,f r〈∇φ,∇r〉e−f

≤ λ1,f
∫
B(o,R)\B(o,R−λ1/21,f )

e−2δ
√
λ1,f re−f + 2δλ1,f

∫
B(o,R)\B(o,R−λ1/21,f )

φe−2δ
√
λ1,f re−f

≤ (1 + 2δ)λ1,fe
−2δ(
√
λ1,fR−1)Vf (B(o,R)).

Here we use
√
λ1,f (R−r) ≤ 1 on B(o,R)\B(o,R−λ1/21,f ) in the last inequality. Therefore,

e2δ
√
λ1,f (R−1) ≤ (1 + 2δ)e2δ

1− δ2
Vf (B(o,R))

Vf (B(o, 1))
≤ 27

1− δ
Vf (B(o,R))

Vf (B(o, 1))
.
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This implies

2δ
√
λ1,f (R− 1) ≤ ln

(
27

1− δ

)
+ ln

(
Vf (B(o,R))

Vf (B(o, 1))

)
.

The lemma follows by rewriting this inequality.

Note that λ1,f (M) = limR→∞ λ1,f (B(o,R)). If we first let R go to infinity and then δ

go to 1 in the estimate of Lemma 3.3, we have the following result.

Corollary 3.4. Let (Mn, g, efdv) be a complete smooth metric measure space and λ1,f (M)

be the first weighted eigenvalue. Then

λ1,f (M) ≤ 1

4

(
lim inf
R→∞

lnVf (B(o,R))

R

)2

.

Now, we will give a proof of Theorem 1.2.

Proof of Theorem 1.2. Note that o ∈M is a fixed point. For any 0 < δ < 1, let

R0 =
1

(n− 1 + α)δ

(
ln

(
81

1− δ

)
+ ln

(
Vf

Vf (B(o, 1))

))
+ 3.

Thanks to Lemma 3.3, we have

λ1,f (B(o,R0)) ≤
δ2(n− 1 + α)2

4δ2

(
ln
(
Vf (B(o,R))
Vf (B(o,1))

)
+ ln

(
81
1−δ

))2
(

ln
(

81
1−δ

)
+ ln

(
Vf

Vf (B(o,1))

))2 ≤ (n− 1 + α)2

4
.

On the other hand, by the variational principle, we have

µ1(M) ≤ max{λ1,f (B(o,R0)), λ1,f (M \B(o,R0))}.

Hence, combining this inequality with assumption regarding to µ1(M), we infer

λ1,f (M \B(o,R0)) ≥
(n− 1 + α)2

4
.

So Theorem 3.2 implies

N(M) ≤ C(n)VfV
−1
f (B(o, 1)) exp((n− 1 + α)R0).

To finish the proof, we first choose

δ = 1− 1

ln(VfV
−1
f (Bo(1)))

then replace the value of R0, δ in the last inequality. So we are done.
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As we mentioned in the introduction part, two main ingredients in our proof of Theo-

rem 1.2 are the decay estimate of the volume and the volume comparison result. Therefore,

using Corollary 2.4 and the relative volume comparison theorems in [4], we can count the

number of cusps of the following manifold.

Theorem 3.5. Let M be a complete noncompact 16-dimensional manifold with holonomy

group Spin(9) with finite volume given by V , and µ1(M) ≥ 121. Then there exists a

constant C > 0 such that

N(M) ≤ C
(

V

Vo(1)

)2

ln

(
V

Vo(1)

)
where Vo(1) denotes the (non-weighted) volume of the unit ball centered at any point o ∈M .

Here µ1(M) is defined by the (non-weighted) Reileigh quotient

µ1(M) = inf
φ∈H1(M),

∫
M φ=0

∫
M |∇φ|

2∫
M φ2

.

4. Counting cusps via the p-Laplacian

In this section, we will use the nonlinear theory of p-Laplacian to estimate the number of

cusps of Riemannian manifolds. Again, our strategy is to use a (nonlinear) decay estimate

of the volume and corresponding volume comparison theorem. Therefore, let us recall the

following nonlinear version regarding to the rates of volume decay.

Theorem 4.1. [1] Let E be an end of a complete Riemannian manifold (Mn, g) with

respect to B(o,R0). If the first eigenvalues of the p-Laplacian λ1,p(E) > 0, (1 ≤ p < ∞)

and M has finite volume V , then the following decay estimate

VE(R+ 1)− VE(R) ≤ CV e−pλ
1/p
1,p (R−R0)

holds true for all R > R0 + 2. Here C is a constant depending only on p.

Proof. As in [1], we can assume λ1,p = 1 and let E(R) = E ∩ B(o,R) and V (R) stands

for the volume of E(R). Let V (∞) be the volume of E. Since M has finite volume so

does E. Hence by the proof of Theorem 0.1 in [1, page 279], E must be p-parabolic. For

R > R0 + 2, it is proved in [1, page 278] that

ep(R−1)(V (R+ 1)− V (R− 1)) ≤ 2pep(R0+1)V (R0 + 1) + ε

for any ε > 0 fixed. Note that V (R0 + 1) ≤ V , this implies

V (R+ 1)− V (R− 1) ≤ 2pe2pe−p(R−R0)V.
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Consequently,

VE(R+ 1)− VE(R) ≤ CV e−pλ
1/p
1,p (R−R0).

Here C = 2pe2p is a constant depending only on p, we noted that λ = 1. The proof is

complete.

We note that the decay estimate of Theorem 4.1 can be considered as a generalization

of Corollary 2.4. However, we would like to mention that the results in Section 2 may

hold for non-parabolic ends. Therefore, they are of independent interest. Now, we can

estimate the number of cusps of smooth metric measure spaces as follows.

Theorem 4.2. Let (Mn, g) be a smooth metric measure space with Ric ≥ −(n− 1). If M

has finite volume given by V , and

λ1,p(M \B(o,R0)) ≥
(n− 1)p

pp
, p ≥ 1

for some R0 > 0, then

N(M) ≤ Ce(n−1)R0
V

Vo(1)
.

Here C > 0 is a constant depending on λ1,p.

Proof. It is worth to notice that the conclusion of Theorem 4.1 and (3.1) are of the same

type. Therefore, by using the decay estimate in Theorem 4.1 and the volume comparison

theorem (see Lemma 3.1), we can repeat the proof of Theorem 3.2 to derive the conclusion.

Since they are almost the same, we omit the detail.

Next, we will estimate λ1,p on the ball B(o,R).

Lemma 4.3. Let (Mn, g) be a Riemannian manifold. Then for any 0 < δ < 1, 1 ≤ p <∞
and o ∈M , we have

λ1,p(B(o,R)) ≤ 1

δp(R− 1)p

(
2 +

α(p)

p
ln

1

1− δ
+

1

p
ln
Vo(R)

Vo(1)

)p
where α(p) = max{1, p/2}.

Proof. Observe that

2p

Rp
≤ 1

δp(R− 1)p

(
2 +

α(p)

p
ln

1

1− δ

)p
.

Hence, we may assume λ1,p(B(o,R)) ≥ 2p/Rp.
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To simplify the notation, let us use λ1,p to denote λ1,p(B(o,R)). By the variational

characteristic of λ1,p(B(o,R)), we have

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr)

≤
∫
M
|∇(φ exp(−δ p

√
λ1,pr))|p

=

∫
M
e−pδ

p
√
λ1,pr|∇φ− δ p

√
λ1,pφ∇r|p

=

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2δ p

√
λ1,p|∇φ||∇r|+ δ2λ

2/p
1,p φ

2
)p/2

(4.1)

for any nonnegative Lipschitz function φ with support in B(o,R). We have two cases.

Case 1: p ≥ 2. Observe that xp/2 is a convex function, we have the following basic

inequality

(A+B)p/2 =

(
(1− δ2) A

1− δ2
+ δ2

B

δ2

)p/2
≤ (1− δ2)1−p/2Ap/2 + δ2−pBp/2

for any A,B ≥ 0. Hence, by (4.1), we have

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr)

≤ (1− δ2)1−p/2
∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
+ δ2λ1,p

∫
M
e−pδ

p
√
λ1,prφp.

Consequently,

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr)

≤ 1

(1− δ2)p/2

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
≤ 1

(1− δ)p/2

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
.

Here we use 0 < δ < 1 in the last inequality.

Case 2: 1 ≤ p < 2. Since 0 < p/2 < 1, we have for A,B ≥ 0,

(A+B)p/2 ≤ Ap/2 +Bp/2.

Therefore, by (4.1), we obtain

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr) ≤

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
+ δ2λ1,p

∫
M
e−pδ

p
√
λ1,prφp.
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Since 0 < δ < 1, this implies,

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr) ≤

1

1− δ

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
.

In conclusion, we obtain in both cases that

λ1,p

∫
M
φp exp(−pδ p

√
λ1,pr)

≤ 1

(1− δ)α(p)

∫
M
e−pδ

p
√
λ1,pr

(
|∇φ|2 + 2φδ p

√
λ1,p|∇φ||∇r|

)p/2
.

Now, for R > 2, we choose

φ =


1 on B(o,R− λ−1/p1,f ),

p
√
λ1,p(R− r) on B(o,R) \B(o,R− λ−1/p1,f ),

0 on M \B(o,R),

then φ = 1 on B(o, 1) since R− λ−1/p1,p ≥ R/2 > 1. Plugging φ in the above inequality, we

obtain

λ1,p exp(−pδλ1/p1,p )Vo(1) ≤ λ1,p
∫
M
φp exp(−pδ p

√
λ1,fr)

≤ λ1,p

(1− δ)α(p)

∫
B(o,R)\B(o,R−λ1/p1,p )

(1 + 2φδ)p/2e−pδ
p
√
λ1,pr

≤ λ1,p

(1− δ)α(p)
3p/2e−pδ(λ

1/p
1,p R−1)Vo(R).

Here we use 0 ≤ φ ≤ 1 in the third inequality. Therefore,

epδλ
1/p
1,p (R−1) ≤ 3p/2epδ

(1− δ)α(p)
Vo(R)

Vo(1)
≤ 2pep

(1− δ)α(p)
Vo(R)

Vo(1)
.

This implies

pδλ
1/p
1,p (R− 1) ≤ p(ln 2 + 1) + α(p) ln

1

1− δ
+ ln

(
Vo(R)

Vo(1)

)
.

The lemma follows by rewriting this inequality.

Corollary 4.4. Let M be a complete smooth metric measure spaces and λ1,p is the first

eigenvalue of the p-Laplacian. Then

λ1,p ≤
(

1

p
lim inf
R→∞

lnVo(R)

R

)p
, p ≥ 1.
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Proof. We use Lemma 4.3 to give the proof. Indeed, by the conclusion of Lemma 4.3, we

first let R→∞ then let δ → 1, we obtain

λ1,p ≤
(

1

p
lim inf
R→∞

lnVo(R)

R

)p
, p ≥ 1.

The proof is complete.

Now we give a proof of Theorem 1.3.

Proof of Theorem 1.3. Note that o ∈M is a fixed point. Let

R0 =
p

(n− 1)δ

(
2 +

α(p)

p
ln

1

1− δ
+

1

p
ln

V

Vo(1)

)
+ 3.

Thanks to Lemma 4.3, we infer

λ1,p(B(o,R0)) ≤
(n− 1)p

pp
.

On the other hand, by the variational principle, we have

µ1,p(M) ≤ max{λ1,p(B(o,R0)), λ1,p(M \B(o,R0))}.

Hence, combining this inequality with assumption regarding to µ1,p(M), we obtain

λ1,f (M \B(o,R0)) ≥
(n− 1)p

pp
.

So Theorem 4.2 implies

N(M) ≤ Ce(n−1)R0
V

Vo(1)
.

To finish the proof, we first choose δ = 1− 1
ln(V ·Vo(1)−1)

then replace the value of R0, δ in

the last inequality. So we are done.

Similarly, using the volume comparison theorems in [3, 4, 6], we have the following

theorems.

Theorem 4.5. Let Mm be a complete Kähler manifold of complex dimension m with

finite volume. Assume that M has holomorphic bisectional curvatures satisfying

Rijij ≥ −(1 + δij)

for all unitary frame {e1, . . . , em}. If

µ1,p(M) ≥
(

2m

p

)p
, p ≥ 1,
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then there exists a constant C(m, p) > 0 depending only on m and p such that

N(M) ≤ C(m, p)

(
V

Vo(1)

)2

lnα(p)
(

V

Vo(1)

)
where α(p) = max{1, p/2} and Vo(1) denotes the volume of the unit ball centered at any

point o ∈M .

Theorem 4.6. Let (M4m, g) be a complete quarternionic Kähler of real dimension 4m

with finite volume given by V . Assume that its scalar curvature satisfies the bound

SM ≥ −16m(m+ 2)

and

µ1,p(M) ≥ (2(2m+ 1))p

pp
, p ≥ 1.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a constant

C(m, p) > 0 depending only on m and p such that

N(M) ≤ C(n, p)

(
V

Vo(1)

)2

lnα(p)
(

V

Vo(1)

)
where α(p) = max{1, p/2} and Vo(1) denotes the volume of the unit ball centered at a fixed

point o ∈M .

Theorem 4.7. Let M be a complete noncompact 16-dimensional manifold with holonomy

group Spin(9) with finite volume given by V . Assume that

µ1,p(M) ≥ 22p

pp
, p ≥ 1.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a constant

C(p) > 0 depending only on p such that

N(M) ≤ C(p)

(
V

Vo(1)

)2

lnα(p)
(

V

Vo(1)

)
where α(p) = max{1, p/2} and Vo(1) denotes the volume of the unit ball centered at a fixed

point o ∈M .
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