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On Asymptotic Behavior of Generalized Li Coefficients

Anne-Maria Ernvall-Hytönen, Almasa Odžak* and Medina Sušić

Abstract. In this paper, we consider the asymptotic behaviour of τ -Li coefficients for

the wide class of L-functions that contains the Selberg class, the class of all automor-

phic L-functions, the Rankin-Selberg L-functions, as well as products of suitable shifts

of the mentioned functions. We consider both archimedean and non-archimedean con-

tribution to the τ -Li coefficients, both separately, and their joint contribution to the

coefficients. We also derive the behavior of the coefficients in the case the τ/2-Riemann

hypothesis holds, which is the generalization of the Riemann hypothesis for the class

under consideration. Finally, we conclude with some examples and numerics.

1. Introduction

Li [10] defined the Li coefficients for the Riemann zeta function as

λn =
1

(n− 1)!

dn

dsn
[sn−1 log ξ(s)]s=1,

where ξ(s) is the completed Riemann zeta function. He also gave a simple equivalence

criterion for the Riemann hypothesis: The hypothesis is true if and only if these coefficients

are non-negative for every positive integer n. This criterion was generalized for an arbitrary

(assuming certain convergence conditions) complex multiset of numbers by Bombieri and

Lagarias [2]. Voros [16] proved that it is sufficient to study the asymptotic behavior of the

coefficients: The Riemann hypothesis is true if and only if λn ∼ n log n as n→∞.

The Li coefficients have been generalized in essentially two ways: by introducing a new

parameter in its definition, implying treatment of strips instead of lines in the correspond-

ing Li criterion, and by generalizing these coefficients to various sets of functions.

For example, Lagarias generalized the Li coefficients to L-functions attached to an ir-

reducible cuspidal unitary automorphic representation [9]. In this work, the generalization

to the functions in the Selberg class, extended Selberg class and modified Selberg class

are important. These have been earlier considered by, for example, Smajlović [15] and

Smajlović and Odžak [13,14].
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Freitas [7] introduced a new parameter τ in the definition of Li coefficients and thus

extended Li’s criterion to get a new criterion to consider whether all the zeros of the

Riemann zeta function lie within the strip 1 − τ/2 ≤ Re s ≤ τ/2 inside the critical

strip. The coefficients investigated by Freitas are called τ -Li coefficients. τ -Li coefficients

attached to the functions from the Selberg class, modified Selberg class and the class

S][(σ0, σ1) (introduced in [6]) are treated in Droll [5] and Ernvall-Hytönen et al. [6].

In this paper, we consider the asymptotic behavior of the τ -Li coefficients attached to

the functions belonging to the class S][(σ0, σ1). Since all the functions in this class do

not satisfy the Riemann hypothesis, it is of special interest to consider zeros in strips as

opposed to zeros lying on a given line. Of course, the results also apply for zeros on lines,

by taking an appropriate value of τ . The class S][(σ0, σ1) has slightly different axioms than

the typical Selberg class. In some sense the conditions are more strict than, for example,

for the extended Selberg class, but on the other hand, some functions belonging to the

class S][(σ0, σ1) do not belong to the extended Selberg class. In S][(σ0, σ1) we assume

that the Dirichlet series representing function is convergent for Re s > σ0 for some σ0 > 0

instead of Re s > 1 like for the Selberg and extended Selberg class. This modification

allows us to consider shifts of functions from the Selberg class. The other major change is

the removal of the assumption of the Ramanujan-Pettersson conjecture. This allows us to

consider automorphic L-functions. Also, we allow the existence of finitely many poles (as

opposed to the case of the Selberg class, where only the possible pole at s = 1 is allowed).

The paper is organized as follows: In Section 2, we give basic properties for the func-

tions in the class S][(σ0, σ1), and recall some results proved in [6] for the τ -Li coefficients

of the functions in S][(σ0, σ1). In Section 3, we prove the asymptotic expansions for the

archimedean and non-archimedean contributions of τ -Li coefficients. We will then recall

the notion of the τ/2-Riemann hypothesis, and give a condition under which the τ/2-

Riemann hypothesis holds in terms of the asymptotic behavior of the τ -Li coefficients.

Namely, we extend Voros’s criterion for the functions in the class S][(σ0, σ1) with zeros in

some strips. At the end of the section, we consider the important special case of a product

of shifts of the Riemann zeta function. Finally, Section 4 is devoted to some examples and

results obtained in our numerical investigations.

2. Preliminaries

2.1. Class S][(σ0, σ1)

The class S][(σ0, σ1) is introduced in [6] as a modification of the Selberg class in order to

be able to apply the results of the paper unconditionally to automorphic L-functions and

to various products of functions from the Selberg class. For example, the automorphic
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L-functions are believed to belong to the Selberg class but the Ramanujan-Petersson

conjecture is known only in very few cases. Axioms defining the class S][(σ0, σ1) are

modifications of the four axioms of the Selberg class, while the Ramanujan-Petersson

conjecture is not assumed. We have also modified the range of convergence.

Let σ0 and σ1 be real numbers such that σ0 ≥ σ1 > 0. The class S][(σ0, σ1) is the

class of functions F satisfying the following four axioms:

(i) (Dirichlet series) The function F possesses a Dirichlet series representation

F (s) =
∞∑
n=1

aF (n)

ns
,

which converges absolutely for Re s > σ0.

(ii) (Analytic continuation) There exist at most finitely many non-negative integers

m1, . . . ,mN and complex numbers s1, . . . , sN such that the function
∏N
i=1(s−si)miF (s)

is an entire function of finite order.

(iii) (Functional equation) The function F satisfies the functional equation

ξF (s) = wξF (σ1 − s̄),

where the completed function ξF is defined as

(2.1)

ξF (s) = F (s)QsF

r∏
j=1

Γ(λjs+µj)

2M+δ(σ1)∏
i=1

(s−si)mi
N∏

i=2M+1+δ(σ1)

(s−si)mi(σ1−s−si)mi ,

where |w| = 1, QF > 0, r ≥ 0, λj > 0, µj ∈ C, j = 1, . . . , r. Here we assume

that the poles of the function F are arranged so that the first 2M + δ(σ1) poles

(0 ≤ 2M + δ(σ1) ≤ N) are such that s2j−1 + s2j = σ1, for j = 1, . . . ,M , where

δ(σ1) = 1 if σ1/2 is a pole of F in which case s2M+δ(σ1) = σ1/2; otherwise δ(σ1) = 0.

(v) (Euler sum) The logarithmic derivative of the function F possesses a Dirichlet series

representation

F ′

F
(s) = −

∞∑
n=2

cF (n)

ns

converging absolutely for Re s > σ0.

This definition of the class S][(σ0, σ1) gives a possibility to generalize the notion of

the trivial and non-trivial zeros of the functions from the class S][(σ0, σ1). The zeros

of ξF (s) are called the non-trivial zeros of F (s). All the other zeros of F (s) are called

trivial zeros, and they arise from the poles of the gamma functions appearing in (2.1).
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In the sequel, the set of non-trivial zeros of F (s) is denoted by Z(F ). By the functional

equation and the Euler product representation, all the non-trivial zeros lie in the critical

strip σ1 − σ0 ≤ Re s ≤ σ0.

In [6] it is proved that F (s) =
∏K
i=1 ζ(s − αi)ζ(s + αi) ∈ S][(σ0, 1), where ζ denotes

classical Riemann zeta function, the numbers αi are arbitrary complex constants, and

σ0 = max1≤i≤K{|Reαi|+ 1}. These functions are used for our numerical computations.

2.2. Some properties of the class S][(σ0, σ1)

We need some additional properties for the functions in S][(σ0, σ1) in addition to the

properties proved in [6, 12]. Basically, we need to prove an approximate formula for the

logarithmic derivative of functions in the class under consideration and the approximate

formula for the distribution of its zeros.

Lemma 2.1. Let F ∈ S][(σ0, σ1) such that 0 /∈ Z(F ) and s = σ + iT , for an arbitrary

T > 2, and σ1 − σ0 − 2 ≤ σ ≤ σ0 + 2. Then

F ′

F
(s) =

∑
ρ∈Z(F )
|T−Im ρ|≤1

1

s− ρ
+O(log T )

as T →∞, where the zeros in the sum are counted according to their multiplicities.

Proof. From the definition (2.1) of the completed function ξF and [6, Proposition 9], we

easily get

F ′

F
(s) =

∑∗

ρ∈Z(F )

1

s− ρ
−

N∑
i=1

mi

s− si
−

N∑
i=2M+δ(σ1)+1

mi

s− σ1 − si

−
r∑
j=1

λj
Γ′

Γ
(λjs+ µj)− logQF ,

(2.2)

whenever s is not a zero or a pole of the function F . Write s = σ+iT , T > 2. By Stirling’s

formula for the digamma function Γ′

Γ (s) = log s+O(1/|s|), the representation (2.2) yields

F ′

F
(s) =

∑∗

ρ∈Z(F )

1

s− ρ
+O(log |s|)

as |s| → ∞. In particular, if we evaluate the formula above at the point s = σ0 + 2 + iT ,

and subtract this, we get

(2.3)
F ′

F
(s) =

∑∗

ρ∈Z(F )

(
1

s− ρ
− 1

σ0 + 2 + iT − ρ

)
+O(log T )



On Generalized Li Coefficients 1325

as T →∞ uniformly in σ1 − σ0 − 2 ≤ Re s ≤ σ0 + 2.

On the other hand, the formula (2.2) and Stirling’s formula with s = σ0 + 2 + iT and

T > 2, imply

−Re

(
F ′

F
(σ0 + 2 + iT )

)
< C1 log T −

∑
ρ∈Z(F )

Re

(
1

σ0 + 2 + iT − ρ

)
.

Hence, ∑
ρ∈Z(F )

Re

(
1

σ0 + 2 + iT − ρ

)
=

∑
ρ∈Z(F )

σ0 − Re ρ+ 2

(σ0 − Re ρ+ 2)2 + (T − Im ρ)2

= O(log T ).

Since, σ1 − σ0 ≤ Re ρ ≤ σ0, we get∑
|T−Im ρ|>1

1

|T − Im ρ|2
≤

∑
ρ∈Z(F )

1 + (2σ0 + 2)2

(2σ0 + 2)2 + (T − Im ρ)2

≤ 1 + (2σ0 + 2)2

2

∑
ρ∈Z(F )

σ0 − Re ρ+ 2

(σ0 − Re ρ+ 2)2 + (T − Im ρ)2

= O(log T )

as T →∞. This implies that

(2.4)
∑

|T−Im ρ|>1

∣∣∣∣ 1

s− ρ
− 1

σ0 + 2 + iT − ρ

∣∣∣∣ ≤ (2σ0 + 4)
∑

|T−Im ρ|>1

1

(T − Im ρ)2
= O(log T ).

It is thus left to estimate the part of the sum in (2.3) over ρ with |T − Im ρ| ≤ 1. Since the

number of such zeros is O(log T ) and |σ0+2+iT−ρ| ≥ 2, we obtain
∑
|T−γ|≤1

1
|σ0+2+iT−ρ| =

O(log T ). This, together with (2.4) and (2.3), completes the proof.

Let T > maxj=1,...,N | Im sj |, T 6= Im ρ, and let N+
F,σ0,σ1

(T ) and N−F,σ0,σ1(T ) denote

the number of non-trivial zeros of the function F ∈ S][(σ0, σ1) such that 0 ≤ Im ρ ≤ T

or −T ≤ Im ρ ≤ 0, respectively. The approximate formulas for the numbers N+
F,σ0,σ1

(T )

and N−F,σ0,σ1(T ) can be obtained in the classical way by the application of the argument

principle and the functional equation. Variation of the arguments of each factor in the

completed function is observed. For the gamma factors, Stirling’s formula is used, while

estimates for the functions F are obtained using Lemma 2.1. See for example [11].

Lemma 2.2. Assume F ∈ S][(σ0, σ1), T > maxj=1,...,N | Im sj |, T 6= Im ρ. Now

(2.5) N±F,σ0,σ1(T ) =
dF
2π
T log T + cFT +O(log T ),

where

cF =
logQF
π

− dF
2π

+
1

π

r∑
j=1

λj log λj .
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2.3. τ -Li coefficients for the class S][(σ0, σ1)

In [6], the τ -Li coefficients for the class S][(σ0, σ1) are defined, their existence is proved

and alternative formulas are derived. Also the classical τ -Li criterion for the generalized

Riemann hypothesis is proved for the class S][(σ0, σ1). We will now state some of these

results for the reader’s convenience.

Definition 2.3. Let τ ∈ [σ1,+∞). For an arbitrary positive integer n, the n-th τ -Li

coefficient associated to F ∈ S][(σ0, σ1) is defined as

λF (n, τ) =
∑∗

ρ∈Z(F )

(
1−

(
ρ

ρ− τ

)n)
,

where Z(F ) denotes the set of non-trivial zeros of F .

Theorem 2.4. Let F ∈ S][(σ0, σ1) and let τ ∈ [σ1,+∞) be an arbitrary fixed real number

such that 0, τ /∈ Z(F ). The following two statements are equivalent:

(i) σ1 − τ/2 ≤ Re ρ ≤ τ/2 for every ρ ∈ Z(F ),

(ii) ReλF (n, τ) ≥ 0 for every positive integer n.

It is easy to conclude that the natural interval for the values of τ is [σ1, 2σ0], as pointed

out in [6].

Theorem 2.5. Let F ∈ S][(σ0, σ1) and let τ ∈ [σ1, 2σ0] be an arbitrary fixed real number

such that 0, τ /∈ Z(F ). For every positive integer n, we have

λF (n, τ) =
τ

(n− 1)!

[
dn

dsn
(sn−1 log ξF (s))

]
s=τ

.

Theorem 2.6. Let F ∈ S][(σ0, σ1) and τ ∈ [σ1, 2σ0]\{σ1−si : i = 2M+δ(σ1)+1, . . . , N}.
For every positive integer n, we have

λF (n, τ) =
N∑
i=1
si 6=τ

mi

(
1−

(
si

si − τ

)n)
+

N∑
i=2M+1+δ(σ1)

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)

+ nτ logQF +
n∑
k=1

(
n

k

)
τkbk−1 +

n∑
k=1

(
n

k

)
τk

(k − 1)!

r∑
j=1

λkjΨ
(k−1)(λjτ + µj),

where F ′

F (s) =
∑∞

`=−1 b`(s − τ)` is the Laurent expansion at s = τ . In particular, if p is

the order of the pole of the function F at s = τ , then b−1 = −p, and if the function F ′

F (s)

does not have a pole at s = τ , then b−1 = 0.
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3. Asymptotic behavior of the τ -Li coefficients

In this section we derive asymptotic formulas for the two contributions to the τ -Li coeffi-

cients attached to functions from the class S][(σ0, σ1). From Theorem 2.6, we see that the

τ -Li coefficient λF (n, τ) can be written as a sum of an archimedean and a non-archimedean

part. Precisely,

λF (n, τ) = SA(n, τ) + SNA(n, τ),

where

(3.1) SA(n, τ) =
n∑
k=1

(
n

k

)
τk

(k − 1)!

r∑
j=1

λkjΨ
(k−1)(λjτ + µj) + nτ logQF

and

SNA(n, τ) =
n∑
k=1

(
n

k

)
τkbk−1 +

N∑
i=1
si 6=τ

mi

(
1−

(
si

si − τ

)n)

+

N∑
i=2M+1+δ(σ1)

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)
.

(3.2)

We will next look at the asymptotic expansions of the archimedean and non-archimedean

parts of the τ -Li coefficients.

3.1. Asymptotic behavior of the archimedean part of the n-th τ -Li coefficient

In the following theorem, we give the full asymptotic expansion of the archimedean part

of the n-th τ -Li coefficient.

Theorem 3.1. Let F ∈ S][(σ0, σ1) and τ ∈ (σ1, 2σ0], then

SA(n, τ) =

τ r∑
j=1

λj

n log n+

 r∑
j=1

λj log(τλj) + γ

r∑
j=1

λj −
r∑

j=1

λj + logQF

nτ

+
τ

2

r∑
j=1

λj +

r∑
j=1

µj −
r

2
+ τ

r∑
j=1

λj

K∑
k=1

B2k

2k
n−2k+1

+

r∑
j=1

m−1∑
t=0

(
µj + t

λjτ + µj + t

)n

+OK(n−2K)

(3.3)

as n → ∞, where the numbers B2k are the Bernoulli numbers and m ∈ N is such that

m+M ≥ 0 where M = minj=1,...,r Reµj.

Proof. We first write the archimedean part (3.1) in terms of the Hurwitz zeta function.

Depending on the values µj , in some cases it is convenient to do some argument shifts.
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Mainly, if M = minj=1,...,r Reµj , then there exists m ∈ N such that m+M ≥ 0. Repeated

application of the recurrence relation for the digamma function [1, 6.4.6]

ψ(n)(z + 1) = ψ(n)(z) + (−1)nn!z−n−1

for n ≥ 0, implies

ψ(n)(z) = ψ(n)(z +m)− (−1)nn!(z−n−1 + (z + 1)−n−1 + · · ·+ (z +m− 1)−n−1).

In addition, by [1, 6.4.10], we have

ψ(n)(z) = (−1)n+1n!ζ(n+ 1, z)

for z 6= 0,−1,−2, . . ., and thus the sum in (3.1) can be written in the form

n∑
k=1

(
n

k

)
τk

(k − 1)!

r∑
j=1

λkj

(
Ψ(k−1)(λjτ + µj +m)− (−1)k−1(k − 1)!

m−1∑
t=0

(λjτ + µj + t)−k

)

=

n∑
k=1

(
n

k

) r∑
j=1

(−τλj)kζ(k, λjτ + µj +m) +

m−1∑
t=0

r∑
j=1

(
1− λjτ

λjτ + µj + t

)n

− rm

= nτ

r∑
j=1

λj
Γ′

Γ
(λjτ + µj +m) +

r∑
j=1

SA(n, j) +

m−1∑
t=0

r∑
j=1

(
µj + t

λjτ + µj + t

)n

− rm,

(3.4)

where

SA(n, j) =

n∑
k=2

(
n

k

)
(−τλj)kζ(k, λjτ + µj +m).

Main part of the proof is to approximate the expression SA(n, j). Ideas for the ap-

proximation are analogues to those used in [3]. Calculus of residues implies

(3.5) SA(n, j) =
(−1)n

2πi
n!

∫
R
fj(s) ds,

where

fj(s) =
Γ(s− n)

Γ(s+ 1)
(τλj)

sζ(s, λjτ + µj +m),

and R is positively oriented rectangle with vertices at points 3/2 ± i and n + 1/2 ± i.

Basically, the poles of the function fj(s) inside R are simple poles of the gamma function

Γ(s−n) at s = 2, 3, . . . , n, since the other factors of fj(s) are holomorphic in R. Calculus

of residues implies

(−1)n

2πi
n!

∫
R
fj(s) ds = (−1)nn!

n∑
k=2

Res
s=k

fj(s),
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which justifies (3.5), since

Res
s=k

fj(s) =
1

Γ(k + 1)
(λjτ)kζ(k, λjτ + µj +m)

(−1)n−k

(n− k)!

for k = 2, 3, . . . , n.

The function fj(s) is uniformly bounded on the real segment joining n+ 1/2 and en,

hence, the rectangle R can be deformed to the line L : (en− i∞, en + i∞). The additional

singularities of the function fj(s) are the poles at the points s = 0 and s = 1. Hence, we

have

SA(n, j) =
(−1)n

2πi
n!

∫
L
fj(s) ds+ (−1)n−1n!

(
Res
s=0

fj(s) + Res
s=1

fj(s)
)
,

and thus

SA(n, j) = (−1)n−1n!
(

Res
s=0

fj(s) + Res
s=1

fj(s)
)

+O

(
n!

∫ ∞
−∞

∣∣∣∣Γ(en + it− n)

Γ(en + it+ 1)

∣∣∣∣ (λjτ)e
n
ζ(en, |λjτ + µj +m|) dt

)
.

(3.6)

We evaluate the residues in (3.6), and approximate the integral appearing there. The

pole at s = 0 is simple and its residue can be easily calculated

Res
s=0

fj(s) =
(−1)n

n!
ζ(0, λjτ + µj +m) =

(−1)n

n!

(
1

2
− λjτ − µj −m

)
.

The pole at s = 1 is of order 2 and its residue can be found using the Laurent series

representations of the factors of the function fj(s)

ζ(s, λjτ + µj +m) =
1

s− 1
− Γ′

Γ
(λjτ + µj +m) + · · · ,

(λjτ)s = λjτe
(s−1) log(λjτ) = λjτ(1 + (s− 1) log λjτ + · · · ),

1

Γ(s+ 1)
= 1 + (γ − 1)(s− 1) + · · · ,

Γ(s− n) =
(−1)n−1

(n− 1)!

1

s− 1
+

(−1)n−1

(n− 1)!

Γ′

Γ
(n) + · · · .

This yields

Res
s=1

fj(s) =
(−1)n−1

(n− 1)!
λjτ

(
Γ′

Γ
(n)− Γ′

Γ
(λjτ + µj +m) + log(λjτ) + γ − 1

)
.

Stirling’s formula for the digamma function [1, 6.3.18] implies

Res
s=1

fj(s) =
(−1)n−1

(n− 1)!
λjτ

(
log n− 1

2n
− Γ′

Γ
(λjτ + µj +m) + log(λjτ) + γ − 1

−
K∑
k=1

B2k

2k
n−2k +OK(n−1−2K)

)
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as n→∞.

Let us estimate the integral appearing in (3.6). First notice that the part containing

the Hurwitz zeta functions is∣∣(λjτ)e
n
ζ(en, |λjτ + µj +m|)

∣∣ = o(1)

as n→∞, since Reµj > −m for all j = 1, . . . , r.

The part containing the gamma functions can be modified using the reflection formula

and a functional equation for the gamma function. It decays rapidly enough as n → ∞,

i.e.,

n!

∫ ∞
−∞

∣∣∣∣Γ(en + it− n)

Γ(en + it+ 1)

∣∣∣∣ dt� n−2K

as n→∞, for all K ∈ N, as shown in [3]. Now, (3.6) reduces to

SA(n, j) = λjτ + µj +m− 1

2
+ λjτn log n− λjτ

2

+ nλjτ

(
log(λjτ)− Γ′

Γ
(λjτ + µj +m) + γ − 1

)
− λjτ

K∑
k=1

B2k

2k
n−2k+1 +OK(n−2K)

as n→∞. Combining the expression above with the equation (3.4), and the definition of

the archimedean part (3.1), implies (3.3). This completes the proof.

3.2. Asymptotic behavior of the non-archimedean contribution to the n-th τ -Li

coefficient

The bound for SNA(n, τ) given in the following theorem is in terms of the incomplete τ -Li

coefficient up to height T , defined by

λF (n, τ, T ) =
∑

ρ∈Z(F )
| Im ρ|≤T

(
1−

(
ρ

ρ− τ

)n)

where T is a cutoff parameter.

Theorem 3.2. Let F ∈ S][(σ0, σ1), τ ∈ [σ1, 2σ0] \ {σ1 − si : i = 2M + δ(σ1) + 1, . . . , N}
and τ > 1/2, then

SNA(n, τ) = λF (n, τ,
√
n)− Sτ (n)

+
N∑

i=2M+δ(σ1)+1

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)
+O(

√
n log n)

(3.7)
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as n→∞, where

Sτ (n) =

r∑
j=1

b−
τλj+2Reµj

2
c∑

k=0

((
µj + k

µj + k + τλj

)n
− 1

)
,

and bxc denotes the integer part of a real number x.

Proof. The proof is based on the contour integration of a suitably chosen function along

certain rectangle. The method is an extension of the method used in [9,14]. To construct

the function to be integrated, let

kn,τ (s) =
(

1 +
τ

s

)n
− 1 =

n∑
k=1

(
n

k

)(τ
s

)k
,

gj,τ (s) =
(τ
s

)j F ′
F

(s+ τ)

Gn,τ (s) = kn,τ (s)
F ′

F
(s+ τ) =

n∑
k=1

(
n

k

)(τ
s

)k F ′
F

(s+ τ) =

n∑
k=1

(
n

k

)
gk,τ (s).

In order to construct a suitable rectangle to be used in the contour integration, we

need to introduce some notation. We need to ensure that all the poles of the func-

tion F are in the contour, as well as all the non-trivial zeros up to the height T . As-

sume that F ∈ S][(σ0, σ1) has poles of order mi at si, i = 1, . . . , N and put η1 =

−1 + min1≤i,j≤N{Re si, σ1 − Re sj}, η2 = 1 + max1≤i,j≤N{Re si, σ1 − Re sj}, and T ≥
max1≤i≤N{| Im si|}. Let α be a positive real number such that α+ σ1 > σ0 and [η1, η2] ⊆
[−α, α + σ1]. Non-trivial zeros ρ of the function F ∈ S][(σ0, σ1) lie in the critical strip

σ1− σ0 ≤ Re s ≤ σ0, so the non-trivial zeros and the poles of the function F ∈ S][(σ0, σ1)

lie in the strip −α ≤ Re s ≤ α+ σ1. Let us define a = 1 + max{α+ σ1, σ0/τ} and choose

n ∈ N such that 2τ
√
n > a and

√
n+ εn = T where εn is chosen such that 0 < εn < 1 and

that the horizontal lines Im s = ±T do not approach closer than O(1/ log n) to any zero

of F (s).

Let us integrate the function Gn,τ (s) over the counterclockwise oriented rectangle R(n)

formed by the lines Re s = −τa, Re s = 2τ
√
n, Im s = ±T .

Poles of the function Gn,τ (s) in R(n) are at s = 0, at points that correspond to the

trivial and non-trivial zeros of F and at the poles of F . The residue at s = 0 can be

calculated using the Laurent expansion of the function F ′

F (s) at s = τ given by F ′

F (s) =∑∞
`=−1 b`(s− τ)`. If p is the order of the pole of the function F at s = τ , then b−1 = −p,

otherwise b−1 = 0. Now, we have

gj,τ (s) = τ j
∞∑

`=−1

b`s
`−j = τ j

 j−1∑
`=−1

b`s
`−j +

∞∑
`=j

b`s
`−j


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= τ j

(
j+1∑
k=1

bj−ks
−k +

∞∑
k=0

bj+ks
k

)
.

There are two possibilities, depending whether τ is a pole of the function F or not. If it

is, then b−1 6= 0, and then gj,τ (s) has a pole at s = 0 of the order j + 1, and it is easy to

calculate that

Res
s=0

gj,τ (s) = τ jbj−1.

If it is not a pole of the function F , then b−1 = 0. Let v ∈ {0, 1, . . . , j− 1} be the smallest

index such that bv 6= 0. Then gj,τ (s) has a pole at s = 0 of the order j− v and it produces

the same residue as in the previous case. Thus,

(3.8) Res
s=0

Gn,τ (s) =

n∑
k=1

(
n

k

)
τkbk−1.

It is easy to calculate that

Res
s=si−τ

Gn,τ (s) = mi

(
1−

(
si

si − τ

)n)
, si 6= τ,(3.9)

Res
s=ρ−τ

Gn,τ (s) =

(
ρ

ρ− τ

)n
− 1,(3.10)

Res
s=sj,k−τ

Gn,τ (s) =

(
µj + k

µj + k + τλj

)n
− 1,(3.11)

where sj,k = −(µj + k)/λj is a trivial zero of the function F ∈ S][(σ0, σ1) (1 ≤ j ≤ r,

k ∈ N0) such that sj,k − τ is inside the rectangle R(n). The residue theorem, (3.8), (3.9),

(3.10), and (3.11) give

I(n) =
1

2πi

∫
R(n)

Gn,τ (s) ds

= Res
s=0

Gn,τ (s) +

N∑
i=1
si 6=τ

Res
s=si−τ

Gn,τ (s)

+
∑

ρ∈Z(F )
| Im ρ|≤T

Res
s=ρ−τ

Gn,τ (s) +

r∑
j=1

∑
k∈N0

sj,k−τ∈R(n)

Res
s=sj,k−τ

Gn,τ (s)

=

n∑
k=1

(
n

k

)
bk−1τ

k +

N∑
i=1
si 6=τ

mi

(
1−

(
si

si − τ

)n)

+
∑

ρ∈Z(F )
| Im ρ|≤T

((
ρ

ρ− τ

)n
− 1

)
+

r∑
j=1

∑
k∈N0

sj,k−τ∈R(n)

((
µj + k

µj + k + τλj

)n
− 1

)



On Generalized Li Coefficients 1333

= SNA(n, τ)− λF (n, τ, T )−
N∑

i=2M+1+δ(σ1)

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)

+

r∑
j=1

∑
k∈N0

sj,k−τ∈R(n)

((
µj + k

µj + k + τλj

)n
− 1

)

where zeros are counted according to their multiplicities.

Since sj,k−τ ∈ R(n), we obtain that −(λjτ(2
√
n+1)+Reµj) ≤ k ≤ (a−1)τλj−Reµj .

We choose n ∈ N suitably large (it is convenient since we are interested in the limiting

process as n→∞), i.e., such that λjτ(2
√
n+ 1) + Reµj ≥ 0 for all j = 1, . . . , r. Now

S =
r∑
j=1

∑
k∈N0

sj,k−τ∈R(n)

((
µj + k

µj + k + τλj

)n
− 1

)

=

r∑
j=1

b(a−1)τλj−Reµjc∑
k=0

((
µj + k

µj + k + τλj

)n
− 1

)
.

If (a− 1)τλj − Reµj < 0 for all j = 1, . . . , r, the last sum is empty.

Also, the properties∣∣∣∣ µj + k

µj + k + τλj

∣∣∣∣ < 1, τ > − 2

λj
(Reµj + k) and k > −τλj + 2 Reµj

2

are equivalent. If we denote Kmin(j) = max{0, 1 + b−(τλj + 2 Reµj)/2c} and Kmax(j) =

b−(τλj + 2 Reµj)/2c, we have

S =
r∑
j=1

b(a−1)τλj−Reµjc∑
k=Kmin(j)

((
µj + k

µj + k + τλj

)n
− 1

)
+

r∑
j=1

Kmax(j)∑
k=0

((
µj + k

µj + k + τλj

)n
− 1

)
= O(1) + Sτ (n)

where Sτ (n) =
∑r

j=1

∑Kmax(j)
k=0

((
µj+k

µj+k+τλj

)n
− 1
)

. Therefore,

I(n) = SNA(n, τ)− λF (n, τ, T ) + Sτ (n)

−
N∑

i=2M+δ(σ1)+1

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)
+O(1).

(3.12)

It remains to estimate the integral I(n). It can be written as a sum of the four integrals

over the sides of the rectangle R(n). We will start from the side on the line Re s = 2τ
√
n,

and denote integrals by I1(n), I2(n), I3(n) and I4(n), respectively.
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On the line Re s = 2τ
√
n integrand can be easily bounded. Namely,

|kn,τ (2τ
√
n+ it)| ≤

n∑
k=1

(
n

k

)
τk

(
√

4τ2n+ t2)k
≤

n∑
k=1

(
n

k

)(
τ

2τ
√
n

)k
<

(
1 +

1

2
√
n

)n
< 2

√
n

and ∣∣∣∣F ′F (2τ
√
n+ it+ τ)

∣∣∣∣ ≤ ∣∣∣∣F ′F (2τ
√
n+ τ)

∣∣∣∣ ≤ C02−(2τ
√
n+τ−σ0−1),

since 2τ
√
n+ τ > σ0 + 1, and for all Re s = σ > σ0 + 1 one has∣∣∣∣F ′F (s)

∣∣∣∣ ≤ ∣∣∣∣F ′F (σ)

∣∣∣∣ ≤ 2−(σ−σ0−1)

∣∣∣∣F ′F (σ0 + 1)

∣∣∣∣ ≤ C02−(σ−σ0−1),

where C0 is a constant. Therefore,

|kn,τ (2τ
√
n+ it)|

∣∣∣∣F ′F (2τ
√
n+ it+ τ)

∣∣∣∣ ≤ 2
√
nC02−(2τ

√
n+τ−σ0−1)

≤ C02σ0+1−σ12−
√
n(2τ−1).

The length of the vertical side located at Re s = 2τ
√
n, | Im s| ≤ T of the rectangle R(n),

is O(
√
n) so the assumption τ > 1/2 implies the estimate |I1(n)| = o(1) as n→∞.

In the integral I3(n) over the side on the line Re s = −τa, we have |kn,τ (s)| = O(1)

as n → ∞, since |1 + τ/s| < 1 if and only if a > 1/2, but the last assumption is true

by the choice of a. Additionally,
∣∣∣F ′F (s+ τ)

∣∣∣ = O(log n) as n → ∞ by Lemma 2.1.

The length of the vertical segment Re s = −τa, | Im s| ≤ T is O(
√
n) giving the bound

|I3(n)| = O(
√
n log n) as n→∞.

Integrals I2(n) and I4(n) can be estimated analogously. We will consider I2(n). Let

s = σ + iT be a point on the horizontal segment −aτ ≤ σ ≤ 2τ
√
n, T =

√
n + εn. For

|σ| ≤ aτ , we have∣∣∣1 +
τ

s

∣∣∣ =

∣∣∣∣1 +
τ

σ + iT

∣∣∣∣ =

∣∣∣∣1 +
τ(σ − iT )

σ2 + T 2

∣∣∣∣
=

√(
1 +

στ

σ2 + T 2

)2

+

(
τ2T 2

σ2 + T 2

)2

≤ 1 +
τ(σ + τ)

σ2 + T 2
≤ 1 +

τ2(a+ 1)

n
,

so

(3.13) |kn,τ (s)| ≤
(

1 +
τ2(a+ 1)

n

)n
+ 1 ≤ eτ2(a+1) + 1 = O(1),

and from Lemma 2.1 and the approximate number of zeros given by (2.5), we obtain∣∣∣∣F ′F (s+ τ)

∣∣∣∣ = O((log T )2) = O((log n)2).
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Now we step across the interval aτ ≤ σ ≤ 2τ
√
n towards right, in segments of length τ ,

starting from σ = aτ . At the initial point, we have
∣∣∣F ′F (s+ τ)

∣∣∣ = O(1), since we are in

the region of absolute convergence. From∣∣∣∣kn,τ (s+ τ) + 1

kn,τ (s) + 1

∣∣∣∣ =

∣∣∣∣1 + τ
s+τ

1 + τ
s

∣∣∣∣n =

∣∣∣∣∣1 + τ
σ+iT+τ

1 + τ
σ+iT

∣∣∣∣∣
n

=

∣∣∣∣1− τ2

(σ + τ + iT )2

∣∣∣∣n ≤ (1 +
τ2

T 2

)n
≤ eτ2

(3.14)

we obtain an upper bound for
∣∣∣kn,τ (s)F

′

F (s+ τ)
∣∣∣ that decreases geometrically at each step,

and after O(log n) steps, it becomes O(1). Since the horizontal segment has length O(
√
n),

using (3.13) and (3.14), we obtain

|I2(n)| =

∣∣∣∣∣
∫ aτ

−aτ
kn,τ (σ + iT )

F ′

F
(σ + iT + τ) dσ +

∫ 2τ
√
n

aτ
kn,τ (σ + iT )

F ′

F
(σ + iT + τ) dσ

∣∣∣∣∣
= O(

√
n).

The same bound holds also for |I4(n)|. Finally, combining all the bounds, we have

|I(n)| = O(
√
n log n)

as n→∞ and from (3.12), we obtain

SNA(n, τ) = λF (n, τ, T )− Sτ (n) +

N∑
i=2M+δ(σ1)+1

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)
+O(

√
n log n)

as n → ∞. Additionally, the cutoff parameter in the incomplete τ -Li coefficient in the

previous equation can be slightly modified without changing the error term.

The formula (2.5) implies that N±F,σ0,σ1(T + 1) − N±F,σ0,σ1(T ) = O(log T ), since |T −
√
n| < 1 and therefore, there are O(log n) zeros in an interval of length one at this height.

Further, for each zero ρ = β + iγ with
√
n ≤ |γ| <

√
n + 1 the contribution to the

incomplete τ -Li coefficient is bounded by a constant since

∣∣∣∣( ρ

ρ− τ

)n∣∣∣∣ =

∣∣∣∣1 +
τ(β − τ − iγ)

(β − τ)2 + γ2

∣∣∣∣n =

((
1 +

τ(β − τ)

(β − τ)2 + γ2

)2

+

(
τγ

(β − τ)2 + γ2

)2
)n/2

≤
((

1 +
τσ0

n

)2
+
τ2

n

)n/2
< 22τσ0+τ2+τ2σ2

0 ,

so |λF (n, τ,
√
n)−λF (n, τ, T )| = O(log n). Consequently, the relation (3.2) can be written

as (3.7). The proof is complete.
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3.3. Consequence of the τ/2-Riemann hypothesis

Let us assume that the τ/2-Riemann hypothesis holds for the function F ∈ S][(σ0, σ1),

i.e., assume that all the non-trivial zeros ρ of F , have the property σ1− τ/2 ≤ Re ρ ≤ τ/2.

Then |ρ/(ρ− τ)| ≤ 1, so

|λF (n, τ,
√
n)| ≤ 2

∑
ρ∈Z(F )
| Im ρ|≤

√
n

1 = O(
√
n log n).

Now, Theorems 3.1 and 3.2 imply the following corollary.

Corollary 3.3. Let F ∈ S][(σ0, σ1), τ ∈ [σ1, 2σ0] \ {σ1 − si : i = 2M + δ(σ1) + 1, . . . , N}
and τ > 1/2. Assume the τ/2-Riemann hypothesis for F ∈ S][(σ0, σ1), then

λF (n, τ) =

τ r∑
j=1

λj

n log n+

 r∑
j=1

λj log(τλj) + γ
r∑
j=1

λj −
r∑
j=1

λj + logQF

nτ

+
r∑
j=1

m−1∑
t=0

(
µj + t

λjτ + µj + t

)n
−

r∑
j=1

b−(τλj+2 Reµj)/2c∑
k=0

((
µj + k

µj + k + τλj

)n
− 1

)

+

N∑
i=2M+δ(σ1)+1

mi

(
1−

(
σ1 − si

σ1 − τ − si

)n)
+O(

√
n log n)

as n→∞ where m ∈ N is such that m+M ≥ 0 where M = minj=1,...,r Reµj.

If τ is sufficiently large, then the sums containing exponential terms disappear, and

we have the following corollary:

Corollary 3.4. Let F ∈ S][(σ0, σ1), τ ∈ [σ1, 2σ0]\{σ1−si : i = 2M+δ(σ1)+1, . . . , N} and

τ > max j=1,...,r
i=1,...,N

{1/2, (−2 Reµj)/λj , 2(σ1 − Re si)}. Assume the τ/2-Riemann hypothesis

for F ∈ S][(σ0, σ1), then

λF (n, τ) =

τ r∑
j=1

λj

n log n+

 r∑
j=1

λj log(τλj) + γ
r∑
j=1

λj −
r∑
j=1

λj + logQF

nτ

+O(
√
n log n)

as n→∞.

3.4. A special case: products of shifts of the Riemann zeta function

In the first example we obtain formulas for the archimedean and non-archimedean parts

of the τ -Li coefficients of a product of shifts of the Riemann zeta function and discuss

its behavior for some values of τ which are of special interest. In the second example we

deduce a refinement of the result under the Riemann hypothesis.
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Example 3.5. Let

F (s) = ζ(s−A)ζ(s+A)

for an arbitrary real constant A > 1, where ζ denotes the Riemann zeta function. Then

F ∈ S][(A + 1, 1) (as shown in [6]) with QF = π−1, ω = 1, r = 2, λ1 = λ2 = 1/2,

µ1 = A/2, µ2 = −A/2. The function F has simple poles at s1 = −A+ 1 and s2 = A+ 1.

We consider values of τ on the set [1, 2A+ 2] \ {A} according to Theorem 3.2.

Set m = dA/2e, where dxe denotes the smallest integer not less than x, and a = A+ 3.

Using Theorems 3.1 and 3.2, we get

SA(n, τ) = τn log n+
(

log
(τ

2

)
+ γ − 1− log π

)
nτ +

τ

2
− 1

+

dA/2e−1∑
t=0

((
A+ 2t

τ +A+ 2t

)n
+

(
−A+ 2t

τ −A+ 2t

)n)

+ τ

K∑
k=1

B2k

2k
n−2k+1 +OK(n−2K)

(3.15)

and

(3.16) SNA(n, τ) = λF (n, τ,
√
n)− Sτ (n) +

2∑
i=1

(
1−

(
1− si

1− τ − si

)n)
+O(

√
n log n)

as n→∞, where

Sτ (n) =

b− τ/2+A
2
c∑

k=0

((
A+ 2k

A+ 2k + τ

)n
− 1

)
+

b− τ/2−A
2
c∑

k=0

((
−A+ 2k

−A+ 2k + τ

)n
− 1

)
.

The first sum on the right-hand side of the equation above is empty because τ/2 +A > 0,

so

Sτ (n) =

bA/2−τ/4c∑
k=0

((
−A+ 2k

−A+ 2k + τ

)n
− 1

)
and

2∑
i=1

(
1−

(
1− si

1− τ − si

)n)
= −

(
A

A− τ

)n
+O(1)

as n→∞. Thus,

SNA(n, τ) = λF (n, τ,
√
n)−

bA/2−τ/4c∑
k=0

((
−A+ 2k

−A+ 2k + τ

)n
− 1

)
−
(

A

A− τ

)n
+O(

√
n log n)

(3.17)

as n→∞.
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From the well known results for the zero-free region of the Riemann zeta function, we

easily derive a zero-free region for the function F . Thus, the cases with 2A < τ < 2A+ 2

and the implied strips are of special interest. With this assumption, we obtain that Sτ (n)

is empty, and |A/(A− τ)| < 1, so

(3.18) SNA(n, τ) = λF (n, τ,
√
n) +O(

√
n log n)

as n→∞, and sums appearing in (3.15) are o(1) as n→∞, and therefore

λF (n, τ) = λF (n, τ,
√
n) + τn log n+

(
log
(τ

2

)
+ γ − 1− log π

)
nτ +O(

√
n log n)

as n→∞.

Remark 3.6. Reasoning similarly as in Example 3.5, one may investigate the asymptotic

behaviour of the τ -Li coefficients attached to various functions G(s−A)G(s+A), where

G ∈ S][ and τ ∈ (2A, 2A+ 2), the interval implied by the zero-free region.

Remark 3.7. In addition to those values of τ treated in Example 3.5, the approximate

formulas obtained may be used to describe the asymptotic behavior of the τ -Li coeffi-

cients for all the other values of τ on the interval of specific interest. Persistence of the

exponentially growing terms is expected.

Namely, in the case with τ = 2A and Sτ (n) = (−1)n − 1, using the expressions (3.15)

and (3.17), we get

SA(n, τ) = 2An log n+ (logA+ γ − 1− log π)2An+A− 1

+

dA/2e−1∑
t=0

((
A+ 2t

3A+ 2t

)n
+

(
−A+ 2t

A+ 2t

)n)

+ 2A

K∑
k=1

B2k

2k
n−2k+1 +OK(n−2K)

(3.19)

and

SNA(n, τ) = λF (n, τ,
√
n) + 2(−1)n+1 +O(

√
n log n)

as n→∞, so

λF (n, 2A) = λF (n, 2A,
√
n) + 2An log n+ (logA+ γ − 1− log π)2An+O(

√
n log n)

as n→∞.

In the case with 1 ≤ τ < 2A and τ 6= A, we have |A/(A− τ)| > 1, so

λF (n, τ) = λF (n, τ,
√
n)−

(
A

A− τ

)n
+ s(a, τ) + τn log n

+
(

log
(τ

2

)
+ γ − 1− log π

)
nτ +O(

√
n log n)
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as n→∞, where

s(a, τ) = −
bA/2−τ/4c∑

k=0

(
−A+ 2k

−A+ 2k + τ

)n
+

dA/2e−1∑
t=0

(
−A+ 2t

τ −A+ 2t

)n
.

Notice, that for some values of τ , the sums may be empty, and therefore treated as zero.

Otherwise, some terms persist.

Now we consider the asymptotic behavior of the τ -Li coefficients conditionally under

the Riemann hypothesis.

Example 3.8. Let

F (s) = ζ(s−A)ζ(s+A)

for an arbitrary real constant A > 0 and τ = 2A+1. Assume that the Riemann hypothesis

is valid, i.e., assume that all the non-trivial zeros of the function F lie on the lines Re s =

1/2±A. Under this assumption |ρ/(ρ− τ)| ≤ 1, so each term in λF (n, τ,
√
n) contributes

at most 2 in the absolute value. Since the number of zeros ρ such that | Im ρ| ≤
√
n is

O(
√
n log n), using the previous example we obtain

λF (n, τ) = τn log n+
(

log
(τ

2

)
+ γ − 1− log π

)
nτ +O(

√
n log n) as n→∞.

4. Numerical computations

In this section we present some numerical computations for the τ -Li coefficients for dif-

ferent L-functions. We concentrate on functions in the class under consideration, and in

particular, on appropriate products of the Riemann zeta function.

Different approaches can be used in the numerical calculations of the τ -Li coefficients.

Different definitions or arithmetic formulas for τ -Li coefficients can be used to develop

codes for calculations. Calculations based on the definition of τ -Li coefficients in terms of

a sum over the zeros of the corresponding L-function are done with Mathematica 9 with

precise error estimates in [6,12] for some examples of functions from the class S][(σ0, σ1).

In the present paper, we are interested in separate calculations of the two, archimedean

and non-archimedean, contributions. The definition of the τ -Li coefficients is not adequate

in this case. Thus, a different approach needs to be used. We use the definition of the

n-th τ -Li coefficient in terms of the n-th derivative of the completed L-function given in

Proposition 2.5, together with the power series representation of the corresponding L-

function. This method is analogous to the one used in [4]. This approach enables us to

distinguish between different contributions.

The code is written using Arb, a C library for arbitrary-precision floating-point ball

arithmetic, developed by F. Johansson [8]. The main advantage is the fact that it supports
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efficient high-precision computation with power series and special functions over the real

and complex numbers with automatic error control.

Extensive set of data is obtained in numerical computations. In the following example,

we present selected sets of data for the functions considered in Example 3.5.

Example 4.1. Let F (s) = ζ(s−5)ζ(s+ 5). Let us notice that the τ -Li coefficients in this

case are real, i.e., ReλF (n, τ) = λF (n, τ).

In Figures 4.1–4.6 we present values for the archimedean SA(n, τ) and non-archimedean

SNA(n, τ) contributions to the τ -Li coefficients attached to the function F . Values τ ∈
{9, 10, 11} are chosen in order to illustrate the different situations discussed in Example 3.5

and Remark 3.7. These contributions are presented in Figures 4.1, 4.3 and 4.5 while the

sums of these contributions, i.e., values of the τ -Li coefficients are presented in Figures 4.2,

4.4 and 4.6. All the values are calculated for n from 1 to 500 with the step equal to 1.

These values are joined in order to be able to easily see the corresponding behavior.

50 100 150 200 250 300
n

-1´1029

-5´1028

5´1028

SAHn,9L

80 85 90 95
-4´109

-3´109

-2´109

-1´109

0

1´109

2´109

3´109

50 100 150 200 250 300
n

-1´1029

-5´1028

5´1028

SNAHn,9L

80 85 90 95

-3´109

-2´109

-1´109

0

1´109

2´109

3´109

4´109

Figure 4.1: The archimedean and non-archimedean contributions to the τ -Li coefficients

attached to the function F for τ = 9.

50 100 150 200 250 300
n

-300 000

-200 000

-100 000

100 000

200 000

300 000

ΛFHn,9L

Figure 4.2: τ -Li coefficients attached to the function F for τ = 9.

In the case τ = 9, both contributions are oscillatory with exponentially growing am-

plitudes, as expected since in (3.15) and in (3.16), the sums with exponentially growing

terms persist, when n changes. The obtained contributions’ values produce oscillatory
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100 200 300 400 500
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25 000

30 000

SAHn,10L

100 200 300 400 500
n
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-50 000
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100 000
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Figure 4.3: The archimedean and non-archimedean contributions to the τ -Li coefficients

attached to the function F for τ = 10.
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Figure 4.4: τ -Li coefficients attached to the function F for τ = 10.
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n
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10

15
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Figure 4.5: The archimedean and non-archimedean contributions to the τ -Li coefficients

attached to the function F for τ = 11.

τ -Li coefficients and some negative values. This is completely in agreement with the re-

sults in [6], obtained in a completely different way, for some similar functions. Namely,

assuming that the Riemann hypothesis holds, all the zeros of the function F (s) are located

at lines Re s = a/2, where a ∈ {−9, 11}, thus in the case τ = 9, we have no zeros of the

function F (s) in the strip σ1 − τ/2 ≤ Re s ≤ τ/2 (see Theorem 2.4(i)) but all the zeros
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100 200 300 400 500
n
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10 000

15 000

20 000

25 000

30 000

35 000

ΛFHn,11L

Figure 4.6: τ -Li coefficients attached to the function F for τ = 11.

are outside, so negative values of the τ -Li coefficients are expected.

In the case τ = 10, the archimedean part contributes nicely with the leading term

of order n log n to the growth of the τ -Li coefficients, while the non-archimedean term

exhibits the same behavior as in the case τ = 9, oscillatory values with exponentially

growing amplitudes. Graphs are in accordance with the formulas obtained in Remark 3.7,

since the terms with powers of n in sums in (3.19) are less than one in the absolute

value. The exponential growth of the non-archimedean terms comes from the incomplete

τ -Li coefficients. As we can observe at Figure 4.4, the archimedean contribution to the

τ -Li coefficients is completely dominant for n from 1 to 300, but then the impact of the

non-archimedean term becomes visible, and it finally starts producing negative values

of the τ -Li coefficients around n = 430. Appearance of the negative values of the τ -

Li coefficients are expected for τ = 10, having in mind Theorem 2.4 and assuming the

Riemann hypothesis.

For τ = 11, the archimedean contribution exhibits a completely analogous behavior

as in the case τ = 10. The leading term of the non-archimedean term is the incomplete

τ -Li coefficient in this case, as shown in (3.18), but assuming the Riemann hypothesis

it is O(
√
n log n), as shown in Example 3.8. Thus the values of the non-archimedean

contribution are considerably smaller than the corresponding values of the archimedean

term, as is clearly visible in Figure 4.5. There is no visible impact of the non-archimedean

term to the τ -Li coefficients, which can be seen from Figure 4.6. The values of λF (n, 11)

grow as 11n log n when n increases, which is expected from Example 3.8. There are no

oscillations and no negative values.

The discussion above shows that the general behavior of the contributions to the τ -Li

coefficients can be easily explained by consequences of proved theorems. In addition, in

the sequel, we show that the numerical evaluations of approximations and exact values fit

very well together.

In Figure 4.7 we compare the approximate values of S∗A(n, τ) which is the archimedean
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contribution calculated up to a constant term (see expression (3.15)), i.e.,

S∗A(n, τ) = τn log n+
(

log
(τ

2

)
+ γ − 1− log π

)
nτ +

τ

2
− 1

+

dA/2e−1∑
t=0

((
A+ 2t

τ +A+ 2t

)n
+

(
−A+ 2t

τ −A+ 2t

)n)
with the exact values SA(n, τ). The results are presented for τ = 9 and τ = 11. Clearly,

approximate values describe the behavior of the exact values with a very high precision.
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Figure 4.7: Archimedean contributions and τ -Li coefficients attached to the function F

for τ = 9 and τ = 11 and the corresponding approximations.

In the case of the non-archemedean contribution given by (3.17), we are able to distin-

guish two main impacts to it: the incomplete τ -Li coefficients λF (n, τ,
√
n) and the impact

of the sums with exponential terms S∗NA(n, τ), i.e.,

SNA(n, τ) = λF (n, τ,
√
n) + S∗NA(n, τ) +O(

√
n log n),

where

S∗NA(n, τ) = −
bA/2−τ/4c∑

k=0

((
−A+ 2k

−A+ 2k + τ

)n
− 1

)
−
(

A

A− τ

)n
.

In Figures 4.8–4.10 we present these impacts for τ ∈ {9, 10, 11}.
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S
NA
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Figure 4.8: Impacts of the non-archimedean contributions to the τ -Li coefficients attached

to the function F for τ = 9.



1344 Anne-Maria Ernvall-Hytönen, Almasa Odžak and Medina Sušić
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Figure 4.9: Impacts of the non-archimedean contributions to the τ -Li coefficients attached

to the function F for τ = 10.
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Figure 4.10: Impacts of the non-archimedean contributions to the τ -Li coefficients attached

to the function F for τ = 11.
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Figure 4.11: Non-archimedean contributions and τ -Li coefficients attached to the function

F for τ = 10 and its approximate values.

It is interesting to notice that, in the general case, it is not possible to derive a re-

lation between these two impacts. In the case of τ = 9 both impacts exhibit oscillatory

behavior with exponentially growing amplitudes producing the same behavior for the

non-archimedean contribution, as shown in the right panel of Figure 4.1. For τ = 10,

the exponential growth comes from the incomplete τ -Li coefficients, while the values of
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S∗A(n, 10) are bounded. Thus, the oscillation of the τ -Li coefficients comes from the in-

complete τ -Li coefficients, as mentioned earlier. For τ = 11 both impacts are quite small

and bounded, producing no visible effect to the τ -Li coefficients, as shown in Figure 4.6.

Figure 4.11 presents a numerical approximation of the non-archimedean contribution

to the τ -Li coefficients and its values obtained from the definition in the case τ = 10.
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On τ -Li coefficients for Rankin-Selberg L-functions, in: Women in Numbers Europe,

167–190, Assoc. Women Math. Ser. 2, Springer, Cham, 2015.

[4] A. Bucur, A.-M. Ernvall-Hytönen, A. Odžak and L. Smajlović, On a Li-type criterion
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[9] J. C. Lagarias, Li coefficients for automorphic L-functions, Ann. Inst. Fourier (Greno-

ble) 57 (2007), no. 5, 1689–1740.

[10] X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J.

Number Theory 65 (1997), no. 2, 325–333.

[11] M. R. Murty, Problems in Analytic Number Theory, Graduate Texts in Mathematics

206, Springer-Verlag, New York, 2001.
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