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Some Remarks on Dynamical System of Solenoids

Andrzej Bis* and Wojciech Koztowski

Abstract. We show that a solenoid is a dynamical object and we express its com-
plexity by a number of different entropy-like quantities in Hurley’s sense. Some re-
lations between these entropy-like quantities are presented. We adopt the theory of
Carathéodory dimension structures introduced axiomatically by Pesin to a case of a
solenoid. Any of the above mentioned entropy-like quantities determines a particular
Carathéodory structure such that its upper capacity coincides with the considered
quantity. We mimic a definition of the local measure entropy, introduced by Brin and
Katok for a single map, to a case of a solenoid. Lower estimations of these quantities
by corresponding local measure entropies are described.

1. Introduction and preliminaries

A solenoid was defined in mathematics by Vietoris [18] in the late 1920s as an inverse
limit space over a circle map and generalized by McCord [11], Williams [20], Smale [15]
and others. A solenoid can be presented either in an abstract way, as an inverse limit, or
in a geometric way, as nested intersections of solid tori.

Solenoids are compact metrizable spaces that have many unexpected properties. These
are connected spaces, but they are neither locally nor path connected spaces. Therefore,
they appear in a natural way in continuum theory (see [1,5,/6]). In the context of smooth
dynamics, inverse limits of branched manifolds were considered by Williams [20] and
studied as hyperbolic attractors by Smale in his celebrated paper [15]. The reader may
find many aspects of solenoids in the recent paper by Sullivan [17].

An inverse limit construction is a powerful tool, therefore it is applied in many branches
of mathematics, e.g., in differential geometry (solenoids appear as total spaces of a fiber
bundle projection onto a closed manifold with a profinite structure group) or in measure
theory. In group theory, the inverse limit construction is related to adding machine and
odometers. The inverse limit of a branched covering space mappings of Riemann sphere
admits an invariant subspace which is laminated and admits transverse invariant measure

(e.g., see papers of Sullivan [16], Lyubich and Minsky [9]).
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In this paper we study a sequence fo = (fn: X5 — Xpn—1)52, of continuous epimor-
phisms of compact metric spaces X,,, called bonding maps. We assume that all spaces X,
coincide with a compact metrizable space X. By solenoid determined by f.,, we mean

the inverse limit
Xoo = lim Xy, = {(2x)5Z0 : @1 = fr(zi)}-

A solenoid is both a metric space and a dynamical object of a complicated structure.
Its complexity stems from the dynamics of bonding maps and can be measured by topo-
logical and measure-theoretic entropies which are crucial in understanding classical and
generalized dynamical systems. In recent years, many different entropy-like invariants for
a single map, based on preimage structure of a map, have been formulated and intensively
studied (see [3},4}7,8,[12]).

In the first part of the paper, we generalize a number of different entropy-like invari-
ants (such as: inverse image entropy, preimage relation entropy, point entropy). These
invariants were studied by Hurley [4] for a single map. We consider them in the context
of a solenoid. In particular, our results generalize the inequalities between entropy-like
invariants obtained by Hurley [4].

For a solenoid X, determined by fo and a subset Z C Xy we introduce: a branch
inverse entropy hiny(feo|Z), an inverse entropy hiny(foo|Z), a preimage relation entropy
hpre(foolZ) and a point entropy hpt(fso|Z). The entropy-like quantities are related as

follows.

Theorem 1.1. For any subset Z C Xg the following inequalities hold
(i) hinv(foolZ) < pre(fool Z),
(i) Py (fool Z2) < hinv(fool Z) + hpt(fos| Z).

In the second part of the paper, we investigate dynamics of solenoids from the point
of view of dimension theory. Our main tool is the so-called Carathéodory structure which
has been introduced axiomatically by Pesin [13]. A Carathéodory dimension structure
is a generalization of the Hausdorff measure and dimension. We adopt the theory of
Carathéodory structures to the case of a solenoid and prove that any entropy-like quan-
tity mentioned above is determined by a particular Carathéodory structure. The upper
capacity of the corresponding structure coincides with the considered entropy-like quan-
tity. On the space Xy we introduce a number of natural distinguished metrics related
directly to entropy-like quantities. Each of these distinguished metrics, say a metric p,
determines a dimensional-like quantity called an upper capacity CT,,G() In particular,

we get,
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Theorem 1.2. For any subset Z C Xg we have

hpre(foo’Z) CPpadJ( )
hInv(foo’Z) :CPPb< )
hinv(foo|Z) CPpr( )

Combining Theorem with Theorem we get inequalities between capacities cor-

responding to entropy-like quantities determined by different metrics. In particular,

Corollary 1.3. For any subset Z C Xq the following inequality holds
@PbH (Z) < 7Ppadj (Z)

In the third part of the paper, we mimic the definition of Brin and Katok [2] of a
local measure entropy to get local measure entropies for a solenoid. Thus, for a Borel

probability measure v on Xy and a distinguished metric p, we define a local measure

Ppa

Mge., of the solenoid and obtain the following estimations.

entropy h

Theorem 1.4. Let v be a Borel probability measure on Xg. Let Z be a Borel subset of
Xo with v(Z) > 0. Then we have

hpre(foo| Z) > essinf hy Y

loc,v?

hiny(foo|Z) > essinf hf®

loc,v?

hinv (fso| Z) > essinf h®H

loc,v?

where essinf hlpo“ stands for the essential infimum of the local measure entropy function

c,v
Pa
hloc v

Remark 1.5. The proof of Theorem [1.4] was inspired by Theorem 1 in [10] by Ma and Wen
who related the lower measure entropy of a single continuous map f: X — X of a compact

metric space (X, d) with a dimensional type characteristic of the dynamical system.

2. Entropy-like quantities for a solenoid

Let N denote the set of nonnegative integers. Fix a compact metrizable space X and
assume (X,,d,), where n € N and X,, = X, is a sequence of compact metric spaces.

Consider a sequence of continuous epimorphisms foo = (fn: X5 — Xp—1) called

[e.9]
n=1>
bonding maps.

By a solenoid determined by fo,, we mean the inverse limit

Koo = lim Xy, = {(zx)5Z0 : @h—1 = fr(zp)}-
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Clearly, X is a compact subset of the Hilbert cube II.X. A distance function ds, on X

is given by the usual formula

=1
dOO( Z? xkauk‘
k=0

Since X is uniquely determined by fo, we will often identify these two objects. Moreover,

define a sequence of maps (gx)72, gx: X — Xo by

go=1dx,, gk =Jf10fa0 -0 fr fork>1

We mimic definitions of entropy-like invariants, introduced by Hurley [4] for a single

map, and we define several entropy-like quantities to measure complexity of a solenoid

foo

Branch inverse entropy. Let Z C Xy, 20 € Z. In this approach we focus on the
growth rates of inverse images g,, 1(20). It is convenient to introduce a notion of a tree.

Denote by [29, 21, 22, - .., 2n] a finite sequence of points such that z; € X} for k =
0,1,2,...,n, and fr(zx) = 2x—1 for k =1,2,...,n. Observe that every such sequence can
be extended (but not uniquely) to a member of the solenoid X

The tree T, (29) of inverse images of zy € Z, up to the order n, is the set

= U g (20)
k=0
= {[z0,21,22,- -+, 2n) : 2 € X} and fr(zk) = 2x_1}-

We also call T, (z9) a tree over zy. Every sequence [zp, 21, 22, ..., 2], a member of
T, (z), is called a branch. The number n is called a length of a branch. Since the sequence
f~ is a sequence of epimorphisms, we obtain that T),(z) # 0.

In the set T, = U,c, Tn(2) of all trees of length n over Z, we introduce a branch
metric. For two branches by = |20, 21, ..., 25| and by = [wp, w1, ..., wy] of the same length,
we put

dp(b1,b2) = max{dp(zx,wg) : k =0,1,...,n}.

We say that branches by,by € T, are (n,e)-separated with respect to the branch
metric dp if dp(b1,b2) > €. Denote by smy(n, €, Z) the maximal cardinality of all (n, e, dy)-
separated subsets of T,,. From compactness of X,,, it follows that sy (n,e,Z) is finite.

Therefore, we may define a branch inverse entropy of fo, restricted to Z, by the formula

1
hiny (foo|Z) := lim lim sup — log siy(n, €, Z).
n

e—=0T n—ooco
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Inverse entropy. Let dyy be the Hausdorff metric based on the metric dp, called a
branch-Hausdorff metric. Notice that, for z,w € Z, the distance dpy (T, (2), Tn(w)) < € if
and only if, for any two branches b € T},(z) and ¢ € T},(w), there exist branches &’ € T),(w)
and ¢ € T,(z) such that

dy(b,b') <& and dy(c, ) <e.

We say that two trees T,(z) and T, (w) are (n,e)-separated with respect to branch
Hausdorft metric dpy if dpy (T (2), Tn(w)) > e. By compactness of X,,, it follows that
the maximal cardinality siny(n, €, Z) of (n, e, dppr)-separated subset of T, is finite. Conse-

quently, we may define the inverse entropy hiny of foo, restricted to Z, as follows

hiny (foolZ) := lim limsupllog Sinv(n, €, Z).
e=0t nooco M
Preimage relation entropy. Another approach to the dynamics of solenoids is based
on comparing behavior of branches under the action of the so-called adjusted mappings.
In the case of a single transformation, this method has been introduced by Langevin and
Walczak [8]. Let Z C Xy. Consider the set T, of all trees of length n over Z.

For every k£ =0,1,...,n, define a projection
T Iy — Xk by Wk(b> = Zk

for a branch b = [z0,21,...,2n]. We say that a map ¢: T),(2) — T, (w) between trees
T,(z) and T, (w) is adjusted if ¢ preserves the branching structure, i.e., if b,c¢ € T, (z)
and, for some k = 0,1,...,n, we have m(b) = mr(c), then 7, (p(b)) = mr(¢(c)). Denote
the set of adjusted mappings from T),(z) to T,,(w) by adj(z,w). It is clear that for any
z,w € Z, adj(z,w) # 0. Moreover, the composition of adjusted mappings is again an
adjusted mapping.

Fix ¢: Xo — Xo with ¢(Z) C Z for a subset Z C Xg. Let ¢ = ¢: X — Xj. Observe
that ¢ induces an adjusted mapping ¢: T;, — T, defined by

¢([207217 EERE) Zn]) = [QDU(xO)a (,01(551), SRR Son(xn)L

if and only if fr o pr = @r_1 0 f for every k=1,2,...,n.
Let z,w € Z C Xg. Put

6(¢) = max{dy(b, ¢(b)) : b € Tn(2)}

and

0(z,w) = inf{d(¢) : ¢ € adj(z,w)}.
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Lemma 2.1. Let daqgj(T(2), Th(w)) = max{d(z,w),d(w,2)}. Then duqj is a distance
function defined on the set T, of all trees of length n.

Proof. The coincidence axiom and symmetry of d,q; are clear. Take z,w,u € Z. Let
C={nov: ¢ € adj(z,w),n € adj(w,u)}. Since the composition of adjusted maps is
again an adjusted map, C' C adj(z,u). Consequently,

d(z,u) = inf{d(¢) : ¢ € adj(z,u)}
< inf{6(9) : 6 € C}
< inf{max{dy(b, (b)) + dp(1(b), $(b))} : b € Tu(2), ¢ =notp € C}
< Inf{5() : ¢ € adj(z, w)} + nf{5(n) : 1 € adj(w, u)}
= 0(z,w) + d(w, u),

which completes the proof. O

Let € > 0 and n > 1. Denote by spre(n, €, Z) the maximal cardinality of the family of
trees of length n which are (n, €, daqj)-separated. We define the preimage relation entropy
hpre of foo, restricted to Z, by

1
hpre(foo]Z) := lim lim — log spre(n, €, Z).

=0+t n—oon

Point entropy. Let Z C X(. In this approach, we consider a union of trees

Ten(z) = |J Th(z) = J 957 '(2),
k=0 §=0

where T} (z) denotes a tree over z of length k.

Recall that in the tree T}, (z) we introduced the branch metric d; as follows
dp(b, ¢) = max{d(zg, wy) : k =0,1,...,m},

where b = [20, 21, ..., Zm], ¢ = [wo, w1, ..., wy]| and 2o = wy. Now, we define a metric d,,

in T<,,(2) as follows

dy(b,c) if ¢,b € T)n(z2),

dpo(b,c) =
m —1| ifbe Ti(z), c € Ti(z) and m # L.

Denote by s;(n,e) the cardinality of maximal (n, ¢, dp,)-separated subset of T<,(z).
Let spt(n, e, Z) = sup{s.(n,e) : z € Z}. The following quantity is called a point entropy
of f restricted to Z

1
hpt(foolZ) := lim limsup — log sp(n, €, Z).

e—=0T n—osoo N
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Remark 2.2. (1) In particular, the solenoid fo = (fn: Xpn = Xn—1)02; with (X, dy) =
(Xo,do) and f,, = fo for any n € N, coincides with the dynamical system considered by
Hurley [4]. In this case, our definitions of entropy-like quantities are reduced to definitions
introduced in [4].

(2) Generally, the entropies hpre and hiny are different. Nitecki and Przytycki [12]
constructed an example of a skew product f on a unit square (see Example 3.1 in [12]),
such that hiny(f) = 0 and hpre(f) = log 2. So, the above mentioned entropies of fo,, where
all f, = f, are respectively 0 and log 2.

(3) Even if two transformations are relatively simple, their composition may be very
complicated. Raith [14] constructed two interval maps f,g: I — I of zero topological

entropy such that h o g has positive topological entropy.

Natural distance functions. Let Z C X3. We define several sequences of distance
functions on Z. Let zg,wg € Z and n > 0. Put

Padjn (20, wo) = dadj(Tn(20), Tn(wo)),
pb,n(ZO,wQ) = inf{db(bl, bg) : bl (S Tn(Z()), b2 c Tn(wg)},
pur (20, w0) = dprn(Tn(20), Tn(wo)).
For any a € {adj,b,bH}, let p,, denote corresponding distance function on Z. By

B,, . (z,0) we denote the standard ball, with respect to the metric p, ,, centered at z and
of radius § > 0.

Relation between entropies. Our entropy-like quantities can be expressed in language
of (n,e)-spannings sets. Using the previous notation, let v € {Inv, inv, pre}. By compact-
ness of X,,, we get that the minimal cardinality r.(n, e, Z) of (n,e)-spanned subset in an
appropriate space is finite. Using standard arguments (e.g., [19]) we get an estimation

ry(n,e) < sy(n,e) <ry(n,e/2). Consequently, passing to the suitable limits, we get

1
hy(fsolZ) = lim limsup —logry(n,e, Z).
n

e—0t nooo
Theorem 2.3. For any subset Z C Xy, the following inequalities hold
(1) hinv(folZ) < hpre(folZ),
(ii) hInV(fOO|Z) < hinV(fOO‘Z) + hpt(fOO‘Z)-

Proof. Let n be a positive integer and € > 0.
(i) Take two trees Ty, (x), T,,(y) and ¢ > 0, such that

dagi (Tn(2), Tn(y)) < c.
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Then, 6(¢) < ¢ for some adjusted map ¢: T, (z) — T5,(y). So, for arbitrary branch b, of
T, (x), we have that dy(bs, d(by)) < c. By the same arguments we obtain the existence
of an adjusted map ¢': T),(y) — T, (z) such that, for any branch b, of T),(y) we obtain
that dy(by, ¢'(by)) < c. This means that dpy (T (), Tn(y)) < ¢ and dagj(Tn (), Tn(y)) >
dyr (T (x), T (y)). Any two trees (n,e,dp)-separated with respect to dpy are (n,e)-
separated with respect to dagj, SO Sinv(n,€,2) > spre(n, e, Z). Passing to the suitable
limits, we obtain the inequality.

(ii) Let A be a maximal (n,e/3,dyp)-separated subset of Z. Let Ay = {u € Z :
T, (u) € A}. For every u € Az, choose an (n,e/3,dp)-separated subset M (u) C T, (u) of
maximal cardinality sy (n,e/3). Put M =U,c4, M(u).

Assume that Lemma [2.4] is proved. Since

card Az = card A = sipy(n,e/3,2),
card M (u) = sy(n,e/3) < spi(n,e/3,2),

we have
rmv(n, e, Z) < card M
< card Az x max{card M (u) : u € Ay}
< Sinv(na 5/3a Z)Spt(na 5/37 Z)'
Now taking logarithm and passing to the suitable limits, we obtain inequality (ii). O

Lemma 2.4. M is (n,e,dy)-spanning subset of T,,.

Proof. Choose z € Z, consider a tree T,,(z) and take a branch b € T},(z). Since any maxi-
mal separated subset is a spanning subset, there exists u € Az such that dpg (T3, (2), Tn(u))
< g/3. Therefore, we may find a branch b; € T),(u) with
dy(b,b1) < =.
3
Again, since M (u) is a maximal separated subset of T,,(u), the set M(u) is a spanning

subset. Consequently, there exists a branch by € M (u) such that

dp(b1,b2) <

Wl m

Hence dy(b, ba) < dp(b, b1) + dp(b1,b2) < €. This completes the proof of the lemma. O

Remark 2.5. Results of Theorem [2.3|are generalizations of the inequalities between entropy-
like invariants obtained by M. Hurley [4] but the proof of the theorem was inspired by the
approach of [4].
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3. Dynamics of solenoids via Carathéodory structures

In this section, we investigate dynamics of solenoids from the dimension theory point of
view. Our main tool here is the so-called Carathéodory structure. This powerful tool has

been introduced by Pesin [13].

Carathéodory dimension structure. Let Y be a nonempty set. Suppose that a cover
F of a subset of Y and three set functions n,v,£: F — Ry are given. Assume that the

following conditions are satisfied:
(C1) 0 € Fand ¢(0) =n(0) =0. If 0 # U € F then v(U)n(U) > 0.
(C2) For every § > 0 there exists € > 0 such that n(U) < ¢ for any U € F with ¢(U) < e.

(C3) For every € > 0 there exists a finite or countable subcover G C F of Y such that
(V) < e for every V € G.

A system 7 = (F,§,n,v) is called a Carathéodory structure or shortly a C-structure
on Y. In this paragraph we give relevant facts about Carathéodory structures.

Suppose that the C-structure 7 = (F,&,m,%) on Y is given. We will use the following
notation: If G C F is a finite or countable subcollection then we write G < F. Moreover,
we put ¥(G) = sup{y(V): V € G}.

Let a € R. Following Pesin, we define an outer measure m, on Y as follows: Take
Z CY and € > 0 and put

M(Z,e) = inf{z EVIM(V)*: G < F,Z CUG and ¥(G) < 6} .

Veg

One can show that there exists a limit

ma(Z) = lim M,(Z,¢).

e—0t

According to the general measure theory, m, induces a o-additive measure on Y called
the a-Carathéodory measure.

It turns out that there exists a critical value ac € [—00, 0] such that

o for a < ac,
ma(Z) =
0 for a>ac.

The quantity dim,(Z) = a¢ is called a C-dimension of Z with respect to the C-structure

T.
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Remark 3.1. Let Y = R™ and F be a topology of Y. For every open set U put {(U) = 1,
Y(U) = n(U) = diam(U). Then, for every Z C R", the C-dimension of Z coincides with

the Hausdorfl dimension
dim,(Z) = dimg(Z) where 7 = (F,&,n,v).

Now, suppose that the set function v satisfies a condition stronger than (C3). Namely,

assume that

(C3’) There exists £g > 0 such that, for every g9 > 1 > 0, there exist ¢ € (0,¢1) and a
subcover G < F with (V) = ¢ for every V € G.

Take a« € R and ¢ € (0,e9). Proceeding as before, for any Z C Y, we define the
quantity

Ry (Z,e) = inf{z EVIN(V)*: G < F,ZCUG and ¥(G) = 5} .

Veg

Due to (C3’), the quantity R, (Z,¢) is well defined. It yields the existence of the limits

ro(Z) =liminf Ry (Z,¢) and 74(Z) = limsup R, (Z,¢).

e—=0t e0+

As before, there exist o, @ € [—00, 00| such that

oo fora<aqn P oo for a < g,

0 fora>aq, 0 for a>ac.

The quantity a (resp. @c) is called lower (resp. upper) C-capacity of Z with respect to a
C-structure 7. We denote lower (resp. upper) C-capacity of Z by Cap(Z) (resp. Cap(Z)),

ie.,

(3.1) Cap(Z) = ar and Cap(Z) = ac.

Moreover, we assume that the set functions n and 1 are related as follows:

(C4) It U,V € F and ¥(U) = (V) then n(U) = n(V). In other words, 7 is constant on
each level set 1)~ 1(a), a € R, of the set function .

The Carathéodory structure 7 is called Carathéodory-Pesin-structure (or CP-structure),
if 7 satisfies additionally both conditions (C3’) and (C4).
Let Z C Xy and € > 0. Put

A(Z,¢) :inf{Z§(V) :G<F,ZCUGand G C 1!)_1(5)}.

Veg
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Observe that (C4) implies that, for every such G as above, 7|g is constant. Denote its
value by 7., i.e., n. = n(V) if V€ ¢~1(e).

Lower and upper capacities determined by CP-structures have the following properties:
Let Z,5 C Y then

Moreover, the lower and upper capacities are related to A as follows

.. —logA(Z,e)
2 Z) =1 f—m———=
(3:2) Cap(Z) lagcl)g log 1=
_ —log A(Z
(3.3) Cap(Z) = limsup M.
e—0t log 7e

Natural Carathéodory structure for solenoids. We apply notation from Section
Let Z C Xg. Recall that Z can be equipped with one of the natural distance functions
Pbns PoHn O Padin- Let po = {pan : n > 0} where a € {adj,b,bH}. Fix a natural metric
Pan ON Z.

For every z € Z and r > 0 let B,, , (z,7) denote a ball in metric pq,. Let By, (r) =
{Bp,.(2z,7): 2z € Z}. It is clear that B,, ,(r) is an open cover of Z.

Fix a subset H C Z and § > 0. Put

Bpav"(H7 5) = {Bl)a,n(z75) N H HEAS H}?

Foad = Fpas(H) = {(D,

1Ce

By, (H, 5)}.

Consider set functions &, 7,1 : F5(H) — R given by
EV)=1, n(V)=exp(-n) and $(V)=n""

for V.= B,, . (2,6) N H with z € H and n > 1. Moreover, let {(V) = (V) =n(V) = 1 if
V = B,,,(2,6). Then, the system

Toad (H) = (Fpo,5, 6,1, 0)

is a Carathéodory-Pesin structure on H determined by the dynamical system f.. To
indicate that all objects under considerations depend on p, and § we will write A, s,

Cap,, s etc. instead of A, Cap. Observe that for every o € R,

(3.4) Tona(H) = limsup R, o (H,m™),

m—00
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where in our case, R,, o(Z, m™1) reduces to

Ry, o(H,m™) = inf { Z exp(—ma) : G < B,,,.(H,6) and H C ug} .
Veg

Moreover, formulae (3.2)) and (3.3) imply

Cap

oy (H) = lim inf n~tlogA,, s(H,n™ 1),

Cap,,, 5(H) = limsup ntlogA,, s(H,n™1).

n—oo

Next, following Pesin [13], we obtain that there exist limit capacities

CP, (H) :61—1>m Cap (5(H) and CP, (H )—61_1>m+ Cap,, s(H).
Consequently,
-1
CP, (H) = lim hmlnfflogA s(Z,n™"),

§—0+ n—oo

—_ 1
CP,,(H) = lim limsup — logA s(Z,nh).

=0T n—oco

Observe that, by the definition of A, we get that A, 5(Z, n~1) is equal to the minimal
cardinality of (n,d, Z)-spanned subset in the appropriate metric space. Hence, by the
correspondence between entropies hpre, hiny, hiny and distances Padjs Pbs PbH, 1t follows
that

Theorem 3.2. For any subset Z C Xg we have

hpre(foo |Z) padj ( )
hInV(fOO’Z) ( )7
hinv(foo ’Z) 7Ppr (Z)

P
P,

Consequently, applying Theorem i) we get

Corollary 3.3. For any subset Z C Xy we have

CPpr (Z) §

Q

Ppadj (Z) .

Local measure entropy. Suppose now, that the set Xy is equipped with a Borel
probability measure v and a family p, = {pan : n > 0} natural metrics on Xy, where
a € {adj,b,bH}. For any for z € Z and r > 0, p, gives rise to a sequence of dynamical
balls {B,, n(2,7)}nen (i-e., the balls in the metrics p, ). Clearly, every ball B,, ,(z,7) is
a Borel subset of X and its measure v(B,, »(z,7)) is well defined. Following M. Brin and
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A. Katok [2], for every z € Z, we define a local measure entropy hi. (z) = h{e.  (fso|?)

with respect to the dynamical system f,, and the Borel probability measure v as follows
hY®

. .. . —logv(B,,, (z¢))
M(Z) N 61—1>I(I)1+ hnn—1>géf n .

Theorem 3.4. Let v be a Borel probability measure on Xg. Let Z be a Borel subset of
Xo with v(Z) > 0. Then we have

hpre (foo | Z) Z essinf hpadj

loc,v?

hiny(fso|Z) > essinf h®

loc,v?

loc,v?

hinv(foo|Z) > essinf h{PH

where essinf h®  stands for the essential infimum of the local measure entropy function

loc,v
Pa
hloc,u :

Proof. Put k = essinf h{* . If k = 0, then there is nothing to prove. Assume that £ > 0.
Take ¢ > 0. Let Z' C Z such that v(Z') = v(Z) and h*. (z) > a for z € Z'. Observe,

loc,v

that we may write Z’ = (Jp2; Zx, where Zj, is given by

“log (B, . (=, 1
Zr= () {zeZ’:liminf o8 1 p“’"<”))>n—s}.

n—00 n 2
re(0,1/k)

Since 0 < v(Z") < 372, v(Zy), there exists K € N with v(Zx) > 0. Next, we may write
Zx =Up_1 Zk,m, where Zg p, is given by

Zim = ﬂ ﬂ {zeZK: ~18(Bp,.n (2,7) >r.;—5}.

n
n>mre(0,1/K)

As before, we conclude that there exists M € N with v(Zk ar) > 0. It means that, for
every n > M, § € (0, K~1) and every z € Zk a1,

(3.5) v(By,.(2,0)) < exp(—(k —€)n).

Put H = Zk y. Fix § € (0, K~1). Consider CP-structure 7,, s(H). Put a = k — e.
Then, for every n > M, (3.5 yields

v(V) < (B, ,(,8)) < exp(—na),

Pa,n
where V' = B,, ,(2,0) N H and z € H. It follows that, for every finite or countable family
G C B,, . (H,6) with H = UG,

0<v(H)< Z exp(—na).
Veg
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Consequently, applying (3.4) we get 0 < v(H) < 7(H). This means (see (3.1])) that
for every € > 0,

k—e=a<Cap, s(H).

Hence
ess inf hﬁ;’c’y =r < Cap,, 5(H) —>6_>0+ CiPPm (H).
Now our theorem follows by Theorem and the inclusion H C Z. O

4. Final remarks and open problems

We can obtain similar results in a slightly more general set up, where we do not assume that
all spaces X, coincide with a metrizable compact space Xg. We study a sequence fo, =
(fn: Xn — Xn—1)52, of continuous epimorphisms of compact metric spaces (Xp,d,).
But, in this case, we have to assume that there exist a compact metric space (Y, d) and a
sequence of injection j,: Y — X, where n € N. Put Y}, = jx(Y) C Xi. We may identify

x € Y, with j, (). Moreover, we assume that
fe(Yy) =Yy, for every k € N.
By solenoid determined by fo,, we mean the inverse limit
Koo = Tm Xy, = {(24)5Z0 : Th1 = frl@r)}-

Remark 4.1. The above definition of a solenoid is slightly more general than a classical
one. If all the spaces X,, coincide with the space Xy we put Y = X and ji = i¢d. Then,
our definition coincides with the classical one. This definition of a solenoid is natural from

the point of view of the Pesin theory.

There are a few natural questions related to the dynamics of solenoids. To the best
of our knowledge, they are still open. The first one concerns a construction of a solenoid

with a given numerical value of an entropy-like quantity. Let v € {Inv,inv, pre}.

Question 4.2 (Realization problem). Let a > 0. Is there a solenoid built over the space
X with hy(foolX) = a7

Topological theory of classical dynamical systems has its counterpart in measure-

theoretic theory which yields a variational principle. Therefore, we may ask

Question 4.3. Is there a measure-theoretic counterpart of an entropy-like quantity
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There are many classical dynamical systems with positive entropy. The existence of a
horseshoe yields positive topological entropy. It is known that a diffeomorphism possessing
a homoclinic point with a topological crossing (possibly with infinite order contact) has

positive topological entropy. Therefore, we ask

Question 4.4. Are there geometric criteria for positive entropy of h(fso|X)?
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