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Numerical Methods for Solving the Time-fractional Telegraph Equation

Leilei Wei*, Lijie Liu and Huixia Sun

Abstract. A flexible numerical method for the time-fractional telegraph equation

is proposed and analyzed in this paper. The solution is discretized with a new fi-

nite difference scheme in time, and a local discontinuous Galerkin (LDG) method in

space. We prove that the method is unconditionally stable and convergent with order

O(hk+1 + (∆t)3−α), where h, ∆t, k are the space step size, time step size and de-

gree of piecewise polynomial, respectively. Numerical experiments are carried out to

illustrate the robustness, reliability, and accuracy of the method.

1. Introduction

In recent years fractional partial differential equations (FPDEs) have gained more and

more attention since many phenomena could be modeled by these equations in science

and engineering [23]. Due to the important applications of FPDEs in engineering and

science, there are many scholars to design and develop numerical methods for the FPDEs.

The existed methods solving the FPDEs include finite difference methods [1, 6, 8, 10, 11,

15, 21, 24, 27, 30, 32, 38, 39, 47, 51, 53], finite element methods [9, 12, 13, 19, 20, 25, 37, 52],

spectral methods [4, 7, 26, 29, 31, 48], discontinuous Gakerkin methods [17, 40, 41]. Some

other numerical methods are also very effective, such as homotopy perturbation method

and the variational method, for details the readers can refer to [14, 16, 28, 34, 44, 46, 50].

Although some numerical methods for FPDEs have been proposed and developed, it is still

meaningful and challenging to construct higher order numerical methods to solve these

equations.

In this paper we consider the following time-fractional telegraph equation of order α

(1 < α < 2)

∂αu(x, t)

∂tα
+
∂α−1u(x, t)

∂tα−1
− ρuxx = f(x, t), (x, t) ∈ (a, b)× (0, T ],

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ [a, b],

(1.1)
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where ∂αu(x, t)/∂tα, ∂α−1u(x, t)/∂tα−1 are Caputo fractional derivatives with respect to t,

ρ is an positive constant, x and t are the space and time variables, and the periodic bound-

ary condition considered in this paper. The Caputo fractional derivative ∂θu(x, t)/∂tθ is

defined as [36]

∂θu(x, t)

∂tθ
=

1

Γ(m− θ)

∫ t

0

∂mu(x, s)

∂sm
ds

(t− s)1−m+θ
, m− 1 < θ < m,

where Γ(·) is the Gamma function.

The telegraph equations are hyperbolic partial differential equations which can be

applied in some fields, such as signal analysis, wave propagation, random walk theory

and so on. Some researchers have discussed the time fractional telegraph equations [22].

Beghin and Orsingher [2] studied the fractional telegraph equation and showed that the

fundamental solution could be expressed as the density of the composition. Orsingher

and Beghin [35] considered the fundamental solutions of this equation. Chen, Liu and

Anh [5] considered the analytical solution for such equation using the method of sep-

arating variables. Momani [33] studied Adomian decomposition methods and obtained

the analytic and approximate solutions for the fractional telegraph equation. Jiang and

Lin [18] derived the exact solution in the form of series by using the reproducing kernel

theorem. Biazar et al. [3] discussed the variational iteration method to solve the fractional

telegraph equation. Momani [33] and Yıldırım [45] have applied Adomian decomposition

method and Homotopy perturbation method to solve the fractional telegraph equations,

respectively.

The discontinuous Galerkin method, which has many good features of a finite element

and a finite volume method, is a very attractive method to solve partial differential equa-

tions due to its flexibility in terms of mesh and shape functions, and can achieve a high

order of convergence. In this paper, we first present a finite difference scheme to approx-

imate the time fractional derivatives, and give a semidiscrete scheme in time. Then a

fully-discrete method based on the semidiscrete scheme for the fractional telegraph equa-

tion in which the spatial direction is approximated by a LDG method is presented and

analyzed.

The paper is organized as follows. In Section 2 we will introduce some basic notations

and theoretic results. Then we present our finite difference/local discontinuous Galerkin

method for the time-fractional telegraph equation, and also discuss the stability and give

an error estimate in Section 3. In Section 4, numerical results are also given to illustrate

the accuracy of convergence and capability of the method, and the concluding remarks is

included in the final section.
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2. Notation and theoretic results

Let Ω =
⋃
j Ij be the partition of Ω = [a, b], and Ij = [xj−1/2, xj+1/2], for j = 1, . . . , N .

The cell lengths ∆xj = xj+1/2 − xj−1/2, 1 ≤ j ≤ N , and h = max1≤j≤N ∆xj .

Denote by u+
j+1/2 and u−j+1/2 the traces from the right cell Ij+1 and the left cell Ij ,

respectively. The associated discontinuous Galerkin element space V k
h is defined as the

space of piecewise polynomials of the degree up to k,

V k
h = {v : v ∈ P k(Ij), j = 1, 2, . . . , N}.

We will use the projections P and P±, for j = 1, . . . , N ,∫
Ij

(Pµ(x)− µ(x))ω(x) = 0, ∀ω ∈ P k(Ij),(2.1) ∫
Ij

(P+µ(x)− µ(x))ω(x) = 0, ∀ω ∈ P k−1(Ij),

P+µ(x+
j−1/2) = µ(xj−1/2),

(2.2)

and ∫
Ij

(P−µ(x)− µ(x))ω(x) = 0, ∀ω ∈ P k−1(Ij),

P−µ(x−j+1/2) = µ(xj+1/2).

(2.3)

The above projections P and P± satisfy the following inequality [42,43,49]

(2.4) ‖µe‖+ h‖µe‖∞ + h1/2‖µe‖τh ≤ Ch
k+1,

here µe = Pµ− µ or µe = P±µ− µ. The positive constant C, which is independent of h

and solely depends on µ. τh denotes the set of boundary points of all elements Ij , and an

unmarked norm ‖ · ‖ is the usual L2-norm defined on the whole domain Ω, and

‖µe‖∞ = max
x∈Ω
|µe|,

‖µe‖τh =

(
1

2

N∑
i=1

[((µe)+)2
i−1/2 + ((µe)−)2

i+1/2]

)1/2

.

Below C will be used as a positive constant which may have a different value in different

occurrence.

3. The schemes

In this section, we first present a finite difference method to approximate the time frac-

tional derivatives, and then give the fully implicit discrete scheme with space discretized

by the LDG method. Stability and convergence are analysed in detail.
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3.1. The semidiscrete scheme

Assume the following mesh to cover the temporal domain [0, T ]

0 = t0 < t1 < · · · < tn−1 < tn = T,

and denote ∆t = T/M , M ∈ N, tn = n∆t, n = 0, 1, . . . ,M be the mesh points. We first

discretize the time fractional derivatives with order α, and then α− 1.

Let v(x, t) = ∂u(x, t)/∂t, and from the fact

v(x, ti) =
∂u(x, ti)

∂t
=

3u(x, ti)− 4u(x, ti−1) + u(x, ti−2)

2∆t
+ γn1 ,

where the truncation error |γn1 | ≤ C(∆t)2, we can obtain

∂αu(x, tn)

∂tα

=
1

Γ(2− α)

∫ tn

0

∂v(x, τ)

∂τ

dτ

(tn − τ)α−1

=
1

Γ(2− α)

n−1∑
i=0

∫ ti+1

ti

∂v(x, τ)

∂τ

dτ

(tn − τ)α−1

=
1

Γ(2− α)

n−1∑
i=0

∫ ti+1

ti

v(x, ti+1)− v(x, ti)

∆t

dτ

(tn − τ)α−1
+ γn2

=
(∆t)2−α

Γ(3− α)

n−1∑
i=0

bn−i−1
v(x, ti+1)− v(x, ti)

∆t
+ γn2

=
(∆t)1−α

Γ(3− α)

[
v(x, tn) +

n−1∑
i=1

(bn−i − bn−i−1)v(x, ti)− bn−1v(x, t0)

]
+ γn2

=
(∆t)1−α

Γ(3− α)

[
3u(x, tn)− 4u(x, tn−1) + u(x, tn−2)

2∆t

+
n−1∑
i=1

(bn−i − bn−i−1)
3u(x, ti)− 4u(x, ti−1) + u(x, ti−2)

2∆t
− bn−1v(x, t0)

]
+ γn3 .

(3.1)

As for the time-fractional derivative ∂α−1u(x, tn)/∂tα−1, after some manual calculation

we have [29]

(3.2)
∂α−1u(x, tn)

∂tα−1
=

(∆t)1−α

Γ(3− α)

n−1∑
i=0

bi(u(x, tn−i)− u(x, tn−i−1)) + γn4 ,

where

b0 = 1, bi = (i+ 1)2−α − i2−α, i = 1, 2, 3, . . .

when i = 1, we take u(x,−1) = u(x, 0)−∆tu1(x) + C(∆t)2 by using Taylor expansion.
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Similar to the proof in [29], the truncation error satisfies

|γn3 | ≤ C(∆t)3−α, |γn4 | ≤ C(∆t)3−α.

We know that

bi > 0, i = 1, 2, . . . , n,

1 = b0 > b1 > b2 > · · · > bn, bn → 0 (n→∞).

Substituting (3.1) into (1.1), we have

(3 + 2∆t)u(x, tn)− βρ∂
2u(x, tn)

∂x2

=
n−1∑
i=1

(bn−i−1 − bn−i)(3u(x, ti)− 4u(x, ti−1) + u(x, ti−2))

+ 2∆tbn−1v(x, t0) + 4u(x, tn−1)− u(x, tn−2)

+ 2∆t
n−1∑
i=1

(bn−i−1 − bn−i)u(x, ti)

+ 2∆tbn−1u(x, t0) + βf(x, tn) + β(γn3 + γn4 ),

where β = 2(∆t)αΓ(3− α).

Let uk be the numerical approximation to u(x, tk), f
n = f(x, tn), the problem (1.1)

can be discretized by the following scheme

(3 + 2∆t)un − βρ∂
2un

∂x2
=

n−1∑
i=1

(bn−i−1 − bn−i)(3ui − 4ui−1 + ui−2)

+ 2∆tbn−1v
0 + 4un−1 − un−2

+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)ui + 2∆tbn−1u
0 + βfn,

where u−1 = u0 −∆tu1(x).

3.2. Fully discrete schemes

For (1.1) we first consider the equivalent first-order system

p = ux,
∂αu(x, t)

∂tα
+
∂α−1u(x, t)

∂tα−1
− ρpx = f(x, t).
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We seek the approximation solutions unh, p
n
h ∈ V k

h , such that for test functions φ,w ∈ V k
h ,∫

Ω
(3 + 2∆t)unhφdx+ βρ

∫
Ω
pnhφx dx−

N∑
j=1

(
(p̂nhφ

−)j+1/2 − (p̂nhφ
+)j−1/2

)
=

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω
(3uih − 4ui−1

h + ui−2
h )φdx+ 2∆tbn−1

∫
Ω
v0
hφdx

+ 4

∫
Ω
un−1
h φdx−

∫
Ω
un−2
h φdx+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω
uihφdx

+ 2∆tbn−1

∫
Ω
u0
hφdx+ β

∫
Ω
fnφdx,

(3.3)

∫
Ω
pnhw dx+

∫
Ω
unhwx dx−

N∑
j=1

(
(ûnhw

−)j+1/2 − (ûnhw
+)j−1/2

)
= 0.

For the term u0
h, u−1

h , we take the L2 projection of u( · , 0), u( · ,−1), respectively,∫
Ij

u0
hφdx =

∫
Ij

Pu(x, 0)φdx =

∫
Ij

u0(x)φdx,∫
Ij

u−1
h φdx =

∫
Ij

Pu(x,−1)φdx =

∫
Ij

u(x,−1)φdx, ∀φ ∈ V k
h , j = 1, 2, . . . , N.

The “hat” terms in (3.3) at the cell boundary points are the so-called “numerical

fluxes”. In this paper we could take the following purely alternating numerical fluxes,

(3.4) ûnh = (unh)−, p̂nh = (pnh)+,

or

ûnh = (unh)+, p̂nh = (pnh)−.

Next, without loss of generality we take f = 0 for simplicity in the theoretic analysis.

Theorem 3.1. The fully-discrete LDG scheme (3.3) is unconditionally stable, and there

exist a positive constant C depending on u, T , α, such that

‖unh‖ ≤ C(‖u0
h‖+ ∆t‖u1(x)‖), n = 1, 2, . . . ,M.

Proof. We take the test functions φ = unh, w = βρpnh in scheme (3.3), and with the fluxes

choice (3.4) we obtain

(3 + 2∆t)‖unh‖2 + βρ‖pnh‖2 + βρ

N∑
j=1

(
Υ(unh, p

n
h)j+1/2 −Υ(unh, p

n
h)j−1/2 + Λ(unh, p

n
h)j−1/2

)
=

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

(3uih − 4ui−1
h + ui−2

h )unh dx+ 2∆tbn−1

∫
Ω

v0
hu

n
h dx+ 4

∫
Ω

un−1
h unh dx

−
∫

Ω

un−2
h unh dx+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

uihu
n
h dx+ 2∆tbn−1

∫
Ω

u0
hu

n
h dx,

(3.5)
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where

Υ(unh, p
n
h) = (pnh)−(unh)− − (pnh)+(unh)− − (unh)−(pnh)−,

Λ(unh, p
n
h) = (pnh)−(unh)− − (pnh)+(unh)+ − (pnh)+(unh)− + (pnh)+(unh)+ − (unh)−(pnh)−

+ (unh)−(pnh)+

= 0.

Based on the equation (3.5), we have

(3 + 2∆t)‖unh‖2 ≤
n−1∑
i=1

(bn−i−1 − bn−i)(3‖uih‖+ 4‖ui−1
h ‖+ ‖ui−2

h ‖)‖u
n
h‖

+ 2∆tbn−1‖v0
h‖‖unh‖+ 4‖un−1

h ‖‖unh‖+ ‖un−2
h ‖‖unh‖

+ 2∆t
n−1∑
i=1

(bn−i−1 − bn−i)‖uih‖‖unh‖+ 2∆tbn−1‖u0
h‖‖unh‖,

that is

‖unh‖ ≤
n−1∑
i=1

(bn−i−1 − bn−i)(3‖uih‖+ 4‖ui−1
h ‖+ ‖ui−2

h ‖) + 2∆tbn−1‖v0
h‖

+
4

3
‖un−1

h ‖+ ‖un−2
h ‖+

n−1∑
i=1

(bn−i−1 − bn−i)‖uih‖+ bn−1‖u0
h‖.

(3.6)

Theorem 3.1 will be proved by mathematical induction. Let n = 1 in (3.6), we have

‖u1
h‖ ≤ 2∆t‖v0

h‖+
7

3
‖u0

h‖+ ‖u−1
h ‖.

Notice that ∫
Ij

u−1
h φdx =

∫
Ij

P(u(x, 0)−∆tu1(x))φdx

=

∫
Ij

u0
hφdx−∆t

∫
Ij

u1(x)φdx, φ ∈ V k
h .

Let φ = u−1
h , we could get

‖u−1
h ‖

2
Ij =

∫
Ij

u0
hu
−1
h dx−∆t

∫
Ij

u1(x)u−1
h dx

≤ ‖u0
h‖2Ij +

1

4
‖u−1

h ‖
2
Ij + (∆t)2‖u1(x)‖2Ij +

1

4
‖u−1

h ‖
2
Ij .

Let us sum the above inequality over j from 1 to N , we have

(3.7) ‖u−1
h ‖ ≤ C(‖u0

h‖+ ∆t‖u1(x)‖).
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Analogue to the proof of (3.7), we can obtain

(3.8) ‖v0
h‖ ≤ ‖u1(x)‖.

By using (3.7), (3.8) and (3.2), we know that

‖u1
h‖ ≤ C(‖u0

h‖+ ∆t‖u1(x)‖).

We suppose

(3.9) ‖ulh‖ ≤ C(‖u0
h‖+ ∆t‖u1(x)‖), l = 2, 3, . . . ,K.

Taking n = K + 1 in the inequality (3.6), we get

‖uK+1
h ‖ ≤

K∑
i=1

(bK−i − bK+1−i)(3‖uih‖+ 4‖ui−1
h ‖+ ‖ui−2

h ‖) + 2∆tbK‖v0
h‖

+
4

3
‖uKh ‖+ ‖uK−1

h ‖+

K∑
i=1

(bK−i − bK+1−i)‖uih‖+ bK‖u0
h‖.

Using (3.9), and the fact

K∑
i=1

(bi−1 − bi) + bK = 1,

then we could get the following inequality immediately

‖uK+1
h ‖ ≤ C(‖u0

h‖+ ∆t‖u1(x)‖).

Theorem 3.2. Assume that u(x, tn) is the exact solution of the problem (1.1), which is

sufficiently smooth with bounded derivatives, and unh is a solution of the scheme (3.3), then

there exists a positive constant C, such that

‖u(x, tn)− unh‖ ≤ C(hk+1 + (∆t)3−α),

where C is independent of ∆t, h.

Proof. By virtue of Taylor expansion, we can get

|u(x, t−1)− u(x, 0) + ∆tu1(x)| ≤ C(∆t)3−α.

From the property (2.4), we know,

‖u(x, t−1)− u−1
h ‖ ≤ C(hk+1 + (∆t)2).
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The exact solution u(x, tn) of (1.1) satisfies

(3 + 2∆t)

∫
Ω
u(x, tn)φdx

+ βρ

∫
Ω
p(x, tn)φx dx−

N∑
j=1

(
(p(x, tn)φ−)j+1/2 − (p(x, tn)φ+)j−1/2

)
+ β

∫
Ω
γnφdx

=

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω
(3u(x, ti)− 4u(x, ti−1) + u(x, ti−2))φdx

+ 2∆tbn−1

∫
Ω
v(x, t0)φdx+ 4

∫
Ω
u(x, tn−1)v dx

−
∫

Ω
u(x, tn−2)φdx+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω
u(x, ti)φdx

+ 2∆tbn−1

∫
Ω
u(x, t0)φdx+ β

∫
Ω
f(x, tn)φdx,

(3.10)

∫
Ω
p(x, tn)w dx+

∫
Ω
u(x, tn)wx dx−

N∑
j=1

(
(u(x, tn)w−)j+1/2 − (u(x, tn)w+)j−1/2

)
= 0,

where γn = γn3 + γn4 .

We denote

enu = u(x, tn)− unh = P−enu − (P−u(x, tn)− u(x, tn)),

enp = p(x, tn)− pnh = P+enp − (P+p(x, tn)− p(x, tn)).
(3.11)

Taking the fluxes (3.4), and subtracting (3.3) from (3.10), we could have the following

error equation

(3 + 2∆t)

∫
Ω

enuφdx+ βρ

∫
Ω

enpφx dx−
N∑
j=1

(
((enp )+φ−)j+1/2 + ((enp )+φ+)j−1/2

)
−
n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

(3eiu − 4ei−1
u + ei−2

u )φdx− 2∆tbn−1

∫
Ω

e0
vφdx

− 4

∫
Ω

en−1
u φdx+

∫
Ω

en−2
u φdx− 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

eiuφdx

− 2∆tbn−1

∫
Ω

e0
uφdx+ β

∫
Ω

γnφdx+

∫
Ω

enpw dx+

∫
Ω

enuwx dx

−
N∑
j=1

(
((enu)−w−)j+1/2 + ((enu)−w+)j−1/2

)
= 0.

(3.12)
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Using (3.11), the error equation (3.12) could be written as

(3 + 2∆t)

∫
Ω

P−enuφdx+ βρ

∫
Ω

P+enpφx dx−
N∑
j=1

(
((P+enp )+φ−)j+1/2 + ((P+enp )+φ+)j−1/2

)
+

∫
Ω

P+enpw dx+

∫
Ω

P−enuwx dx−
N∑
j=1

(
((P−enu)−w−)j+1/2 + ((P−enu)−w+)j−1/2

)
=

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

(3P−eiu − 4P−ei−1
u + P−ei−2

u )φdx− 2∆tbn−1

∫
Ω

e0
vφdx

+ 4

∫
Ω

P−en−1
u φdx−

∫
Ω

P−en−2
u φdx− β

∫
Ω

γnφdx+ 2∆tbn−1

∫
Ω

P−e0
uφdx

+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

P−eiuφdx−
n−1∑
i=1

(bn−i−1 − bn−i)

×
∫

Ω

(
3(P−u(x, ti)− u(x, ti))− 4(P−u(x, ti−1)− u(x, ti−1)) + (P−u(x, ti−2)− u(x, ti−2))

)
φdx

− 4

∫
Ω

(P−u(x, tn−1)− u(x, tn−1))φdx+

∫
Ω

(P−u(x, tn−2)− u(x, tn−2))φdx

− 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)
∫

Ω

(P−u(x, ti)− u(x, ti))φdx− 2∆tbn−1

∫
Ω

(P−u(x, t0)− u(x, t0))φdx

+ (3 + 2∆t)

∫
Ω

(P−u(x, tn)− u(x, tn))φdx+ βρ

(∫
Ω

(P+p(x, tn)− p(x, tn))φx dx

−
N∑
j=1

(
((P+p(x, tn)− p(x, tn))+φ−)j+1/2 + ((P+p(x, tn)− p(x, tn))+φ+)j−1/2

))
+

∫
Ω

(P+p(x, tn)− p(x, tn))w dx+

∫
Ω

(P−u(x, tn)− u(x, tn))wx dx

−
N∑
j=1

(
((P−u(x, tn)− u(x, tn))−w−)j+1/2 + ((P−u(x, tn)− u(x, tn))−w+)j−1/2

)
.

(3.13)

Taking the test functions φ = P−enu, w = βρP+enp in (3.13), and by virtue of the

properties (2.1)–(2.3), then the following inequality holds

(3 + 2∆t)‖P−enu‖2 + βρ‖P+enp‖2

≤
n−1∑
i=1

(bn−i−1 − bn−i)
(
3‖P−eiu‖+ 4‖P−ei−1

u ‖+ ‖P−ei−2
u ‖

)
‖P−enu‖

+ 2∆tbn−1‖e0
v‖‖P−enu‖+ 4‖P−en−1

u ‖‖P−enu‖+ ‖P−en−2
u ‖‖P−enu‖+ β‖γn‖‖P−enu‖

+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)‖P−eiu‖‖P−enu‖+ 2∆tbn−1‖P−e0
u‖‖P−enu‖

+
n−1∑
i=1

(bn−i−1 − bn−i)
(
3‖P−u(x, ti)− u(x, ti)‖+ 4‖P−u(x, ti−1)− u(x, ti−1)‖
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+ ‖P−u(x, ti−2)− u(x, ti−2)‖
)
‖P−enu‖

+ 4‖P−u(x, tn−1)− u(x, tn−1)‖‖P−enu‖+ ‖P−u(x, tn−2)− u(x, tn−2)‖‖P−enu‖

+ 2∆tbn−1‖P−u(x, t0)− u(x, t0)‖‖P−enu‖

+ 2∆t
n−1∑
i=1

(bn−i−1 − bn−i)‖P−u(x, ti)− u(x, ti)‖‖P−enu‖

+ (3 + 2∆t)‖P−u(x, tn)− u(x, tn)‖‖P−enu‖+ βρ‖P+p(x, tn)− p(x, tn))‖‖P−enp‖.

Based on the fact that

ab ≤ 1

4ε
a2 + εb2, a2 + b2 ≤ (a+ b)2,

we can get the following inequality immediately

‖P−enu‖

≤
n−1∑
i=1

(bn−i−1 − bn−i)
(
3‖P−eiu‖+ 4‖P−ei−1

u ‖+ ‖P−ei−2
u ‖

)
+ 2∆tbn−1‖e0

v‖

+ 4‖P−en−1
u ‖+ ‖P−en−2

u ‖+ ‖γn‖+ 2∆t
n−1∑
i=1

(bn−i−1 − bn−i)‖P−eiu‖+ 2∆tbn−1‖P−e0
u‖

+
n−1∑
i=1

(bn−i−1 − bn−i)
(
3‖P−u(x, ti)− u(x, ti)‖

+ 4‖P−u(x, ti−1)− u(x, ti−1)‖+ ‖P−u(x, ti−2)− u(x, ti−2)‖
)

+ 4‖P−u(x, tn−1)− u(x, tn−1)‖+ ‖P−u(x, tn−2)− u(x, tn−2)‖

+ 2∆t

n−1∑
i=1

(bn−i−1 − bn−i)‖P−u(x, ti)− u(x, ti)‖+ 2∆tbn−1‖P−u(x, t0)− u(x, t0)‖

+ (3 + 2∆t)‖P−u(x, tn)− u(x, tn)‖+
√
βρ‖P+p(x, tn)− p(x, tn))‖.

(3.14)

The convergence of the scheme (3.3) will be proved by mathematical induction. Let

n = 1 in the above inequality (3.14), we can obtain

‖P−e1
u‖ ≤ 2∆t‖e0

v‖+ 4‖P−e0
u‖+ ‖P−e−1

u ‖+ ‖γ1‖+ 2∆t‖P−e0
u‖

+ 4‖P−u(x, t0)− u(x, t0)‖+ ‖P−u(x, t−1)− u(x, t−1)‖

+ 2∆t‖P−u(x, t0)− u(x, t0)‖+ (3 + 2∆t)‖P−u(x, t1)− u(x, t1)‖

+
√
βρ‖P+p(x, t1)− p(x, t1))‖.

Notice the fact that

‖e0
u‖ ≤ Chk+1, ‖e0

v‖ ≤ Chk+1, ‖e−1
u ‖ ≤ C(hk+1 + (∆t)2), ‖γ1‖ ≤ C(∆t)3−α,
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we can obtain

‖P−e1
u‖ ≤ C(hk+1 + (∆t)3−α).

We suppose

(3.15) ‖P−elu‖ ≤ C(hk+1 + (∆t)3−α), l = 1, 2, . . . ,K.

Take n = K + 1 in (3.14), we get

‖P−eK+1
u ‖

≤
K∑
i=1

(bK−i − bK+1−i)
(
3‖P−eiu‖+ 4‖P−ei−1

u ‖+ ‖P−ei−2
u ‖

)
+ 2∆tbK‖e0

v‖

+ 4‖P−eKu ‖+ ‖P−eK−1
u ‖+ ‖γK+1‖+ 2∆t

K∑
i=1

(bK−i − bK+1−i)‖P−eiu‖+ 2∆tbK‖P−e0
u‖

+

K∑
i=1

(bK−i − bK+1−i)
(
3‖P−u(x, ti)− u(x, ti)‖

+ 4‖P−u(x, ti−1)− u(x, ti−1)‖+ ‖P−u(x, ti−2)− u(x, ti−2)‖
)

+ 4‖P−u(x, tK)− u(x, tK)‖+ ‖P−u(x, tK−1)− u(x, tK−1)‖

+ 2∆t

K∑
i=1

(bK−i − bK+1−i)‖P−u(x, ti)− u(x, ti)‖

+ 2∆tbK‖P−u(x, t0)− u(x, t0)‖+
√
βρ‖P+p(x, tK+1)− p(x, tK+1))‖

+ (3 + 2∆t)‖P−u(x, tK+1)− u(x, tK+1)‖.

Using the assumption (3.15) and the property (2.4), we have

‖P−eK+1
u ‖ ≤ C(hk+1 + (∆t)3−α).

Then Theorem 3.2 holds by the triangle inequality and the interpolating property (2.4)

immediately.

4. Numerical experiments

In this section, the validity and accuracy of convergence of the presented finite differ-

ence/local discontinuous Galerkin method are demonstrated by a test example.

Example 4.1. Let

f(x, t) =
6t3−α

Γ(4− α)
sin(2πx) +

6t4−α

Γ(5− α)
sin(2πx) + 4π2t3 sin(2πx).

Compute the time-fractional telegraph equation (1.1) with ρ = 1 at T = 1 numerically.

The exact solution is

u(x, t) = t3 sin(2πx).
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The initial condition and the boundary values are obtained directly. The experimental

convergence rate κ is given by

κ =
log(‖u− uh1‖/‖u− uh2‖)

log(h1/h2)
,

where u and uhi are exact and numerical solutions with the space step hi, respectively.

The L2 and L∞ errors and the numerical orders of accuracy in space for piecewise

P k polynomials for several α are listed in Tables 4.1–4.3. It can be concluded that the

order of convergence of the present method is in good agreement with the results by the

theoretical analysis.

N L2-error order L∞-error order

P 0

5 0.264326949540113 - 0.621561373185215 -

10 0.129217214344293 1.03 0.313359291007195 0.99

20 6.424721062992099E-002 1.01 0.156980797588175 1.00

40 3.207865052457315E-002 1.00 7.852745266437230E-002 1.00

P 1

5 6.731070096298464E-002 - 0.249586596018240 -

10 1.695175223856232E-002 1.99 6.466637138748532E-002 1.95

20 4.244932733871986E-003 2.00 1.630903615444002E-002 1.99

40 1.061659704993896E-003 2.00 4.101466164679879E-003 1.99

P 2

5 6.673082225915985E-003 - 3.169297582744446E-002 -

10 8.503922299704529E-004 2.97 3.969530568838230E-003 3.00

20 1.068093589154052E-004 2.99 5.115680438094785E-004 2.96

40 1.336700752607358E-005 3.00 6.442691300446294E-005 2.99

P 3

5 5.180718129025192E-004 - 2.662069613503348E-003 -

10 3.289042835987682E-005 3.98 1.844251227173244E-004 3.85

20 2.067264781375035E-006 3.99 1.165406407133140E-005 3.98

40 1.710535105672870E-007 3.60 8.912161295615562E-007 3.71

Table 4.1: Spatial accuracy test for the time-fractional telegraph equation using piecewise

P k polynomials, α = 1.1, ∆t = 1/1000, T = 1.

Then the convergence order of the scheme in time is tested. All the computations were

performed in double precision. With the fixed and sufficiently small step sizes h = 1/200

and the varying ∆t = 0.08, 0.04, 0.02, 0.01, respectively. From Table 4.4, one can conclude

that the convergence order of the scheme in time is 3− α in L2-norm and L∞-norm.
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N L2-error order L∞-error order

P 0

5 0.263772539661747 - 0.620136302765829 -

10 0.129150891409391 1.03 0.313183577920604 0.99

20 6.423754896418950E-002 1.01 0.156954961792935 1.00

40 3.207668202660861E-002 1.00 7.852213681766884E-002 1.00

P 1

5 6.727500011224508E-002 - 0.249359282860865 -

10 1.694965935784688E-002 1.99 6.462004769896668E-002 1.95

20 4.244838046759258E-003 2.00 1.627212755394636E-002 1.99

40 1.061972803523747E-003 2.00 4.065578259994984E-003 2.00

P 2

5 6.664743310941978E-003 - 3.162805983636763E-002 -

10 8.504933312440419E-004 2.97 3.968008312843709E-003 2.99

20 1.096992329019471E-004 2.95 5.115101434150278E-004 2.96

40 1.539724846989132E-005 2.83 7.170126363342799E-005 2.83

P 3

5 5.185970601446759E-004 - 2.685710565843769E-003 -

10 3.238836964305419E-005 4.00 1.891130668112162E-004 3.82

20 2.014143199241720E-006 4.01 1.322340700746841E-005 3.84

40 1.535535584291874E-007 3.71 8.824432540660916E-007 3.91

Table 4.2: Spatial accuracy test for the time-fractional telegraph equation using piecewise

P k polynomials, α = 1.5, ∆t = 1/1000, T = 1.

5. Conclusion

In this work, we have presented a new finite difference/local discontinuous Galerkin

method to solve the time fractional telegraph equation. We first propose a new finite

difference method to approximate the time fractional derivatives when 1 < α < 2, and

then give a fully discrete scheme, and prove that the method is unconditionally stable

and convergent. To date we are not aware of the same scheme in the published papers.

In future we will develop the method discussed in this paper to other kinds of fractional

equations and higher-dimensional problems.
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N L2-error order L∞-error order

P 0

5 0.263596619763754 - 0.619678669709020 -

10 0.129118405374179 1.03 0.313096311598061 0.99

20 6.422878978148322E-002 1.01 0.156931036435848 1.00

40 3.207336315447732E-002 1.00 7.851269909520331E-002 1.00

P 1

5 6.726057884101144E-002 - 0.249167181129090 -

10 1.694853118433292E-002 1.99 6.450530002514832E-002 1.95

20 4.245791889524003E-003 2.00 1.616039418034410E-002 2.00

40 1.066701009253817E-003 1.99 3.955375210516143E-003 2.03

P 2

5 6.660380245045741E-003 - 3.154569653495143E-002 -

10 8.539452815388900E-004 2.96 3.967031894675847E-003 2.99

20 1.049541660337010E-004 3.02 5.114594628408880E-004 2.96

40 1.558824291902685E-005 2.75 7.199456294184820E-005 2.83

P 3

5 5.250217141273616E-004 - 2.745121197051392E-003 -

10 3.392756788959759E-005 3.95 1.999707874018487E-004 3.78

20 2.154156320733310E-006 3.98 1.393794504025891E-005 3.84

40 1.451303017336259E-007 3.89 8.877277347282901E-007 3.97

Table 4.3: Spatial accuracy test for the time-fractional telegraph equation using piecewise

P k polynomials, α = 1.7, ∆t = 1/1000, T = 1.
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[44] Q. Yang, I. Turner, F. Liu and M. Ilić, Novel numerical methods for solving the

time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput. 33

(2011), no. 3, 1159–1180.

[45] A. Yıldırım, He’s homotopy perturbation method for solving the space- and time-

fractional telegraph equations, Int. J. Comput. Math. 87 (2010), no. 13, 2998–3006.
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