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Searching for Structures Inside of the Family of Bounded Derivatives Which

are not Riemann Integrable

Pablo Jiménez-Rodŕıguez

Abstract. We construct a non-separable Banach space every nonzero element of which

is a bounded derivative that is not Riemann integrable. This in particular improves a

result presented in [3], where the corresponding space was found to be separable.

1. Introduction and preliminaries

When introduced to a basic course in integration, the Fundamental Theorem of Calculus

might hint that the concepts of antiderivative and integral are synonymous. In fact, an an-

tiderivative is usually denoted with an integral symbol. Nevertheless, in 1881, Volterra [9]

gave an example that went against that intuition (the reader can also check the monograph

in [5]). Indeed, the function

f(x) =

x2 sin(1/x2) if x 6= 0,

0 if x = 0

is differentiable everywhere but its differential is unbounded in any open interval containing

0, so in particular it can not be Riemann integrable (in fact, since the function f is not

absolutely continuous, its differential is not Lebesgue integrable either, see for example [7,

Theorem 20.8]).

It might then seem reasonable to think that if f has a bounded derivative, then f could

be recovered from f ′ via the Fundamental Theorem of Calculus. Yet, Volterra focused on

the function

g(x) =

x2 sin(1/x) if x 6= 0,

0 if x = 0

to give an example of a differentiable function with bounded derivative, but whose differ-

ential was again not Riemann integrable.

As usual, if A is a set and f : A→ R is a bounded function, we may consider the sup

norm of f , ‖f‖∞ = sup{|f(a)| : a ∈ A}. `∞ denotes the space formed by all such elements
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when considered such norm in the case where A = N. We will also denote by B[0, 1] the

space obtained when A = [0, 1].

Following the same line of work that motivated the study of the function g, in [3]

the authors managed to construct a Banach space (using the sup norm) of differentiable

functions, every non zero element of which fulfilled the same properties as g: it is a

differentiable function and its derivative is bounded but not Riemann integrable. The

idea for that result is to consider the closure in the sup norm of a sequence of functions,

everyone of which is a perturbation of the function g supported on one member of a

countable family of pairwise disjoint open intervals. Therefore, in particular the Banach

space that was constructed is separable.

Given a cardinal number κ, we say that a subset M of a topological vector space is κ-

lineable if we can find a vector space V of dimension κ so that V ⊆M ∪{0}. Analogously,

we say that M is κ-spaceable if this space is closed. Typically, the elements of the set

M will be described in terms of certain property, usually against the intuition (what in

mathematical folklore it has been given the name of pathological property). Those terms

were coined in the beginning of the 21st century in [2] (see also [8]), and since its appearance

it has proven to be a fruitful field. The interested reader may access to the majority of

the results in this trend (up to its publication in 2016) in the monograph [1].

Hence, the result from [3] appears as follows:

Theorem 1.1. [3] The set of differentiable functions whose derivative is bounded but is

not Riemann integrable is spaceable.

In order to find another (more accessible) example of a bounded derivative which is

not Riemann integrable, R. A. Gordon attempted an idea which was similar to Volterra’s

construction: he started with a countable family of pairwise disjoint intervals, (for whom

he asked some further properties) and then he considered an infinite sum of polygonal

functions, each of whose support was contained in one of the mentioned intervals (see [4]).

In the present paper we will carry on with Gordon’s construction in order to improve

the result in [3] by showing that in fact the Banach space contained in the set of dif-

ferentiable functions whose derivative is bounded but is not Riemann integrable can be

obtained to be non separable (in fact isometric to `∞).

2. Our construction

Theorem 2.1. The set

{f : [0, 1]→ R such that f is a bounded derivative, but is not Riemann integrable}
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is spaceable. Moreover, there exists a linear isometry from `∞ into B[0, 1] verifying the

following: the image of every non zero element of `∞ is a bounded, non-Riemann integrable

function which is (also) a derivative.

Proof. Let O =
⋃∞

n=1(an, bn) be an open dense set in the interval (0, 1), where the intervals

(an, bn) are pairwise disjoint and the inequality

∞∑
n=1

(bn − an) <
1

2

is satisfied.

Without loss of generality, we may assume that ai 6= bj for all positive integers i 6= j.

For every n ∈ N, consider On ⊆ (an, bn) open and dense, verifying similar properties as

O, that is, we can write On =
⋃∞

k=1(a
(n)
k , b

(n)
k ), where (a

(n)
k , b

(n)
k ) are pairwise disjoint.

For every k, n choose c
(n)
k < d

(n)
k so that a

(n)
k < c

(n)
k < d

(n)
k < b

(n)
k and verifying

c
(n)
k + d

(n)
k

2
=
a

(n)
k + b

(n)
k

2
and d

(n)
k − c(n)

k = (b
(n)
k − a(n)

k )2.

Notice that, with this choice of intermediate points, we have

(2.1) c
(n)
k − a(n)

k =
(b

(n)
k − a(n)

k )− (b
(n)
k − a(n)

k )2

2
>
b
(n)
k − a(n)

k

4
.

For every k, we consider the function hk : (`∞, ‖·‖∞)→ (B[0, 1], ‖·‖∞) by, given {xs}∞s=1 ∈
`∞ and t ∈ [0, 1],

hk({xs}∞s=1)(t) =



0 if 0 ≤ t ≤ c(n)
k or d

(n)
k ≤ t ≤ 1, n ∈ N,

xk if t = (3c
(n)
k + d

(n)
k )/4, n ∈ N,

−xk if t = (c
(n)
k + 3d

(n)
k )/4, n ∈ N,

linear elsewhere.

Notice that hk is a linear operator, since the equation of the line joining the points (a1, b1+

c1) with (a2, b2 + c2) is the sum of the equations of the lines joining the points (a1, b1)

with (a2, b2), and (a1, c1) with (a2, c2) (similarly to what happened in the construction of

the isometry in [6]). Define next

h : (`∞, ‖ · ‖∞) −→ (B[0, 1], ‖ · ‖∞)

{xs}∞s=1 7−→
∑∞

k=1 hk({xs}∞s=1).

Notice that h is well-defined since, for every t ∈ [0, 1], hk({xs}∞s=1)(t) 6= 0 for at most one

value of k. Also, it is clear that ‖h({xs}∞s=1)‖∞ = ‖{xs}∞s=1‖∞, so h is an isometry.
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We claim now that, for every {xs}∞s=1 ∈ `∞\{0}, h({xs}∞s=1) is not Riemann integrable.

To simplify the notation, for a function f and an interval I we will denote the quantity

ω(f, I) = sup{f(t) : t ∈ I} − inf{f(t) : t ∈ I}.

Denote, furthermore, Jm = {1, 2, . . . ,m} and E = [0, 1] \O, let {t0 = 0 < t1 < · · · < tm =

1} be a partition of the interval [0, 1] and define the sets

S = {i ∈ Jm : (ti−1, ti) ∩ E = ∅} and T = Jm \ S.

Note that if i ∈ S, then (ti−1, ti) ⊆ O. We would like to show that if i ∈ T , then

(an0 , bn0) ⊆ (ti−1, ti) for some n0.

Indeed, we remark that, if (ti−1, ti) ∩ E = {t}, we would have (ti−1, t) ∪ (t, ti) ⊆ O =⋃∞
n=1(an, bn) and therefore we would have an = bñ for some n, ñ, which we have already

stated does not happen. Therefore, it must be #[(ti−1, ti) ∩ E] ≥ 2.

Suppose then u < v are two points in (ti−1, ti) ∩ E. Since O is dense in (0, 1), we

can find a point q ∈ (u, v) ∩ O. Let n0 ∈ N so that q ∈ (an0 , bn0). Since u /∈ (an0 , bn0)

and (an0 , bn0) ∩ (u, v) 6= ∅, it must be u < an0 . Following a similar argument, it must be

v > bn0 and therefore (an0 , bn0) ⊆ (u, v) ⊆ (ti−1, ti).

We may conclude ∑
i∈S

(ti − ti−1) ≤ m(O) <
1

2
,

so that ∑
i∈T

(ti − ti−1) ≥ 1

2
.

Hence,∑
i∈Jm

ω(h({xs}∞s=1), [ti−1, ti])(ti − ti−1) ≥
∑
i∈T

ω(h({xs}∞s=1), [ti−1, ti])(ti − ti−1)

≥ 2‖{xs}∞s=1‖∞
∑
i∈T

(ti − ti−1) ≥ ‖{xs}∞s=1‖∞ 6= 0.

Since we have this bound for any partition of the interval [0, 1] we consider, we can conclude

that the function h({xs}∞s=1) is not Riemann integrable.

To finish, we claim that h({xs}∞s=1) is a derivative. Indeed, we define the function F

on [0, 1] by

F (t) =

∞∑
k=1

∫ t

0
hk({xs}∞s=1)(ζ) dζ.

We will see that F ′ = h.
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Note that F is well-defined since, again, for each t ∈ [0, 1],
∫ t

0 hk({xs}∞s=1)(ζ) dζ 6= 0

for at most one value of k ∈ N. Let first t ∈ (a
(n)
l , b

(n)
l ). Then,

F (t)− F (a
(n)
l ) =

∫ t

a
(n)
l

hl({xs}∞s=1)(ζ) dζ.

Since hl({xs}∞s=1) is continuous, we can use the Fundamental Theorem of Calculus to write

(2.2) F ′(t) = hl({xs}∞s=1)(t) = h({xs}∞s=1)(t).

Let next

t ∈ (0, 1) \
∞⋃
n=1

∞⋃
k=1

(a
(n)
k , b

(n)
k )

and let us show that

lim
t′→t+

F (t′)− F (t)

t′ − t
= 0 = h({xs}∞s=1)(t).

If t = a
(n)
k for some k, n, then the result is trivial, since∫ t′

0
hl({xs}∞s=1)(ζ) dζ = 0

for every l ∈ N and t′ in the interval [a
(n)
k , c

(n)
k ].

Assume then t 6= a
(n)
k for every k, n and let t < t′ < 1. If t′ /∈ [c

(n)
k , d

(n)
k ] for every k,

n, then F (t′) = F (t) = 0. If we want, finally, to see the case where t′ ∈ [c
(n)
k , dnk ] for some

some k, n, we shall use the inequality (2.1) in the form

b
(n)
k − a(n)

k < 4(c
(n)
k − a(n)

k ).

Therefore,

|F (t′)− F (t)| = |F (t′)| =

∣∣∣∣∣
∫ t′

c
(n)
k

hk({xs}∞s=1)(ζ) dζ

∣∣∣∣∣ ≤
∫ t′

c
(n)
k

|hk({xs}∞s=1)(ζ)| dζ

≤ ‖{xl}∞l=1‖∞(t′ − c(n)
k ) ≤ ‖{xl}∞l=1‖∞(d

(n)
k − c(n)

k )

= ‖{xl}∞l=1‖∞(b
(n)
k − a(n)

k )2 < 16‖{xl}∞l=1‖∞(c
(n)
k − a(n)

k )2.

Let us remember now that we had chosen

t ∈ (0, 1) \
∞⋃
n=1

∞⋃
k=1

(a
(n)
k , b

(n)
k ),

so in particular, using the fact that t < t′ ∈ [c
(n)
k , dnk ] ⊆ [a

(n)
k , bnk ], we can conclude t < a

(n)
k

and c
(n)
k < t′. Having that in mind, we can conclude

16‖{xl}∞l=1‖∞(c
(n)
k − a(n)

k )2 ≤ 16‖{xl}∞l=1‖∞(t′ − t)2.
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Hence,

lim
t′→t+

∣∣∣∣F (t′)− F (t)

t′ − t

∣∣∣∣ ≤ lim
t′→t+

16‖{xl}∞l=1‖∞(t′ − t) = 0.

Analogously, one can prove that

lim
t′→t−

∣∣∣∣F (t′)− F (t)

t′ − t

∣∣∣∣ = 0,

so we can deduce that F ′(t) = 0 = h({xs}∞s=1)(t), for

t ∈ (0, 1) \
∞⋃
n=1

∞⋃
k=1

(a
(n)
k , b

(n)
k ),

that is, together with the conclusion in (2.2),

F ′(t) = h({xs}∞s=1)(t) for every t ∈ (0, 1).
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Department of Mathematical Sciences, Mathematics and Computer Science Building,

Summit Street, Kent OH 44242, USA

E-mail address: pjimene1@kent.edu


	Introduction and preliminaries
	Our construction

