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Abstract. We study the classification and evolution of bifurcation curves of positive

solutions for the one-dimensional Dirichlet-Neumann boundary value problemu′′(x) + λf(u) = 0, 0 < x < 1,

u(0) = 0, u′(1) = −c < 0,

where λ > 0 is a bifurcation parameter and c > 0 is an evolution parameter. We

mainly prove that, under some suitable assumptions on f , there exists c1 > 0, such

that, on the (λ, ‖u‖∞)-plane, (i) when 0 < c < c1, the bifurcation curve is S-shaped;

(ii) when c ≥ c1, the bifurcation curve is ⊂-shaped. Our results can be applied to the

one-dimensional perturbed Gelfand equation with f(u) = exp
(
au
a+u

)
for a ≥ 4.37.

1. Introduction

In this paper, we study the classification and evolution of bifurcation curves of positive

solutions for the one-dimensional Dirichlet-Neumann boundary value problem

(1.1)

u′′(x) + λf(u) = 0, 0 < x < 1,

u(0) = 0, u′(1) = −c < 0,

where λ > 0 is a bifurcation parameter and the value c > 0, with which −c is the boundary

slope of u(x) at x = 1, is treated as an evolution parameter. We assume that nonlinearity

f ∈ C2[0,∞) satisfies the following hypotheses (H1)–(H6):

(H1) f(u), f ′(u) > 0 on [0,∞).
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(H2) f is convex-concave on (0,∞); that is, there exists a number γ > 0 such that

f ′′(u)


> 0 when u ∈ [0, γ),

= 0 when u = γ,

< 0 when u ∈ (γ,∞).

In addition, γ2f(γ) ≥ 3
∫ γ
0 tf(t) dt.

(H3) f is asymptotic sublinear at infinity; that is, limu→∞ f(u)/u = 0.

(H4) There exists a number τ > 0 such that

[f ′(u) + uf ′′(u)]f(u)− u[f ′(u)]2


> 0 when u ∈ [0, τ),

= 0 when u = τ ,

< 0 when u ∈ (τ,∞).

(H5) [f ′(u)]2 − f ′′(u)f(u) > 0 on [0,∞).

(H6) Define

F (u) =

∫ u

0
f(t) dt for u ≥ 0,(1.2)

M1(u) =
uf(u)

F (u)
for u > 0,(1.3)

M2(u) =
uf ′(u)

f(u)
for u ≥ 0,(1.4)

N1(u) =
2f ′(0)

[f(0)]2
uf(u) +M1(u)− 2M2(u) for u > 0,(1.5)

N2(u) = N1(u)− 3M2(u)− 2, N3(u) = −2N1(u) + 3M2(u) + 3 for u > 0,(1.6)

P1(u, s) =
uf(u)− sf(s)

F (u)− F (s)
, P2(u, s) =

u2f ′(u)− s2f ′(s)
uf(u)− sf(s)

for 0 ≤ s < u,(1.7)

W (u, s) = P1(u, s)[N2(u) + 2P2(u, s)] for 0 ≤ s < u,(1.8)

W̃0(u) =

[
∂

∂s
W (u, s)

]
s=0

for u > 0.(1.9)

Then

(1.10) f(τ) ≥ 4f(0)

and the following three inequalities related to W (u, s) hold:

W̃0(u) > 0 for 0 < u ≤ ρ,(1.11)

W (u, s) ≥W (u, 0) + sW̃0(u) for 0 ≤ s < u ≤ ρ,(1.12)

3
√
f(u)[W (u, 0) +N3(u)] + 2u

√
f(0)W̃0(u) > 0 for 0 < u ≤ ρ,(1.13)
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where ρ is the unique positive zero of

2f(0)[2−M1(u)]− f(u)

on (0, τ).

Remark 1.1. The existence and uniqueness of the number ρ in (0, τ) in (H6) is proved in

Lemma 3.1(ix) stated behind.

The motivation of this paper arises from the recent work of Liang and Wang [11]. In

[11], the authors considered the classification and evolution of bifurcation curves of positive

solutions for the one-dimensional perturbed Gelfand equation with Dirichlet-Neumann

boundary conditions, i.e., (1.1) with f(u) = exp
(
au
a+u

)
, a > 0. In this paper, we generalize

their main results to general nonlinearities f(u) under hypotheses (H1)–(H6).

For one-dimensional zero Dirichlet boundary value problem with general nonlinearity:

(1.14)

u′′(x) + λf(u) = 0, 0 < x < 1,

u(0) = u(1) = 0,

the shapes of the bifurcation curve of positive solutions for (1.14) on the (λ, ‖u‖∞)-plane

have been studied exuberantly; see, e.g., [1, 5, 6, 8, 10] and references therein. While the

shapes of the bifurcation curves with the mixed boundary conditions such as (1.1) are

much less studied; see [2–4,7, 11]. We define the bifurcation curve of positive solutions of

(1.1) by

S̃c = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)},

while that of (1.14) is defined by

S = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.14)}.

Moreover, we say that, on the (λ, ‖u‖∞)-plane, the shape of a bifurcation curve S̃c

(same for S) is S-shaped or ⊂-shaped if it satisfies the following conditions, respectively.

S-shaped. The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be S-shaped if

S̃c has at least two turning points, say (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), satisfying

λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞, and

(i) S̃c starts at some point (λ0, ‖uλ0‖∞) and initially continues to the right,

(ii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the left,

(iii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the right,

(iv) S̃c tends to infinity as λ→∞. That is, limλ→∞ ‖uλ‖∞ =∞.
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Exactly S-shaped. The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be exactly

S-shaped if S̃c is S-shaped and it has exactly two turning points; see Figure 1.1.

λ λ λ

‖u‖∞ ‖u‖∞ ‖u‖∞

λ0 λ∗ λ∗ λ0 = λ∗ λ∗ λ∗ λ0 λ∗

(i) (ii) (iii)

Figure 1.1: Three different types of exactly S-shaped bifurcation curves S̃c with λ0 > 0

and ‖uλ0‖∞ > 0. (i) Type 1 with λ0 < λ∗. (ii) Type 2 with λ0 = λ∗. (iii) Type 3 with

λ0 > λ∗.

Type 1/2/3 S-shaped. Assume that the bifurcation curve S̃c is S-shaped on the (λ,

‖u‖∞)-plane. Let (λ0, ‖uλ0‖∞) be the starting point of S̃c, and

λmin ≡ min{λ : (λ, ‖uλ‖∞) is a turning point of S̃c}.

Then S̃c is said to be type 1 (resp., type 2 and type 3) S-shaped if λ0 < λmin (resp.,

λ0 = λmin and λ0 > λmin); see Figure 1.1(i) (resp., Figures 1.1(ii) and 1.1(iii)).

⊂-shaped. The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be ⊂-shaped if S̃c

has at least one turning point (λ∗, ‖uλ∗‖∞), and

(i) S̃c starts at some point (λ0, ‖uλ0‖∞) and initially continues to the left,

(ii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the right,

(iii) λ∗ < λ0 and ‖uλ0‖∞ < ‖uλ∗‖∞,

(iv) S̃c tends to infinity as λ→∞. That is, limλ→∞ ‖uλ‖∞ =∞.

Exactly ⊂-shaped. The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be exactly

⊂-shaped if S̃c is ⊂-shaped and it has exactly one turning point; see Figure 1.2.

λ∗ λ0

‖u‖∞

λ

Figure 1.2: Exactly ⊂-shaped bifurcation curve S̃c with λ0 > 0 and ‖uλ0‖∞ > 0.
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For one-dimensional zero Dirichlet boundary value problem (1.14), under (H1)–(H3)

on f , Hung and Wang [6] proved that the bifurcation curve of positive solutions is exactly

type 1 S-shaped on the (λ, ‖u‖∞)-plane. They gave an application to the one-dimensional

perturbed Gelfand problem.

Theorem 1.2. [6, Theorems 2.1(i) and 2.2(i)] Consider (1.14) and suppose that non-

linearity f ∈ C2[0,∞) satisfies (H1)–(H3). Then, on the (λ, ‖u‖∞)-plane, the bifurcation

curve S is a continuous curve which starts at the origin and tends to infinity as λ→∞.

Moreover, it is exactly type 1 S-shaped. In particular, f(u) = exp
(
au
a+u

)
satisfies (H1)–

(H3) for a ≥ a∗ ≈ 4.166 for some a∗ defined in [6, Eq. (3.22)].

For one-dimensional Dirichlet-Neumann boundary value problem (1.1) with f(u) =

exp
(
au
a+u

)
, Goddard II, Shivaji and Lee [3, Section 3.4] started to consider with c = 1.

Their computational results suggested that there exists a positive critical bifurcation value

a∗∗ < 4 such that S̃1 is strictly increasing for 0 < a ≤ a∗∗ and is exactly S-shaped for

a > a∗∗. Hung, Wang and Yu [7] gave rigorous proofs for some of these computational

results. Recently, Liang and Wang [11] generalized these analytic results to general c > 0.

The main result in [11] is stated in the next theorem.

S̃c−1,2

S̃c1,2

S̃c+1,2

S̃c1

S̃c+1

S̃c2

S̃c+2

S̃c3

S̃c+3

λ

‖u‖∞

0.5 1 9

10−1

100

101

102

200

0.03

S

Figure 1.3: (cf. [11, Figure 4]) Numerical simulations of bifurcation curves S and S̃c for

f(u) = exp
(
au
a+u

)
with a = 5 and varying c > 0 on the (λ, ‖uλ‖∞)-plane of the bi-logarithm

coordinates. Here 0 < c−1,2 < c1,2 (≈ 0.49) < c+1,2 < c1 (≈ 1.36) < c+1 < c2 (≈ 7.72) < c+2 <

c3 (≈ 47.71) < c+3 .

Theorem 1.3. (cf. [11, Theorem 2.3], see Figure 1.3 with a = 5) Consider (1.1) with c > 0

and f(u) = exp
(
au
a+u

)
for any fixed a > 0. Then, on the (λ, ‖u‖∞)-plane, the bifurcation

curve S̃c is a continuous curve which starts at some point (λ0, ‖uλ0‖∞) with λ0 > 0 and

‖uλ0‖∞ > 0 and it tends to infinity as λ→∞. Moreover, when a ≥ a1 (≈ 4.107), where
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a1 is defined in [6, Eq. (1.4)], there exists c1 (= c1(a)) such that the following assertions

(a)–(b) hold:

(a) For 0 < c < c1, the bifurcation curve S̃c is S-shaped on the (λ, ‖u‖∞)-plane. More

precisely, there exist three positive c1,1 ≤ c1,2 ≤ c1,3 on (0, c1), all depending on a,

such that the S-shaped belongs to type 1, type 2 and type 3 when 0 < c < c1,1, c = c1,2

and c1,3 < c < c1, respectively.

(b) For c ≥ c1, the bifurcation curve S̃c is ⊂-shaped on the (λ, ‖u‖∞)-plane.

The paper is organized as follows. Section 2 contains statements of the main results

(Theorems 2.1, 2.3–2.5; in particular, Theorems 2.4 and 2.5). Section 3 contains several

lemmas needed to prove the main results and their proofs except those of Lemma 3.1(i)–

(ii), (ix)–(x) and Lemma 3.7. Section 4 contains proofs of the main results except asser-

tions (a)–(d) stated in the proof of Theorem 2.5 for the function f(ρ) = exp
( aρ
a+ρ

)
with

a ≥ 4.37. (The proofs of Lemma 3.1(i)–(ii), (ix)–(x) and Lemma 3.7 and assertions (a)–(d)

stated in the proof of Theorem 2.5 are put in [9] due to their lengthiness.)

2. Main results

The main results are next Theorems 2.1, 2.3–2.5; in particular, Theorems 2.4 and 2.5.

Theorem 2.1. (cf. Figure 1.3 for f(u) = exp
(
au/(a+u)

)
with a = 5) Consider (1.1) with

c > 0 and suppose that f satisfies (H1) and (H3)–(H5). Then, on the (λ, ‖u‖∞)-plane, the

bifurcation curve S̃c is a continuous curve which starts at some point (λ0, ‖uλ0‖∞) with

λ0 (= λ0(c)) > 0 and ‖uλ0‖∞ > 0. More precisely, the following assertions (i)–(iv) hold:

(i) S ∩ S̃c = {(λ0, ‖uλ0‖∞)}. Moreover, if uλ is a positive solution of (1.1) with uλ 6=
uλ0, then ‖uλ‖∞ > ‖uλ0‖∞.

(ii) S̃c tends to infinity as λ→∞. That is, limλ→∞ ‖uλ‖∞ =∞.

(iii) For any ρ > ρ0(c) ≡ ‖uλ0(c)‖∞ > 0, there exist exactly two positive λ̃(ρ) < λ(ρ) such

that (λ̃(ρ), ρ) ∈ S̃c and (λ(ρ), ρ) ∈ S.

(iv) ρ0(c) ∈ C(0,∞) is a strictly increasing function of c on (0,∞), limc→0+ ρ0(c) = 0

and limc→∞ ρ0(c) =∞.

Remark 2.2. (cf. Figure 1.3 for f(u) = exp
(
au
a+u

)
with a = 5) Theorem 1.2 together with

Theorem 2.1(iv) imply that, if f satisfies (H1)–(H5), then there exist two positive numbers

c2 < c3 such that bifurcation curves S and S̃c intersect at the lower (resp., middle and

upper) branch of exactly type 1 S-shaped bifurcation curve S when c ∈ (0, c2) (resp.,

c ∈ (c2, c3) and c ∈ (c3,∞)).
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Theorem 2.3. (cf. Figure 1.3 for f(u) = exp
(
au
a+u

)
with a = 5) Consider (1.1) with c > 0

and suppose that f satisfies (H1) and (H3)–(H5). Then the following assertions (i) and

(ii) hold:

(i) For any two positive numbers c̃1 < c̃2, S̃c̃1 lies at the left-hand side of S̃c̃2 on the

(λ, ‖u‖∞)-plane. That is, for any two positive numbers c̃1 < c̃2 and ρ > ρ0(c̃2), let

(λc̃i(ρ), ρ) ∈ S̃c̃i, i = 1, 2. Then λc̃1(ρ) < λc̃2(ρ).

(ii) Let λmin(c) ≡ min{λ : (λ, ‖uλ‖∞) ∈ S̃c}. Then λmin(c) is strictly increasing on

(0,∞), limc→0+ λmin(c) = 0 and limc→∞ λmin(c) =∞.

Theorem 2.4. (cf. Figure 1.3 for f(u) = exp
(
au
a+u

)
with a = 5) Consider (1.1) with c > 0

and suppose that f satisfies (H1)–(H6). Then there exists a unique positive c1 such that

the following assertions (i)–(ii) hold:

(i) For 0 < c < c1, the bifurcation curve S̃c is S-shaped on the (λ, ‖u‖∞)-plane. More

precisely, there exist three positive c1,1 ≤ c1,2 ≤ c1,3 on (0, c1) such that the following

assertions (a)–(c) hold:

(a) (cf. Figure 1.1(i)) If 0 < c < c1,1, then the bifurcation curve S̃c is type 1

S-shaped on the (λ, ‖u‖∞)-plane. Moreover, there exist three positive λ0 <

λ∗ < λ∗ which are all strictly increasing functions of c on (0, c1,1) such that

(1.1) has no positive solution for 0 < λ < λ0, at least one positive solution for

λ0 ≤ λ < λ∗ and λ > λ∗, at least two positive solutions for λ = λ∗ and λ = λ∗,

and at least three positive solutions for λ∗ < λ < λ∗.

(b) (cf. Figure 1.1(ii)) If c = c1,2, then the bifurcation curve S̃c is type 2 S-shaped

on the (λ, ‖u‖∞)-plane. Moreover, there exist three positive λ0 = λ∗ < λ∗ such

that (1.1) has no positive solution for 0 < λ < λ0, at least one positive solution

for λ > λ∗, at least two positive solutions for λ = λ∗ and λ = λ∗, and at least

three positive solutions for λ∗ < λ < λ∗.

(c) (cf. Figure 1.1(iii)) If c1,3 < c < c1, then the bifurcation curve S̃c is type 3 S-

shaped on the (λ, ‖u‖∞)-plane. Moreover, there exist three positive λ∗ < λ0 <

λ∗ which are all strictly increasing functions of c on (c1,3, c1) such that (1.1)

has no positive solution for 0 < λ < λ∗, at least one positive solution for λ = λ∗

and λ > λ∗, at least two positive solutions for λ∗ < λ < λ0 and λ = λ∗, and at

least three positive solutions for λ0 ≤ λ < λ∗.

(ii) (cf. Figure 1.2) For c ≥ c1, the bifurcation curve S̃c is ⊂-shaped on the (λ, ‖u‖∞)-

plane. Moreover, there exist two positive λ∗ < λ0 such that (1.1) has no positive

solution for 0 < λ < λ∗, at least one positive solution for λ = λ∗ and λ > λ0, and

at least two positive solutions for λ∗ < λ ≤ λ0.
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Theorem 2.5. (cf. Figure 1.3 with a = 5) Consider (1.1) for f(u) = exp
(
au
a+u

)
with

a ≥ 4.37. Then f satisfies (H1)–(H6) with γ = a(a − 2)/2 > τ = a and hence all results

in Theorems 2.1, 2.3 and 2.4 hold.

3. Lemmas

To prove our main results for problem (1.1), in this paper, we modify the quadrature

method (time-map technique) which was used in [3, 4, 7, 11]. First, the time map formula

which we apply to study for zero Dirichlet problem (1.14) takes the form as follows:

G(ρ) ≡
√

2

∫ ρ

0

ds√
F (ρ)− F (s)

for ρ > 0,

where F (s) =
∫ s
0 f(t) dt is defined in (1.2). Note that positive solutions u of (1.14)

correspond to

(3.1) ‖u‖∞ = ρ and G(ρ) =
√
λ.

Thus, studying the exact number of positive solutions of (1.14) is equivalent to studying

the shape of the time map G(ρ) on (0,∞). We compute that

(3.2) G′(ρ) =

√
2

2

∫ ρ

0

θ(ρ)− θ(s)
ρ[F (ρ)− F (s)]3/2

ds,

where θ(s) ≡ 2F (s)− sf(s). Moreover,

(3.3) G′′(ρ) =

√
2

2

∫ ρ

0

3
2 [P1(ρ, s)]

2 − [P2(ρ, s) + 2]P1(ρ, s)

ρ2[F (ρ)− F (s)]1/2
ds,

where P1(ρ, s) and P2(ρ, s) are defined in (1.7); see [1, Eq. (2.7)]. Note that

(3.4) lim
ρ→0+

G(ρ) = 0 and lim
ρ→∞

G(ρ) =∞

if f ∈ C2[0,∞) satisfies (H1) and (H3); see, e.g., [6, Lemma 3.1].

On the other hand, considering Dirichlet-Neumann problem (1.1), we define

H̃c(ρ, q) = 2

∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

− c√
F (ρ)− F (q)

=
√

2G(ρ)−
∫ q

0

ds√
F (ρ)− F (s)

− c√
F (ρ)− F (q)

(3.5)

for 0 ≤ q < ρ < ∞; see [3, Eq. (3.29)] for f(ρ) = exp
( aρ
a+ρ

)
and c = 1. Then to study

the number of positive solutions of (1.1), we need to analyze function H̃c(ρ, q) in the first

step. Beforehand, under (H1) and (H3)–(H5), we derive some basic properties related to

functions f(ρ), f ′(ρ) and F (ρ) in Lemma 3.1 to ease the proofs of the other lemmas in

this section.
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Lemma 3.1. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5), and let M1(ρ),

M2(ρ), P1(ρ, s) and P2(ρ, s) be defined in (1.3), (1.4) and (1.7). Then the following

assertions (i)–(x) hold:

(i) M2(ρ) < M1(ρ) for ρ > 0.

(ii) Let τ > 0 be defined in (H4). Then

M ′2(ρ)


> 0 when ρ ∈ [0, τ),

= 0 when ρ = τ ,

< 0 when ρ ∈ (τ,∞).

(iii) P1(ρ, 0) = M1(ρ), lims→ρ− P1(ρ, s) = M2(ρ) + 1 for ρ > 0, and limρ→s+ P1(ρ, s) =

M2(s) + 1 for s ≥ 0.

(iv) P1(ρ, s) > 1 for 0 ≤ s < ρ.

(v) For 0 < ρ ≤ τ , P1(ρ, s) is a strictly increasing function of s on [0, ρ). Moreover,

M1(ρ) ≤ P1(ρ, s) < M2(ρ) + 1 for 0 ≤ s < ρ ≤ τ , where the equality holds if and

only if s = 0.

(vi) M2(ρ) < P2(ρ, s) for 0 < s < ρ ≤ τ .

(vii) The function Q(ρ, s) ≡ θ(ρ)− θ(s) +M1(ρ)[F (ρ)− F (s)] > 0 for 0 ≤ s < ρ.

(viii)

[
f(ρ)√
F (ρ)

]′
+ M2(ρ)+1

2ρ
f(ρ)√
F (ρ)

> 0 for 0 < ρ ≤ τ .

(ix) If f satisfies (1.10), then there exists a unique ρ on (0, τ) such that

2f(0)[2−M1(ρ)]− f(ρ)


> 0 when ρ ∈ (0, ρ),

= 0 when ρ = ρ,

< 0 when ρ ∈ (ρ, τ ].

(x) If f satisfies (1.10), then the function

(3.6) R(ρ, s) ≡ 2f(0)[θ(ρ)− θ(s)]− f(ρ)√
F (ρ)

√
ρ

[F (ρ)− F (s)]3/2√
ρ− s for 0 ≤ s < ρ

satisfies R(ρ, s) < 0 for 0 ≤ s < ρ and ρ > ρ.

The proofs of Lemma 3.1(iii)–(viii) are very similar to those of [11, Lemma 3.1], and

hence we omit them here. While the proofs of the remaining parts (i)–(ii) and (ix)–(x)

are easy but tedious, and hence we put them in [9].
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Lemma 3.2. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5). Then, for H̃c(ρ, q)

with 0 ≤ q < ρ <∞ and c > 0, the following assertions (i)–(viii) hold:

(i) For c > 0, limρ→0+ H̃c(ρ, 0) = −∞ and limρ→∞ H̃c(ρ, 0) =∞.

(ii) For c > 0, there exists a unique positive ρ0 (= ρ0(c)) such that

H̃c(ρ, 0)


< 0 when ρ ∈ (0, ρ0),

= 0 when ρ = ρ0,

> 0 when ρ ∈ (ρ0,∞).

(iii) For fixed c, ρ > 0, H̃c(ρ, q) is a strictly decreasing function of q on [0, ρ) and

limq→ρ− H̃c(ρ, q) = −∞.

(iv) For c > 0, if 0 < ρ < ρ0(c), then H̃c(ρ, q) has no zero q (= q(ρ, c)) on [0, ρ), while

if ρ ≥ ρ0(c), then H̃c(ρ, q) has a unique zero q(ρ, c) on [0, ρ), i.e.,

(3.7) H̃c(ρ, q(ρ, c)) = 0.

Moreover, q(ρ, c) = 0 if and only if ρ = ρ0(c).

(v) For c > 0 and ρ > ρ0, q(ρ, c) ∈ C[ρ0,∞) ∩ C1(ρ0,∞) satisfies

(3.8)

∂

∂ρ
q(ρ, c) =

[F (ρ)− F (q(ρ, c))]3/2
[
2
√

2G′(ρ) +
∫ q(ρ,c)
0

f(ρ)

[F (ρ)−F (s)]3/2
ds
]

+ cf(ρ)

2[F (ρ)− F (q(ρ, c))] + cf(q(ρ, c))
.

Moreover,

(3.9) lim
ρ→ρ+0

∂

∂ρ
q(ρ, c) =

2
√

2[F (ρ0)]
3/2G′(ρ0) + cf(ρ0)

2F (ρ0) + cf(0)
.

(vi) For c > 0 and ρ ≥ ρ0,

0 < ρ− q(ρ, c) ≤ c2f(ρ)

4f(0)ρ
.

Moreover, limρ→∞[ρ− q(ρ, c)] = 0.

(vii) ρ0(c) is a continuous, strictly increasing function of c on (0,∞), limc→0+ ρ0(c) = 0

and limc→∞ ρ0(c) =∞. Moreover, for c > 0, ρ0(c) is the unique positive root of

c =
√

2F (ρ)G(ρ).

(viii) For ρ > 0, q(ρ, c) ∈ C(0, ĉ] ∩ C1(0, ĉ) is a strictly decreasing function of c on (0, ĉ],

limc→0+ q(ρ, c) = ρ and q(ρ, ĉ) = 0. Here ĉ (= ĉ(ρ)) =
√

2F (ρ)G(ρ).
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Proof. Lemma 3.2(iii) and (iv) are slight generalizations of [3, Lemma B and Theo-

rem 3.4(a)], and Lemma 3.2(ii), (vii) and (viii) are from [11, Lemma 3.2(ii), (vii) and

(viii)], respectively. Hence these proofs are omitted. We then prove Lemma 3.2(i), (v)

and (vi) as follows.

(i) Since f ∈ C2[0,∞) satisfies (H1) and (H3), the two limits in (3.4) hold by [6,

Lemma 3.1]. Then, by (3.5), we have that

lim
ρ→0+

H̃c(ρ, 0) = lim
ρ→0+

[
√

2G(ρ)− c√
F (ρ)

]
= −∞,

lim
ρ→∞

H̃c(ρ, 0) = lim
ρ→∞

[
√

2G(ρ)− c√
F (ρ)

]
=∞.

So Lemma 3.2(i) holds.

(v) Since H̃c(ρ, q(ρ, c)) = 0 by (3.7) and applying the Implicit Function Theorem to

(3.5), we have that

∂

∂ρ
q(ρ, c) = −

∂
∂ρH̃c(ρ, q(ρ, c))

∂
∂q H̃c(ρ, q(ρ, c))

=

√
2G′(ρ) +

∫ q(ρ,c)
0

f(ρ)

2[F (ρ)−F (s)]3/2
ds+ cf(ρ)

2[F (ρ)−F (s)]3/2

1√
F (ρ)−F (q(ρ,c))

+ cf(q(ρ,c))

2[F (ρ)−F (q(ρ,c))]3/2

=
[F (ρ)− F (q(ρ, c))]3/2

[
2
√

2G′(ρ) +
∫ q(ρ,c)
0

f(ρ)

[F (ρ)−F (s)]3/2
ds
]

+ cf(ρ)

2[F (ρ)− F (q(ρ, c))] + cf(q(ρ, c))
.

Moreover,

lim
ρ→ρ+0

∂

∂ρ
q(ρ, c) =

[F (ρ0)]
3/2[2
√

2G′(ρ0)] + cf(ρ0)

2F (ρ0) + cf(0)

since q(ρ0(c), c) = 0 by Lemma 3.2(iv). The proof of the assertion q(ρ, c) ∈ C[ρ0,∞) ∩
C1(ρ0,∞) is very similar to that of [7, Lemma 3.1(iv)], and hence we omit it here. So

Lemma 3.2(v) holds.

(vi) By the definition of H̃c in (3.5), we compute that

H̃c(ρ, q(ρ, c)) = 2

∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q(ρ,c)

0

ds√
F (ρ)− F (s)

− c√
F (ρ)− F (q(ρ, c))

≥
∫ ρ

0

ds√
F (ρ)− F (s)

− c√
F (ρ)− F (q(ρ, c))

≥ 1√
f(ρ)

∫ ρ

0

ds√
ρ− s −

1√
f(q(ρ, c))

c√
ρ− q(ρ, c)

(by the Mean Value Theorem and (H1))
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=
1√

f(q(ρ, c))

[
2

√
ρ

f(ρ)
f(q(ρ, c))− c√

ρ− q(ρ, c)

]

≥ 1√
f(q(ρ, c))

[
2

√
ρ

f(ρ)
f(0)− c√

ρ− q(ρ, c)

]

by (H1). Then, since H̃c(ρ, q(ρ, c)) = 0 by (3.7), we conclude that 0 < ρ − q(ρ, c) ≤
c2

4f(0)
f(ρ)
ρ , and hence limρ→∞[ρ− q(ρ, c)] = 0 by (H3). So Lemma 3.2(vi) holds.

The proof of Lemma 3.2 is complete.

The time map formula which we apply to study Dirichlet-Neumann problem (1.1) takes

the form as follows:

(3.10) Hc(ρ, q(ρ, c)) ≡
c2

2[F (ρ)− F (q(ρ, c))]
for ρ ≥ ρ0(c),

where q(ρ, c) is defined in (3.7). Note that positive solutions u of (1.1) correspond to

(3.11) ‖u‖∞ = ρ and Hc(ρ, q(ρ, c)) = λ,

see, e.g., [3, Theorem 3.3] and [11, Eq. (3.27)] for f(ρ) = exp
( aρ
a+ρ

)
. Thus, studying the

number of positive solutions of (1.1) is equivalent to studying the shape of the time map

Hc(ρ, q(ρ, c)) for ρ ≥ ρ0(c).
The next lemma is from [11, Lemma 3.3].

Lemma 3.3. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5). Then, for G(ρ)

with ρ > 0 and for Hc(ρ, q(ρ, c)) with ρ ≥ ρ0 and c > 0, the following assertions (i)–(iii)

hold:

(i) Hc(ρ, q(ρ, c)) ≤ [G(ρ)]2 for c > 0 and ρ ≥ ρ0. The equality holds if and only if

ρ = ρ0.

(ii) limρ→∞Hc(ρ, q(ρ, c)) =∞ for c > 0.

(iii) Hc(ρ, q(ρ, c)) >
1
4 [G(ρ)]2 for c > 0 and ρ ≥ ρ0. In addition, limc→0+ Hc(ρ, q(ρ, c)) =

1
4 [G(ρ)]2 for ρ > 0.

Lemma 3.4. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5). Then, for

Hc(ρ, q(ρ, c)) with ρ ≥ ρ0 and c > 0, the following assertions (i)–(iii) hold:

(i) For any two positive numbers c̃1 < c̃2, Hc̃1(ρ, q(ρ, c̃1)) < Hc̃2(ρ, q(ρ, c̃2)) for ρ ≥
ρ0(c̃2).

(ii) Let λmin(c) ≡ minρ≥ρ0(c)Hc(ρ, q(ρ, c)) for c > 0. Then λmin(c) is a strictly increasing

function of c on (0,∞), limc→0+ λmin(c) = 0 and limc→∞ λmin(c) =∞.
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(iii) If limρ→ρ0(c̃)+
d
dρHc̃(ρ, q(ρ, c̃)) ≥ 0, then d

dρHc(ρ0(c̃), q(ρ0(c̃), c)) > 0 for 0 < c < c̃.

Proof. Lemma 3.4(i)–(ii) are from [11, Lemma 3.4(i)–(ii)]. Hence these proofs are omitted.

We next prove Lemma 3.4(iii).

We compute that, by (3.8) and (3.10),

d

dρ
Hc(ρ, q(ρ, c))

= −
c2
[
f(ρ)− f(q(ρ, c)) ∂∂ρq(ρ, c)

]
2[F (ρ)− F (q(ρ, c))]2

(3.12)

=
c2f(q(ρ, c))

2[F (ρ)− F (q(ρ, c))]1/2 {2[F (ρ)− F (q(ρ, c))] + cf(q(ρ, c))}Ψ(ρ, q(ρ, c)),(3.13)

where

(3.14) Ψ(ρ, q) ≡ 2
√

2G′(ρ)−
[

2
f(ρ)

f(q)
√
F (ρ)− F (q)

−
∫ q

0

f(ρ)

[F (ρ)− F (s)]3/2
ds

]
.

Moreover, by (3.9) and the fact that q(ρ0(c), c) = 0 by Lemma 3.2(iv), we have that

(3.15) lim
ρ→ρ0(c)+

d

dρ
Hc(ρ, q(ρ, c)) =

c2√
F (ρ0)[2F (ρ0) + cf(0)]

Φ(ρ0),

where

(3.16) Φ(ρ) ≡
√

2f(0)G′(ρ)− f(ρ)√
F (ρ)

.

Hence, if limρ→ρ0(c̃)+
d
dρHc̃(ρ, q(ρ, c̃)) ≥ 0 for some c̃ > 0, then Φ(ρ0(c̃)) ≥ 0. It follows

that

Ψ(ρ0(c̃), q(ρ0(c̃), c̃)) = Ψ(ρ0(c̃), 0) = 2

[
√

2G′(ρ0(c̃))−
f(ρ0(c̃))

f(0)
√
F (ρ0(c̃))

]
=

2

f(0)
Φ(ρ0(c̃)) ≥ 0

by (3.14) and (3.16). Moreover, we compute that

∂

∂q
Ψ(ρ, q) = 2

f ′(q)f(ρ)

[f(q)]2
√
F (ρ)− F (q)

> 0

by (H1), which implies that Ψ(ρ0(c̃), q(ρ0(c̃), c)) > Ψ(ρ0(c̃), q(ρ0(c̃), c̃)) ≥ 0 for 0 <

c < c̃ since q(ρ0(c̃), c) > q(ρ0(c̃), c̃) for 0 < c < c̃ by Lemma 3.2(viii). Therefore
d
dρHc(ρ0(c̃), q(ρ0(c̃), c)) > 0 by (3.13). So Lemma 3.4(iii) holds.

The proof of Lemma 3.4 is now complete.
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Lemma 3.5. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5). Then, for

Hc(ρ, q(ρ, c)) with ρ ≥ ρ0 and c > 0, the following assertions (i)–(iii) hold:

(i) There exists a unique positive c1 such that

(3.17) lim
ρ→ρ0(c)+

d

dρ
Hc(ρ, q(ρ, c))


> 0 when c ∈ (0, c1),

= 0 when c = c1,

< 0 when c ∈ (c1,∞).

(ii) If f satisfies (H6), then for c = c1, there exists ρ̃ > ρ0(c1) such that d
dρHc1(ρ, q(ρ, c1))

< 0 for ρ0(c1) < ρ < ρ̃.

(iii) d
dρHc(ρ, q(ρ, c)) > 0 for 0 < c < c1 and ρ0(c) < ρ < ρ0(c1).

Proof. Lemma 3.5(iii) is from [11, Lemma 3.5(iii)]. We then prove Lemma 3.5(i) and (ii)

as follows.

(i) Notice that, by (3.15), studying the sign of limρ→ρ0(c)+
d
dρHc(ρ, q(ρ, c)) is equivalent

to studying that of Φ(ρ). Then we have that, for ρ > 0,

Φ(ρ) =
√

2G′(ρ)f(0)− f(ρ)√
F (ρ)

(by (3.16))

=

∫ ρ

0

f(0)[θ(ρ)− θ(s)]
ρ[F (ρ)− F (s)]3/2

ds− f(ρ)√
F (ρ)

∫ ρ

0

ds

2
√
ρ(ρ− s)

(by (3.2) and since

∫ ρ

0

ds

2
√
ρ(ρ− s)

= 1)

=

∫ ρ

0

R(ρ, s)

2ρ[F (ρ)− F (s)]3/2
ds,

(3.18)

where the function R(ρ, s) is defined in (3.6). Then, by Lemma 3.1(ix)–(x), we have that

(3.19) Φ(ρ) < 0 for ρ > ρ.

Next, we show that limρ→0+ Φ(ρ) = ∞. Note that, by integration by parts, we have

that √
2G′(ρ) = 2

f(ρ)

f(0)
√
F (ρ)

− 2

∫ ρ

0

f ′(s)f(ρ)

[f(s)]2
√
F (ρ)− F (s)

ds,

see [11, Proof of Lemma 3.6 on p. 8375]. So we can represent, by (3.16), Φ(ρ) as follows:

Φ(ρ) =
f(ρ)√
F (ρ)

− 2f(0)

∫ ρ

0

f ′(s)f(ρ)

[f(s)]2
√
F (ρ)− F (s)

ds.

Consequently, let ρ̆ > 0 be an arbitrary number such that, for 0 < ρ ≤ ρ̆, 0 < f(0) <

f(ρ) ≤ 2f(0) and f ′(ρ) ≤ 2f ′(0), where the existence of ρ̆ > 0 follows directly by (H1).
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Then, for 0 < ρ ≤ ρ̆,

Φ(ρ) ≥ f(ρ)√
F (ρ)

− 2f(0)

∫ ρ

0

4f ′(0)f(0)

[f(0)]2
√
F (ρ)− F (s)

ds

≥ f(ρ)√
F (ρ)

− 8f ′(0)

∫ ρ

0

1√
F (ρ)− F (s)

ds

=
f(ρ)√
F (ρ)

− 4
√

2f ′(0)G(ρ).

Hence limρ→0+ Φ(ρ) =∞ since limρ→0+ G(ρ) = 0 by (3.4), F (0) = 0 and f(0) > 0.

Finally, for 0 < ρ < τ , we compute that

Φ′(ρ) +
M2(ρ) + 1

2ρ
Φ(ρ)

=
√

2f(0)

[
G′′(ρ) +

M2(ρ) + 1

2ρ
G′(ρ)

]
−
{[

f(ρ)√
F (ρ)

]′
+
M2(ρ) + 1

2ρ

f(ρ)√
F (ρ)

}

<
√

2f(0)

[
G′′(ρ) +

M2(ρ) + 1

2ρ
G′(ρ)

]
(by Lemma 3.1(viii))

= f(0)

∫ ρ

0

3
2 [P1(ρ, s)]

2 −
[
P2(ρ, s) + 2 + M2(ρ)+1

2

]
P1(ρ, s) + [M2(ρ) + 1]

ρ2
√
F (ρ)− F (s)

ds

(by (3.2) and (3.3))

< f(0)

∫ ρ

0

3
2 [P1(ρ, s)]

2 − 3
2

[
M2(ρ) + 5

3

]
P1(ρ, s) + [M2(ρ) + 1]

ρ2
√
F (ρ)− F (s)

ds (by Lemma 3.1(vi))

= f(0)

∫ ρ

0

3
2

[
P1(ρ, s)− 2

3

]
{P1(ρ, s)− [M2(ρ) + 1]}

ρ2
√
F (ρ)− F (s)

ds < 0

by Lemma 3.1(iv)–(v), which implies that Φ′(ρ) < 0 whenever Φ(ρ) = 0 on (0, τ). Com-

bining the facts that limρ→0+ Φ(ρ) = ∞ and Φ(ρ) ≤ 0 by (3.19), we conclude that there

exists a unique ρ∗0 on (0, ρ] such that

(3.20) Φ(ρ)


> 0 when ρ ∈ (0, ρ∗0),

= 0 when ρ = ρ∗0,

< 0 when ρ ∈ (ρ∗0,∞).

By Lemma 3.2(vii), there exists c1 > 0 such that ρ0(c1) = ρ∗0. Moreover, ρ0(c) ∈ (0, ρ∗0)

(resp., (ρ∗0,∞)) if and only if c ∈ (0, c1) (resp., c ∈ (c1,∞)). Hence we have that

Φ(ρ0(c))


> 0 when c ∈ (0, c1),

= 0 when c = c1,

< 0 when c ∈ (c1,∞).
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Then, by (3.15), Lemma 3.5(i) holds.

(ii) Let ρ∗0 (= ρ0(c1)) be defined in (3.20). Then Ψ(ρ∗0, q(ρ
∗
0, c1)) = Ψ(ρ∗0, 0) =

2
f(0)Φ(ρ∗0) = 0 by Lemma 3.2(iv), (3.14), (3.16) and (3.20). So if we can show that

limρ→(ρ∗0)
+

d
dρΨ(ρ, q(ρ, c1)) < 0, then there exists ρ̃ > ρ∗0 such that Ψ(ρ, q(ρ, c1)) < 0 for

ρ∗0 < ρ < ρ̃, and hence d
dρHc1(ρ, q(ρ, c1)) < 0 for ρ∗0 < ρ < ρ̃ by (3.13), which completes

the proof. Indeed, we compute that, by (3.8) and (3.14),

d

dρ
Ψ(ρ, q(ρ, c)) = 2

√
2G′′(ρ)− 2

f ′(ρ)f(q(ρ, c))− f ′(q(ρ, c)) ∂∂ρq(ρ, c)f(ρ)

[f(q(ρ, c))]2
√
F (ρ)− F (q(ρ, c))

+
[f(ρ)]2

f(q(ρ, c))[F (ρ)− F (q(ρ, c))]3/2

+

∫ q(ρ,c)

0

f ′(ρ)[F (ρ)− F (s)]− 3
2 [f(ρ)]2

[F (ρ)− F (s)]5/2
ds.

It follows that

lim
ρ→(ρ∗0)

+

d

dρ
Ψ(ρ, q(ρ, c1))

= 2
√

2G′′(ρ∗0) +
−2
{
f(0)f ′(ρ∗0)− f ′(0)

f(0) [f(ρ∗0)]2
}
F (ρ∗0) + f(0)[f(ρ∗0)]2

[f(0)]2[F (ρ∗0)]3/2

(since q(ρ∗0, c1) = 0 and lim
ρ→(ρ∗0)

+

∂

∂ρ
q(ρ, c1) =

f(ρ∗0)

f(0)
by (3.12) and (3.17))

= 2
√

2G′′(ρ∗0) +
N1(ρ∗0)

ρ∗0

f(ρ∗0)

f(0)
√
F (ρ∗0)

(N1(ρ) is defined in (1.5))

= 2
√

2G′′(ρ∗0) +
N1(ρ∗0)

ρ∗0
[
√

2G′(ρ∗0)] (by (3.18) and (3.20))

=

∫ ρ∗0

0

3[P1(ρ∗0, s)]
2 − 2[P2(ρ∗0, s) + 2]P1(ρ∗0, s) +N1(ρ∗0)[2− P1(ρ∗0, s)]

ρ∗20
√
F (ρ∗0)− F (s)

ds

=

∫ ρ∗0

0

3[P1(ρ∗0, s)− 1] {P1(ρ∗0, s)− [M2(ρ∗0) + 1]} − P1(ρ∗0, s)[N2(ρ∗0) + 2P2(ρ∗0, s)]−N3(ρ∗0)

ρ∗20
√
F (ρ∗0)− F (s)

ds

(N2(ρ) and N3(ρ) are defined in (1.6))

≤
∫ ρ∗0

0

−P1(ρ∗0, s)[N2(ρ∗0) + 2P2(ρ∗0, s)]−N3(ρ∗0)

ρ∗20
√
F (ρ∗0)− F (s)

ds (by Lemma 3.1(iv) and (v))

= −
∫ ρ∗0

0

W (ρ∗0, s) +N3(ρ∗0)

ρ∗20
√
F (ρ∗0)− F (s)

ds,

where W (ρ, s) is defined in (1.8). Then to prove limρ→(ρ∗0)
+

d
dρΨ(ρ, q(ρ, c1)) < 0, it suffices

to prove that

(3.21)

∫ ρ

0

W (ρ, s) +N3(ρ)√
F (ρ)− F (s)

ds > 0 for 0 < ρ ≤ ρ

since ρ∗0 ≤ ρ. We shall prove (3.21) for each ρ ∈ (0, ρ] in the following two cases.
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Case 1: W (ρ, 0) +N3(ρ) ≥ 0 for ρ ∈ (0, ρ]. We have that W (ρ, s) +N3(ρ) ≥W (ρ, 0) +

sW̃0(ρ) +N3(ρ) > 0 for s ∈ (0, ρ] by (1.11) and (1.12) in (H6). Hence (3.21) holds.

Case 2: W (ρ, 0) +N3(ρ) < 0 for ρ ∈ (0, ρ]. We have that∫ ρ

0

W (ρ, s) +N3(ρ)√
F (ρ)− F (s)

ds

≥
∫ ρ

0

W (ρ, 0) + sW̃0(ρ) +N3(ρ)√
F (ρ)− F (s)

ds (by (1.12) in (H6))

=

∫ ρ

0

W (ρ, 0) +N3(ρ)√
F (ρ)− F (s)

ds+

∫ ρ

0

sW̃0(ρ)√
F (ρ)− F (s)

ds

≥
∫ ρ

0

W (ρ, 0) +N3(ρ)√
f(0)
√
ρ− s

ds+

∫ ρ

0

sW̃0(ρ)√
f(ρ)
√
ρ− s

ds

(by (1.11), (H1) and the Mean Value Theorem)

=
2
√
ρ

3
√
f(0)

√
f(ρ)

{
3
√
f(ρ)[W (ρ, 0) +N3(ρ)] + 2ρ

√
f(0)W̃0(ρ)

}
> 0

by (1.13) in (H6).

By Cases 1 and 2, (3.21) holds. So Lemma 3.5(ii) holds.

The proof of Lemma 3.5 is now complete.

The next lemma is from [11, Lemma 3.6].

Lemma 3.6. Suppose that f ∈ C2[0,∞) satisfies (H1) and (H3)–(H5). Then, for G(ρ)

with ρ > 0 and for Hc(ρ, q(ρ, c)) with ρ ≥ ρ0 and c > 0, if G′(ρ) ≤ 0 for some ρ > 0, then
d
dρHc(ρ, q(ρ, c)) < 0 for 0 < c ≤ ĉ. Here ĉ =

√
2F (ρ)G(ρ) is defined in Lemma 3.2(viii).

In the next Lemma 3.7, we show some properties of the nonlinearity f(ρ) (= f(ρ, a)) =

exp
( aρ
a+ρ

)
with a ≥ 4. When there is no confusion arising, throughout the paper, we would

omit the parameter a in representing functions resulting from f(ρ) (= f(ρ, a)) = exp
( aρ
a+ρ

)
for the reason of clarity such as the functions defined in (1.2)–(1.9).

Lemma 3.7. Consider f(ρ) = exp
( aρ
a+ρ

)
with a ≥ 4.37, and let N2(ρ) (= N2(ρ, a)) be

defined in (1.6). Then the following assertions (i)–(iii) hold:

(i) There exists a unique positive zero ρ of 2f(0)[2−M1(ρ)]− f(ρ) and ρ < 1/2.

(ii) For 0 < ρ ≤ ρ, N2(ρ, a) is a strictly decreasing function of a on [4.37,∞) and

−2 < N2(ρ) < −1.

(iii) For 0 < ρ ≤ ρ, N4(ρ) (= N4(ρ, a)) ≡ F (ρ)W̃0(ρ) is a positive, strictly increasing

function of a on [4.37,∞).

The proof of Lemma 3.7 is lengthy, and hence it is given in [9].
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4. Proofs of the main results

In this section, we prove our main results (Theorems 2.1, 2.3–2.5). We note that, from the

relationship between bifurcation curve S and time map G as in (3.1), and that between

bifurcation curves S̃c and the time map Hc as in (3.11), the assertions in Theorems 2.1,

2.3 and 2.4 can be concluded directly from Lemmas 3.1–3.6. Hence we shall just give the

main framework of these proofs; cf. proofs of [11, Theorems 2.1–2.3] in [11, Section 4].

Proof of Theorem 2.1. First, by (3.10), (3.11) and Lemma 3.2(iv), for any c > 0, the

bifurcation curve S̃c is a continuous curve which starts at some point (λ0, ‖uλ0‖∞) on the

(λ, ‖uλ‖∞)-plane with λ0 (= H(ρ0(c), q(ρ0(c), c))) = H(ρ0(c), 0) > 0 and ‖uλ‖∞ = ρ0 > 0.

In addition, Theorem 2.1(i) and (iii) follow from Lemma 3.3(i), while Theorem 2.1(ii) and

(iv) follow from Lemma 3.3(ii) and Lemma 3.2(vii), respectively. Hence the proof of

Theorem 2.1 is complete.

Proof of Theorem 2.3. Theorem 2.3(i) and (ii) follow from Lemma 3.4(i) and (ii), respec-

tively.

Proof of Theorem 2.4. We first note that, from the relationship between the bifurcation

curve S and time map G as in (3.1) and since the bifurcation curve S of (1.14) is exactly

type 1 S-shaped on the (λ, ‖uλ‖∞)-plane by Theorem 1.2, there exist two positive ρ1 < ρ2

such that

G′(ρ)


≥ 0 when ρ ∈ (0, ρ1) ∪ (ρ2,∞),

= 0 when ρ = ρ1 or ρ2,

≤ 0 when ρ ∈ (ρ1, ρ2).

Let c1 and ρ∗0 (= ρ0(c1)) be defined as in (3.17) and (3.20), respectively. Then we have

that

(4.1) ρ∗0 (= ρ0(c1)) < ρ1

since Hc(ρ, q(ρ, c)) ≤ [G(ρ)]2 for any c > 0 and ρ ≥ ρ0 by Lemma 3.3(i) and since

lim
ρ→ρ0(c)+

d

dρ
Hc1(ρ, q(ρ, c)) ≥ 0

for c ≤ c1 by (3.17).

(I) We prove Theorem 2.4(i). Let 0 < c < c1. Then Hc(ρ, q(ρ, c)) is defined on the

interval [ρ0(c),∞) with 0 < ρ0(c) < ρ∗0 < ρ1 by Lemma 3.2(vii) and (4.1). Consequently,

since (a) limρ→ρ0(c)+
d
dρHc(ρ, q(ρ, c)) > 0 by Lemma 3.5(i), (b) d

dρHc(ρ, q(ρ, c)) < 0 for

ρ1 ≤ ρ ≤ ρ2 by Lemma 3.6, and (c) limρ→∞Hc(ρ, q(ρ, c)) = ∞ by Lemma 3.3(ii), we

conclude that the bifurcation curve S̃c is S-shaped on the (λ, ‖u‖∞)-plane. We next show
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that the S-shaped bifurcation curve S̃c can be of either type 1, type 2 or type 3 for

each different value of c on (0, c1). In fact, since limc→0+ λmin(c) = 0 by Lemma 3.4(ii)

and since Hc(ρ, q(ρ, c)) > 1
4 [G(ρ)]2 by Lemma 3.3(iii), there exists c1,1 ∈ (0, c1) such

that, for 0 < c < c1,1, the S-shaped bifurcation curve S̃c is of type 1 on the (λ, ‖u‖∞)-

plane. In addition, since (d) there exists ρ̃ > ρ0(c1) such that d
dρHc1(ρ, q(ρ, c1)) < 0 for

ρ0(c1) < ρ < ρ̃ by Lemma 3.5(ii), (e) Hc(ρ, q(ρ, c)) < Hc1(ρ, q(ρ, c1)) for 0 < c < c1 by

Lemma 3.4(i), and (f) limρ→ρ0(c)+
d
dρHc(ρ, q(ρ, c)) > 0 for 0 < c < c1 by Lemma 3.5(i),

there exists c1,3 ∈ [c1,1, c1) such that, for c1,3 < c < c1, the S-shaped bifurcation curve S̃c

is of type 3 on the (λ, ‖u‖∞)-plane. Moreover, by the continuity of evolution of bifurcation

curves S̃c from 0+ to c−1 , there exists c1,2 ∈ [c1,1, c1,3] such that the S-shaped bifurcation

curve S̃c1,2 is of type 2 on the (λ, ‖u‖∞)-plane.

(II) We prove Theorem 2.4(ii). Let c ≥ c1. Since d
dρHc(ρ, q(ρ, c)) < 0 for ρ is sufficient

close to (ρ0)
+ by Lemma 3.5(i)–(ii) and since limρ→∞Hc(ρ, q(ρ, c)) = ∞, we have that

the bifurcation curve S̃c is ⊂-shaped on the (λ, ‖u‖∞)-plane for c ≥ c1.
Finally, the multiplicity results of positive solutions for (1.1) with c > 0 follow imme-

diately from the shape of bifurcation curve S̃c. Hence the proof of Theorem 2.4 is now

complete.

Proof of Theorem 2.5. Let f(ρ) (= f(ρ, a)) = exp
( aρ
a+ρ

)
. Then, for a > 0, (H1) and

(H3) hold as provided in [6, Theorem 2.2(i)]. While, for a ≥ 4.37, (H2) holds with

γ = a(a − 2)/2 > 0 as provided in [6, Theorem 2.2(i)]. We then verify hypotheses (H4)–

(H5) for a > 0 and (H6) for a ≥ 4.37 as follows.

(I) We verify (H4) for a > 0 with choosing

(4.2) τ = a.

We compute that

[f ′(u) + uf ′′(u)]f(u)− u[f ′(u)]2 =
a2(a− u)

(a+ u)3
exp

(
2au

a+ u

)
> 0 when u ∈ [0, a),

= 0 when u = τ = a,

< 0 when u ∈ (a,∞).

So (H4) holds for a > 0 with τ = a.

(II) We verify (H5) for a > 0. By direct computation, we have that

[f ′(u)]2 − f ′′(u)f(u) =
2a2

(a+ u)3
exp

(
2au

a+ u

)
> 0

for u ≥ 0. So (H5) holds for a > 0.

(III) We verify (H6) for a ≥ 4.37. It suffices to prove (1.10)–(1.13) for a ≥ 4.37. We

first note that the assertions given in Lemma 3.1(i)–(viii) hold since (H1) and (H3)–(H5)

hold for a > 0 as claimed above.
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(i) We verify (1.10) for a ≥ 4.37. We compute that

f(τ)− 4f(0) = exp
(a

2

)
− 4 ≥ exp

(
4.37

2

)
− 4 > exp(2)− 4 > 0.

So (1.10) holds for a ≥ 4.37.

Then, by Lemma 3.1(ix), Lemma 3.7(i) and (4.2), we have that 0 < ρ (< 1/2) < τ (=

a) for a ≥ 4.37.

(ii) We verify (1.11) for a ≥ 4.37. We compute that, for 0 < ρ < ρ (< 1/2),

W̃0(ρ) =
f(0)

F (ρ)
{[M1(ρ)− 1]N2(ρ) + 2M1(ρ)M2(ρ)}

≥ f(0)

F (ρ)
{−2[M1(ρ)− 1] + 2M1(ρ)M2(ρ)}

(since M1(ρ) = P1(ρ, 0) > 1 by Lemma 3.1(iv) and N2(ρ) > −2 by Lemma 3.7(ii))

=
2f(0)

F (ρ)
{[M2(ρ)− 1]M1(ρ) + 1} .

Moreover, for 0 < ρ < ρ (< 1/2), since M2(ρ)− 1 < M2(1/2)− 1 = −(2a2 + 4a+ 1)/(2a+

1)2 < 0 by the fact that M2(ρ) is a strictly increasing function of ρ on [0, a] as claimed in

Lemma 3.1(ii) and since M1(ρ) < M2(ρ) + 1 by Lemma 3.1(v), we conclude that

W̃0(ρ) ≥ 2f(0)

F (ρ)
{[M2(ρ)− 1][M2(ρ) + 1] + 1} =

2f(0)

F (ρ)
[M2(ρ)]2 > 0.

So (1.11) holds a ≥ 4.37.

(iii) We verify (1.12) for a ≥ 4.37. Define W1(ρ, s) = W (ρ, s) − [W (ρ, 0) + sW̃0(ρ)]

for 0 ≤ s < ρ. Then showing (1.12) is equivalent to showing that W1(ρ, s) ≥ 0 for

0 ≤ s < ρ ≤ ρ. It is easy to see that W1(ρ, 0) = 0 and
[
∂
∂sW1(ρ, s)

]
s=0

= 0. Moreover, by

direct computation, we have that

∂

∂s
W1(ρ, s) =

∂

∂s
W (ρ, s)− W̃0(ρ) =

f(s)

F (ρ)− F (s)
[W (ρ, s)− U(ρ, s)]− W̃0(ρ),

∂2

∂s2
W1(ρ, s) =

f(s)

F (ρ)− F (s)

[
V (ρ, s)

∂

∂s
W (ρ, s)− ∂

∂s
U(ρ, s)

]
,

where

U(ρ, s) ≡
[
1 +

sf ′(s)

f(s)

]
N2(ρ) +

4sf ′(s) + 2s2f ′′(s)

f(s)
, V (ρ, s) ≡ f ′(s)

[f(s)]2
[F (ρ)− F (s)] + 2.

Hence, for any fixed ρ ∈ (0, ρ], if 0 ≤ s < ρ satisfies ∂
∂sW1(ρ, s) = 0, then

(4.3)
∂2

∂s2
W1(ρ, s) =

f(s)

F (ρ)− F (s)
W2(ρ, s),

where

W2(ρ, s) ≡ V (ρ, s)W̃0(ρ)− ∂

∂s
U(ρ, s).
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Applying the relationship between W1(ρ, s) and W2(ρ, s) in (4.3), we claim that, for any

fixed ρ ∈ (0, ρ], W1(ρ, s) is an increasing function of s on [0, ρ) if the following asser-

tions (a)–(d) hold:

(a) ∂2

∂s2
W2(ρ, s) > 0 for 0 ≤ s < ρ ≤ ρ (< 1/2).

(b) W2(ρ, 0) > 0 for 0 < ρ ≤ ρ (< 1/2).

(c) lims→ρ− W2(ρ, s) < 0 for 0 < ρ ≤ ρ (< 1/2).

(d) lims→ρ− W2(ρ, s) = −2 lims→ρ−
[
∂
∂sW1(ρ, s)

]
for 0 < ρ ≤ ρ (< 1/2).

Indeed, suppose that W1(ρ, s) is not an increasing function of s on [0, ρ) for some fixed

ρ ∈ (0, ρ]. Then there exists some s ∈ (0, ρ) such that ∂
∂sW1(ρ, s) < 0. It follows

that there exists some s∗ ∈ (0, s), which is a local maximum of W1(ρ, s) on (0, s) since[
∂
∂sW1(ρ, s)

]
s=0

= 0 and
[
∂2

∂s2
W1(ρ, s)

]
s=0

> 0 by (4.3) and assertion (b). So ∂
∂sW1(ρ, s∗) =

0 and ∂2

∂s2
W1(ρ, s∗) ≤ 0. Following by (4.3), we have that W2(ρ, s∗) ≤ 0. Consequently,

W2(ρ, s) < 0 for s∗ < s < ρ by assertions (a)–(c). However, since ∂
∂sW1(ρ, s) < 0 and

lims→ρ−
[
∂
∂sW1(ρ, s)

]
> 0 by assertions (c)–(d), there exists some s∗ ∈ (s, ρ), which is a

local minimum of W1(ρ, s) on (s, ρ). So ∂
∂sW1(ρ, s

∗) = 0 and ∂2

∂s2
W1(ρ, s

∗) ≥ 0. Again, by

(4.3), W2(ρ, s
∗) ≥ 0. So we get a contradiction to the fact that W2(ρ, s) < 0 for s∗ < s < ρ,

and hence W1(ρ, s) is an increasing function of s on [0, ρ). Thus W1(ρ, s) ≥ W1(ρ, 0) = 0

for 0 ≤ s < ρ ≤ ρ. So (1.12) holds for a ≥ 4.37.

The proofs of assertions (a)–(d) for f(ρ) = exp
( aρ
a+ρ

)
with a ≥ 4.37 are lengthy, and

hence they are given in [9].

(iv) We verify (1.13) for a ≥ 4.37. We compute that

3
√
f(ρ)[W (ρ, 0) +N3(ρ)] + 2ρ

√
f(0)W̃0(ρ)

= F (ρ)W̃0(ρ)

[
3

√
f(ρ)

f(0)
+

2
√
f(0)ρ

F (ρ)

]

+ 3
√
f(ρ)

[
1− 2

f ′(0)

[f(0)]2
ρf(ρ)−M1(ρ) + 2M2(ρ)

]
= N4(ρ, a)

[
3
√
f(ρ) +

2ρ

F (ρ)

]
+ 3
√
f(ρ)[1−N1(ρ, a)] (since f(0) = f ′(0) = 1)

≡ N4(ρ, a)N5(ρ, a) +N6(ρ, a) ≡ N7(ρ, a).

(4.4)

Here N1(ρ, a) and N4(ρ, a) are defined in (1.5) and Lemma 3.7(iii), respectively. Now, we

show that

N5(ρ, a) = 3
√
f(ρ) +

2ρ

F (ρ)
and N6(ρ, a) = 3

√
f(ρ)[1−N1(ρ, a)]

are both strictly increasing functions of a on [4,∞) for any fixed ρ ∈ (0, ρ].
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We first show that N5(ρ, a) a strictly increasing function of a on [4,∞) for any fixed

ρ ∈ (0, ρ]. Let a ≥ 4 and 0 < ρ ≤ ρ (< 1/2). We compute that

∂

∂a
N5(ρ, a) =

2ρ

[F (ρ)]2

[
3

4

ρ[F (ρ)]2

(a+ ρ)2
exp

(
aρ

2(a+ ρ)

)
−
∫ ρ

0

s2

(a+ s)2
exp

(
as

a+ s

)
ds

]
≥ 2ρ

[F (ρ)]2

[
3

4

ρ3

(a+ ρ)2
exp

(
aρ

2(a+ ρ)

)
−
∫ ρ

0

s2

(a+ s)2
exp

(
as

a+ s

)
ds

]
(since F (ρ) =

∫ ρ

0
f(s) ds =

∫ ρ

0
exp

(
as

a+ s

)
ds ≥

∫ ρ

0
1 ds = ρ)

≡ 2ρ

[F (ρ)]2
N8(ρ, a).

(4.5)

We have that N8(0, a) = 0 and, for 0 < ρ ≤ ρ (< 1/2),

∂

∂ρ
N8(ρ, a) =

ρ2 exp
(

aρ
2(a+ρ)

)
(a+ ρ)2

[
3

8

(ρ+ 6)a2 + 8ρa+ 2ρ2

(a+ ρ)2
− exp

(
aρ

2(a+ ρ)

)]

≥
ρ2 exp

(
aρ

2(a+ρ)

)
(a+ ρ)2

[
3

8

[
(ρ+ 6)a2 + 8ρa+ 2ρ2

(a+ ρ)2

]
a=4

− exp
(ρ

2

)]
(since

∂

∂a

(ρ+ 6)a2 + 8ρa+ 2ρ2

(a+ ρ)2
=

2ρ[(2 + ρ)a+ 2ρ]

(a+ ρ)3
> 0)

=
ρ2 exp

(
aρ

2(a+ρ)

)
(a+ ρ)2

[
3

8

2ρ2 + 48ρ+ 96

(4 + ρ)2
− exp

(ρ
2

)]

≥
ρ2 exp

(
aρ

2(a+ρ)

)
(a+ ρ)2

[
3

8

2ρ2 + 48ρ+ 96

(4 + ρ)2
− exp

(ρ
2

)]
ρ=1/2

(since
∂

∂ρ

[
3

8

2ρ2 + 48ρ+ 96

(4 + ρ)2
− exp

(ρ
2

)]
= − 12ρ

(4 + ρ)3
− 1

2
exp

(ρ
2

)
< 0)

=
ρ2 exp

(
aρ

2(a+ρ)

)
(a+ ρ)2

[
241

108
− exp

(
1

4

)]
> 0,

since 241/108− exp(1/4) (≈ 0.947) > 0. Hence N8(ρ, a) > 0 for a ≥ 4 and 0 < ρ ≤ ρ. It

implies that, by (4.5), N5(ρ, a) is a strictly increasing function of a on [4,∞) for any fixed

ρ ∈ (0, ρ].

We next show that N6(ρ, a) a strictly increasing function of a on [4,∞) for any fixed

ρ ∈ (0, ρ]. Let a ≥ 4 and 0 < ρ ≤ ρ (< 1/2). We compute that

∂

∂a
N6(ρ, a) =

3

2

ρ2

(a+ ρ)2

√
f(ρ)[2M2(ρ)−M1(ρ)− 2ρf(ρ) + 1]

+ 3
√
f(ρ)

[
4aρ2

(a+ ρ)3
− ∂

∂a
M1(ρ)− 2ρ3f(ρ)

(a+ ρ)2

]
.
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Then, since M1(ρ) < M2(ρ) + 1 by Lemma 3.1(v) and since

∂

∂a
M1(ρ, a) =

M1(ρ)

(a+ ρ)2

[
ρ2 −

∂
∂aF (ρ)

F (ρ)
(a+ ρ)2

]
<

ρ2

(a+ ρ)2
M1(ρ) <

ρ2

(a+ ρ)2
[M2(ρ) + 1],

we have that

∂

∂a
N6(ρ, a) >

3

2

ρ2

(a+ ρ)2

√
f(ρ) {2M2(ρ)− [M2(ρ) + 1]− 2ρf(ρ) + 1}

+ 3
√
f(ρ)

{
4aρ2

(a+ ρ)3
−
[

ρ2

(a+ ρ)2
[M2(ρ) + 1]

]
− 2ρ3f(ρ)

(a+ ρ)2

}
=

3
√
f(ρ)

2(a+ ρ)4
N9(ρ, a),

(4.6)

where

N9(ρ, a) ≡ [−6ρ3f(ρ)− ρ3 + 6ρ2]a2 + [−12ρ4f(ρ) + 4ρ3]a− [6ρ5f(ρ) + 2ρ4].

We compute that, for a ≥ 4 and 0 < ρ ≤ ρ (< 1/2),

∂

∂a
N9(ρ, a) = −2ρ2(3ρ3 + 6ρ2 + 6aρ)f(ρ)− 2ρ2(−2ρ+ aρ− 6a)

> −2ρ2(3ρ3 + 6ρ2 + 6aρ) exp(1/2)− 2ρ2(−2ρ+ aρ− 6a)

= 2aρ2[−6ρ exp(1/2)− (ρ− 6)]− 6ρ2(ρ3 + 2ρ2) exp(1/2) + 4ρ3

≥ 8ρ2[−6ρ exp(1/2)− (ρ− 6)]− 6ρ2(ρ3 + 2ρ2) exp(1/2) + 4ρ3

(since −6ρ exp(1/2)− (ρ− 6) > −3 exp(1/2)− (1/2− 6) (≈ 0.554) > 0)

= 2ρ2
{
− exp(1/2)

[
3ρ3 + 6ρ2 +

(
24 +

2

exp(1/2)

)
ρ

]
+ 24

}
≥ 2ρ2

{
− exp(1/2)

[
3ρ3 + 6ρ2 +

(
24 +

2

exp(1/2)

)
ρ

]
ρ=1/2

+ 24

}

= 2ρ2
[
23− 111

8
exp(1/2)

]
(≈ 0.248ρ2) > 0

and

N9(ρ, 4) =

{
−6ρ[ρ2 + 8ρ+ 16] exp

(
4ρ

4 + ρ

)
− 2ρ2 + 96

}
ρ2

>

{
−6ρ[ρ2 + 8ρ+ 16] exp

(
4ρ

4 + ρ

)
− 2ρ2 + 96

}
ρ=1/2

ρ2

=

[
191

2
− 243

4
exp

(
4

9

)]
ρ2 (≈ 0.753ρ2) > 0.

Hence N9(ρ, a) > 0 for a ≥ 4 and 0 < ρ ≤ ρ. It implies that, by (4.6), N6(ρ, a) is a strictly

increasing function of a on [4,∞) for any fixed ρ ∈ (0, ρ].
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Figure 4.1: Graph of N10(ρ) on (0, 1/2).

Hence, by (4.4) and Lemma 3.7(iii), we conclude that N7(ρ, a) is a strictly increasing

function of a on [4.37,∞) for any fixed ρ ∈ (0, ρ]. It follows that

N7(ρ, a) > N7(ρ, 4.37) ≡ N10(ρ) > 0

for 0 < ρ ≤ ρ (< 1/2); see Figure 4.1. So (1.13) holds for a ≥ 4.37.

The proof of Theorem 2.5 is now complete.
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