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On Partial Galois Algebras

Xiaolong Jiang, Jung-Miao Kuo* and George Szeto

Abstract. We generalize, in the context of partial group action, the Kanzaki com-
mutator theorem for Galois extensions and the structure theorem for Galois algebras
given by Szeto and Xue.

1. Introduction

The notion of Galois extension for commutative ring extensions was firstly introduced by
Auslander and Goldman [2], and Chase, Harrison and Rosenberg continued the study,
giving characterizations and the fundamental theorem for a commutative Galois algebra
in the celebrated paper [5]. DeMeyer and Kanzaki respectively generalized the notion
of commutative Galois extension to the case of noncommutative ring (see [6}(7,/15/17]).
Since then more investigation have been done by several authors (see [1},8,/11,/13}[14}
16/,21,24]). Particularly, Kanzaki showed the following important commutator theorem
(see [16, Proposition 1]): if R is a Galois extension of R% with Galois group G' and C
is the center of R, then the commutator subring of R in R is a direct sum of certain
C-submodules of R, namely, J, := {x € R | zr = g(r)x for all r € R}, where g € G. By
investigating further these J,; and applying the Kanzaki commutator theorem, Szeto and
Xue derived a structure theorem for Galois algebras (see [25, Theorem 3.8]), which we will
describe in the next section.

The notion of partial Galois extension was recently introduced by Dokuchaev, Ferrero
and Paques in [10], where the authors developed the partial Galois theory of rings, gen-
eralizing the results on Galois theory of commutative rings given in [5]. More properties
were obtained for partial Galois extensions in [4], using the theory of Galois corings, and
for partial Galois Azumaya extensions in [12,22,23], generalizing the results in [1]. In the
series of papers [18-20], the authors, among other things, characterized (partial) Galois
extensions generated by central idempotents in a partial Galois extension, which we will
apply later in Section
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for Galois algebras given by Szeto and Xue. Let R be a ring with a partial action «
of a finite group G and C denote its center. For each g € G, let Iy = {x € R | ar =
agy(rlg—1)z for all 7 € R}. In Section (3, we generalize the Kanzaki commutator theorem
for Galois extensions by showing that if R is an a-partial Galois extension of R%, then
the commutator subring of R* in R is a direct sum of these C-submodules I, of R (see
Theorem . In Section {4} we firstly derive several properties of these I,, associated to
which a Boolean semigroup is then introduced. By investigating certain minimal elements
of this Boolean semigroup and applying the generalized commutator theorem for partial
Galois extensions, we extend the structure theorem for Galois algebras given by Szeto and
Xue to a structure theorem for partial Galois algebras (see Theorem [.11]). It is worth
mentioning that this structure theorem can be applied straightforwardly without going
through the process of the globalization of R as defined in [9]. In the next section, we

recall some notions and results which will be used later.

2. Preliminary

Let R be a ring with 1. Suppose that G is a finite automorphism group of R and let
RE = {r € R| g(r) = r for each g € G}. If there exist elements a;, b; in R, i = 1,2,...,m
for some integer m, such that y ", a;g(b;) = d141r for each g € G, then R is called a
Galois extension of R with Galois group G, and the set {a;,b; | i = 1,2,...,m} is called
a G-Galois system for R. Furthermore, let C' denote the center of R; if RS C C, then the
Galois extension R is called a Galois algebra with Galois group G or simply a G-Galois
algebra, and a central G-Galois algebra when R = C.

For any ring Y and any non-empty subset X of Y, let Cy(X) denote the centralizer
(or commutator subring) of X in Y. Below we recall the Kanzaki commutator theorem

for Galois extensions.

Theorem 2.1. [16, Proposition 1] Suppose R is a Galois extension of RE with Galois
group G. Let J, ={x € R | xzr = g(r)z for all v € R} for each g € G. Then

Cr(R%) = @ Jg as C-modules.
geG
More properties of Jy, g € G, were derived in [25], followed by a structure theorem for

Galois algebras as stated below.

Theorem 2.2. |25, Theorem 3.8] Suppose R is a Galois algebra with Galois group G.
Then there exist orthogonal central idempotents e, eo, ..., e, and subgroups Hyi, Ho, . . .,
H,, of G such that each Re; is a central Galois algebra with Galois group H; and R =
D", Re; or R = @, Re;, where eg =1 — ", e; and Rey = Ceg is a commutative

Galois algebra with Galois group G.
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The main purpose of this paper is to generalize these two results in the context of
partial group action. To do this, we recall the notions of partial group action and partial
Galois extension and some derived properties we shall use later.

Let R be a ring with a partial action « of a finite group G. This means, as defined in [9],
there exist a collection {R, | g € G} of ideals of R and isomorphisms of (non-necessarily

unital) rings o, : R,-1 — Ry such that
(i) Ry = R and oy is the identity automorphism of R;
(ii) ag(Ry—1 N Rp) = Ry N Ryy, for all g, h € G;
(iil) (agoap)(r) = ag(r) for every r € R,—1 N R(yp)-1 and g, h € G.

In this paper, we assume that for each g € G, R, has an identity 1, which is a central
idempotent of R. Under this assumption, a has a globalization (see [9, Theorem 4.5]).
This means that there exist a ring 7" and a (global) action § of G on T' by automorphisms
of T such that R can be considered as an ideal of T' generated by a central idempotent 1

of T and the following conditions hold:

() T =2 geq Be(R);

(ii) Ry = RN By(R) for every g € G;

(ill) ag = Bg\Rg_l for every g € G.
We have the following properties (see |10, p. 79]):
(F1) 1, = 1grBy(1R) for every g € G;
(F2) ag4(rlg—1) = By(r)1g for every r € R and g € G} in particular,
(FS) ag(lhlg_l) = 1ghlg for all g,h € G.

As defined in [10], the subring of the invariant elements of R under « is defined to
be R* = {r € R | ay(rly—1) = rly for all g € G}, and R is called an a-partial Galois
extension of R® if there exist elements z;, y; in R, ¢ = 1,2,...,m for some integer m,
such that 31" | 0y (yi1,-1) = 01,41R for each g € G; in this case, {z;,y; | i =1,2,...,m}
is called an a-partial Galois system for R. Here, if R C C, then we call the a-partial
Galois extension R an a-partial Galois algebra, and a central a-partial Galois algebra
when R* = C.

For a ring R with a partial action « of a finite group G and its globalization T" with

an action 8 of G, we list some known results we shall apply later without special mention.

(i) (see [3, Theorem 1.4]) R* = T"1p.
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(ii) (see ’22, Lemma 2.1]) CR(RO‘) = CT(Tﬁ)lR and CR(R) = CT(T)lR.

(iii) (see [10, Theorem 3.3]) R is an a-partial Galois extension of R® if and only if T is

a Galois extension of T with Galois group G.

(iv) (see [10, Theorem 4.2]) If R is an a-partial Galois algebra, then it is separable over
R“.

3. The generalized Kanzaki commutator theorem

Throughout the rest of this paper, let R denote a ring with a partial action « of a finite
group G and T its globalization with an action 8 of G; let C' and Z denote the center of
R and that of T, respectively. For each g € G, let

Jg={ueT|ut=py(t)uforalteT}

and

Iy ={z € R|zr = ay(rl,—1)x for all r € R}.

Then each J, (I, resp.) is a submodule of T' (R resp.) over Z (C resp.). In this section,
we shall generalize the Kanzaki commutator theorem for Galois extensions to a commu-
tator theorem for partial Galois extensions, and present a relation between rankc(Z,) and

rankz(Jy) when R is an a-partial Galois algebra.

Lemma 3.1. If R is an a-partial Galois extension of R*, then Cr(R*) = @ e Jglr as

C-modules.

Proof. Since R is a a-partial Galois extension of R, T is a Galois extension of 7% with Ga-
lois group G. Hence Cr(T?) = @ geG Jg @s Z-modules by Theorem Since Cr(R%) =

Cr(T?)1g and C = Z1g, it follows that Cr(R*) = D, cc Jolr as C-modules. O

Lemma 3.2. For each g € G, Jylg C I, C Cr(R*) N R1,.

Proof. Fix a g € G. Let u € J;. We have ulg € R since R is an ideal of T'. For each
r € R, (ulp)r = (ur)lr = (By(r))ulr = (By(r)1r)(ulr) = ay(rlg-1)(ulg) (see (F2) in
Section . Hence ulp € I;. Next, let x € I;. Then z = xlgr = ay(1gl,1)r € Rly;
furthermore, if » € R, then we have that xr = a4(rl,-1)z = rlgz = rol, = rz. Hence
xz € Cr(R“) N R1,. O]

We are ready to show the generalized Kanzaki commutator theorem for partial Galois

extensions.
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Theorem 3.3. If R is a a-partial Galois extension of R, then

Cr(R%) = @Ig as C-modules.
geG

Proof. By Lemmas and Cr(R*) = Byec Jolr C D yec Iy © Cr(R). Therefore,
it remains to show that for each g, Iy N 32, In = (0). Fixa g andlet x € [, N}, In.
Then x € I, and x = Zh;ég xp, for some xp, € I, with h # g. Thus for each r € R, we have

rr = ay(rlg1)z = By(r)lgr = Zﬁg(r)lRa:h,
h#g

and on the other hand,

rr = th r:Zah(rlhq):nh:ZBh(r)leh.

h#g h#g h#g

Hence for all » € R,

0= (Bg(r) = Bu(r)1gzn = Y _ By(r — By ' Br(r))znlr.
h#g h#g
Now let {a;,b; € R|i=1,2,...,m} be an a-partial Galois system for R; that is, for each
g€ G,y m ajog(bily—1) = 0141g or D10 a;fy(bi)1r = 01,8,1r. By what we just derived
above, Zh?ég Bg(bi — B;lﬁh(bi))xth =0 for each i = 1,2,...,m. Therefore,

0="> Byla:) [ D By(bs = By Bu(bi))xnlr
i=1

h#g

=3 8 (il — By Bu(0:))) wnln

i=1 hsg

= Zﬁg (Z a; (bi — ﬁglﬁh(bi))> TrlR

h#g i=1

= By(lr—0)anle = By(lp)lg | D _an | =1lgz =1z,
h#g h#g
where the second last equality holds by (F1) in Section [2| and the last equality holds

because = € I, and I, C R1, by Lemma We conclude that Cr(R*) = @y ly- U

Corollary 3.4. If R is an a-partial Galois extension of R*, then I, = Jylg for each
g €G.

Proof. By Lemma and Theorem Cr(R?) = Beq Jolr = Dyeq 1g- But for each
g € G, Jglg C I, by Lemma 3.2} so Jylr = I,. O
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Corollary 3.5. If R is an a-partial Galois algebra, then R = EBgeGI as C'-modules.

We next show that R is an a-partial Galois algebra if and only if T is a §-Galois
algebra. To do this, we recall some central idempotents of T" as defined in [10]. Denote G by

{B1=1,B2,..., B} Leter = lgand e; = (1r—1g)(1r—B2(1r)) - - - (1r—Bi-1(1r))Bi(1R)
for i = 2,...,n. Then ej,es,...,e, are orthogonal central idempotents of T" such that
S ,e; = lp. Also in [10], the authors introduced a (left and right) 7%-linear and
multiplicative map ¢: T" — T defined by ¢(y) = >, Bi(y)e; for each y € T. It was
shown in [3, Theorem 1.4] that 1) restricted to R® is a ring isomorphism from R® onto T

with the inverse map given by sending y to ylg for each y € T7.
Lemma 3.6. Let e;, i = 1,2,...,n, be as above. Then Z = @;"_, Bi(C)e; and
n
U U BiPreiad 5i(Ce; ¢,
PCCi=1 i
where P runs over all prime ideals of C, is the set of all prime ideals of Z.

Proof. Recall that C = Z1r C Z. Hence C is an ideal of Z and so is each 5;(C). Thus

D, 5i(C)e; is an ideal of Z containing >\ | Bi(1r)e; = Y i j e; = 11, s0 Z = @, Bi(C)e;.
Therefore, for each prime ideal P of C and for each i =1,2,...,n, Bi(P)ei@Zj# Bi(C)e;

is a prime ideal of Z, and conversely every prime ideal of Z is of this form. O

Lemma 3.7. R* C C if and only if TP C Z.

Proof. Suppose that R* C C'. Recall the map v as defined above. Then

= (R C9(C {Zﬁz el|ceC}cZﬂz )ei,

which is exactly Z by the preceding lemma. The other direction is easy: if 7% C Z, then
RC=TP1r C Z1gp=C. O

Proposition 3.8. R is an a-partial Galois algebra if and only if T is a B-Galois algebra.

Proof. Recall that R is an a-partial Galois extension of R® if and only if T is a Ga-
lois extension of 7% with Galois group G. Hence the result follows immediately from
Lemma B.71 O

Corollary 3.9. If R is an a-partial Galois algebra, then 1, and J, are finitely generated

projective modules over C' and Z respectively for each g € G.
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Proof. By the preceding proposition, T is a [-Galois algebra. In particular, T is an
Azumaya Z-algebra. Hence T is a finitely generated projective Z-module. Furthermore,
T = EBgeG Jg as Z-modules by the Kanzaki commutator theorem (see Theorem [2.1)).
Thus each Jy is a finitely generated projective Z-module. Since I, = Jy1g for each g € G
by Corollary @ and C' = Z1g, it follows that each I is a finitely generated projective
C-module. O

Corollary 3.10. If R is an a-partial Galois algebra, then R is a finitely generated pro-

jective C-module.

Proof. Suppose that R is an a-partial Galois algebra. Then by Corollary R=6& secly
as C-modules and by Corollary each I, is a finitely generated projective C-module.

Hence the result follows. O

Remark 3.11. We can derive the previous two results in reverse order and without going
through the process of globalization. Indeed, since R is an a-partial Galois algebra, it
follows that R is separable over R*, which is contained in C'. Hence R is an Azumaya C-
algebra. In particular, R is a finitely generated projective C-module, and hence so is each
I, by the generalized Kanzaki commutator theorem (see Theorem or Corollary

We end this section by showing that when R is an a-partial Galois algebra, the ranks

rankc(/y) and rankz(Jy), g € G, satisfy the following property.
Theorem 3.12. Let R be an a-partial Galois algebra. Then

(i) For each g € G, if rankz(Jy) = 1, then rankc(ly) = 1.

(ii) If rankc(Iy) =1 for all g € G, then rankz(Jy) =1 for all g € G.

Proof. Fix a g € G and suppose that rankz(Jy) = 1. Then (Jy)g = Zg for each prime
ideal @ of Z. Take any prime ideal P of C. By Lemrna Q= 51(]3)61692#1 Bi(C)e;j is
a prime ideal of Z. Since Q1r = P, Z1r = C and furthermore I, = J,1g by Corollary
it follows that (Iy)p = (Jylr)Qix = (Z1R)(Q1,) = Cp- Hence rankc(ly) = 1.

Now suppose that rankc(Iy) = 1 for each g € G. Then (I;)p = Cp for each g € G
and for any prime ideal P of C, and in particular J, # (0) since Jy1p = I, for each
g € G. We firstly show that (J5)g # (0) for each g € G and for each prime ideal
Q of Z. Fix a g € G and a prime ideal Q of Z. We have J, = Z?:r Jgej, and by
Lemma Q = Br(P)ex Dy sy, B:(C)er for some 1 < k < n and some prime ideal P of
C. Noticing that since e ¢ @ and eje, = 0 for all j # k, we have (Jye;)g = (0) for all
J # k. Furthermore, since ey, = B;(1r)ey, we have Jyep, = Jy0k(1R)er = ﬁk(ﬁk_l(Jg)lR)ek.
But 3, '(J,) = Jy for some ¢’ € G by the proof of Lemma 3.2(1) in [25], so Jye, =
Br(Jylr)er = Pr(Iy)er. Thus the localization of Jge, at @Q; that is, the localization
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of Bi(Iy)er at Br(P)ex B;sy, B:(C)er, is isomorphic to (Iy)p = Cp # (0). Therefore,
(Jg)o = 227-1(Jgej)q = (Jgex)q # (0). This shows that rankz,((Jy)q) > 1 for each
g € G and for each prime ideal @) of Z. Because T is a $-Galois algebra by Proposition [3.8
T =@ eq Jg rankps(T) = n and rankz(T') is defined since T is an Azumaya Z-algebra.
Thus we have that

n = rankyps (T') > rankz(T) = rankz, (1) = Z rankz, ((Jg)q) > n
geG

for each prime ideal @ of Z. Consequently, rankz,((Jg)q) = 1 for each g € G and for
each prime ideal @ of Z. Therefore rankz(Jy) =1 for each g € G. O

Corollary 3.13. Let R be an «a-partial Galois algebra. Then R is a central a-partial
Galois algebra if rankc(Iy) = 1 for each g € G.

Proof. Since R is an a-partial Galois algebra, T is a 8-Galois algebra by Proposition [3.8
and thus T' = @ Jg, rankys (') = n and rankz (7)) is defined. Suppose that ranke (1) =
1 for each g € G. Then rankz(Jy) = 1 for each g € G by the preceding theorem. Hence
rankz(T) = . cgrankz(Jy) = n = rankys(T). It follows that Z = T5, and hence
C:ZIR:TﬁlR:RO‘, as desired. ]

4. A structure theorem

In this section, we shall generalize the structure theorem for Galois algebras as described in
Theorem [2.2) to a structure theorem for partial Galois algebras. As before, for each g € G,
let Iy = {x € R|ar = ay(rl;-1)z for all » € R}. We firstly derive several properties of
these I, generalizing those of J, obtained in [16}25]. In particular, each I, determines
uniquely a central idempotent of R, from which a Boolean semigroup is then defined.
By investigating certain minimal elements of this Boolean semigroup and applying the
generalized commutator theorem for partial Galois extensions, we shall obtain a structure

theorem for partial Galois algebras without going through the process of globalization.
Lemma 4.1. Let R be a ring with a partial action o of a group G. Then for any g, h € G,
(1) Igln C Ign:
(i) ag(Inlg-1) = Igpg-11g;
(ili) RIy = I4R is a two sided ideal of R.

Proof. Suppose x € Iy, y € I}, and r € R. First,

agn(rlgn)-1)ry = agn(rly-14-1)1,zy (since Iy C R1y by Lemma [3.2)
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= agn(rlp-14-11p-1)xy (we have applied (F3) in Section
= ag(ah(rlh_1)lg_1)xy

= zap(rl,-1)y = xyr,

so xy € Iyn. Hence Iyl C Iy, Next,

gng-1(rlgn-1g-1)ag(yly-1) = agng-1(rlgp-15-11g-1)og(yly-1)

= ag(apg-1(rlgn-1g-11gp-1))ag(yly-1) = ag(ogg-1(rlgn-1)1g-1)ag(yly-1)
(ang-1( ) (since y € I, C R1p)

= ag(apg-1(rlg-11g)yly-1) = aglan(az-1(rlg)ly-1)yl,-1)

( ( (ylg-1)ag(ag-1(rly)) = ag(ylg-—1)r,

showing that ay(yl,-1) € Igp,-1. Hence ay(fpl,-1) C Iyp,-11,, from which we then also

have a,-1(/,

rr = ay(rlg1)r € RI; and re = rlgz = za,-1(rly) € IyR. O

hg—11g) € Inly—1; hence Igp,-115 C ay(Ipl,-1). Finally, by definition of Iy,

Proposition 4.2. Let R be an a-partial Galois algebra. Then for any g,h € G,
() Loy = IglyIgn = Indp—1Igp;
(ii) Iglg—1 = Ig1ly;

(iii) Iyl -1 is an ideal of C' generated by an idempotent element g, of C.

Proof. The proof is similar to that of [16, Proposition 2]. Firstly, since R is an a-partial
Galois algebra, R is separable over R®, which is contained in C. Hence R is an Azumaya
C-algebra. Thus for each g € G, IjR = c¢4R, where ¢; = I,R N C. Furthermore, by

Corollary that R = @,,cq In, we have IyR = Y, 1,0, and cgR = @B, cqlgh-

Since IyI}, € Iy, by Lemma (i)7 it follows that cyly, = 141}, for any g, h € G, and hence

cg = Igl,—1 by taking h = g !

IyR = RI;, = deG 1,1y, it follows that cyly, = 11y for any g,h € G, and hence by
1

. Similarly, since for each h € G, ¢, R = @geG cplgn and

taking h = g, we obtain c¢;,-1 = I;I,-1. At this point, we have derived parts (i) and (ii).
In particular, for any g € G, ¢4l, = I,C, so cf] = cglgly1 = Iy, C = c4. Since I is a
finitely generated module over C, ¢, is a finitely generated idempotent ideal of C', and it
follows that c4 is generated by an idempotent element of C'. This completes the proof of

part (iii). O
Corollary 4.3. Let R be an a-partial Galois algebra. Then for any g,h € G,
(i) R(IgIh) = R(Ihlg);

(i) RIZ = RI,.
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Proof. Following the notations in the proof of the preceding proposition, we have R(1,1}) =
(RIg)(RIy) = (Reg)(Ren) = (Rep)(Reg) = (RIR)(RIG) = R(Ip1,) and RI; = (RIy)(RIy)
= (Reg)(Rey) = Re; = Rey = Rl O

From now on, let R be an a-partial Galois algebra. By Proposition (iii), for each
g € G, there exists (uniquely surely) some idempotent element s, of C' such that I;l,—1 =
Cpg. Let (B,-) denote the Boolean semigroup, deleting the zero element of R if exists,
generated by those nonzero p, under the multiplication of R. For each A € (B,-), let
Hy ={g € G | A\ug = A}, and for each subset H of G, let Ay = [],cp pn- It is obvious
that for each element A in (B,-), A = [[,c g, #n = Am, and H)y is closed under the inverse

operation since ji; = 41 for each g € G.

Lemma 4.4. For any nonempty subset H of G, we have
(i) R (ITpem In) = R (Ix-1 [1pep In) for any k € H; in particular, RA\g = R ([T,epr In)-
(ii) ag(Agly—1) = Agpg-11y for any g € G.

Proof. By applying Proposition and Corollary we have

R <H Ih> =R <Iglk H Ih> (for any g,k € H)

heH heH

(kak vl Ih> = (ka,il o | Ih> =R (Ikl 11 Ih> ;

heH heH heH

hence, RAy = R (HheH Nh) =R (HheH Ih—lfh) =R (HheH Ih—l) (HheH Ih)
= R ([1eq In)- Now for any g € G,

Rag(/\ngq) = Oég(RAngfl)

= Oy <R (H Ih> lg—1> =R (H Oég(]hlg—l)>
heH heH

=R (H Iypg— 19) (by Lemma [4.1)(ii))

heH
= R)\gHg_l 197

SO ag()\ng_1) = )\gHg—llg. L]

We shall derive a structure theorem for partial Galois algebras via certain minimal

elements of (B, ). To do this, we firstly show that each minimal element has the following

property.
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Proposition 4.5. If X is a minimal element of (B,-), then Hy is a mazimal subset of
G such that [[,ep, In # {0}, Conversely, if H is a mazimal subset of G such that
[1rcm In # {0}, then Ay is a minimal element of (B,-) with Hy, = H.

Proof. Let A be a minimal element of (B,-) and suppose that ¢ € G\ H) such that
(ITnes, In) Ty # {0} Then by Lernma {0} # R (e, ) Lo = B (TTnes, In) Ty
= RAp, jtg = RA\pg. But this means that Apg is an element in (B, ) which is smaller than
A, a contradiction to the minimality of .

Suppose that H is a maximal subset of G such that [],.; In # {0}. In particular,
A # 0 by Lemma [£.4(i). To show that Ay is minimal, assume that ¢ € G\ H such
that Ay # Appg # 0. Then RAy # RAppy # {0}. It follows that R ([],cy In) #
R (HheH Ih) I41,-1 # {0}, providing a contradiction to the maximality of H. We conclude
that Ay is a minimal element of (B,-). Finally, we claim that Hy, = H. It is obvious
that H C H),,. Assume that g € Hy,, \ H. Then Agpy = Ag and ([T,cq In) Iy = {0}.
But then {0} # RA\g = RAupg = R ([Tpen In) (Igl,-1) = {0}, a contradiction. O

In the following proposition, we show that the maximal subset H of GG in the preceding
proposition is in fact a subgroup of GG, and the ideal of R generated by the central idem-
potent Aj is a central H-Galois algebra by applying the generalized commutator theorem

for partial Galois extensions.

Proposition 4.6. Suppose that H is a mazimal subset of G such that [],cpy In # {0}.
Then H is a subgroup of G and RAp is a central Galois algebra with Galois group H
mnduced by .

Proof. To show that H is a subgroup of GG, suppose that g,k € H. Then

R (H Ih> =R (H Ih) LI, =R (H Ih> IgI, 1 I,

heH heH heH
=R (H Ih> Il Igly =R (H Ih> Ik,
heH heH

which forces that gk € H by the the maximality of H. Similarly, R ([[,cyn) =
R ([Theq In) 1,1 by Lemma i), sog leH.

Since H is a subgroup of G and Ay is a nonzero central idempotent of R, we ap-
ply [20, Theorem 4.4] to show that RAy is a Galois extension with Galois group H in-
duced by a. To do so, recall that R := {r € R | ay(rl;-1) = rl, for each g € H}
and N(Ag) = {g € G | Agly = Ag}. We claim that A\g € R*” and H C N(Ap).
For any g € H, it follows from Lemma that ag(Agly,-—1) = Agpg-
RAgly =R ([lhen In) 1o = B (Inen In) Lol = B (Ipen In) Iy = BAu, where Iyl, = I,

11y, = Agl, and
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since I, C R1, by Lemma@ so Aplg = Ap. We conclude that R\ is a Galois extension
with Galois group H induced by « (see |20, Theorem 4.4]). Next, we apply [13, Theorem 1]
to show that the invariant subring of RA\ry under H is exactly its center. Notice that since
R is an a-partial Galois algebra, R is separable over R, and hence so is RAp over R\,
which is contained in both CAg, the center of RA\f, and R*¥ A\ = (R g)?. By Corol-
lary R= @geG I;, so RA\g = @geG Ig g = @pc i InAm, where we have applied the
maximality of H to derive that for each g € G\H, RIg g = R ([1,c g In) I3 = {0}. On the
other hand, for each h € H, let J}?H ={se€ R\y | st =h(t)s for all t € RAy}. Tt is easy
to see that J,;\H = IpAg. Indeed, if z € I, and y € R, then xAgyig = ap(yl,-1)z g =
an(YAgly—1)x g = h(yAg)xAm; conversely, if s € J})L‘H, then s = sAy and for each r € R,
sr=srAg = h(rAg)s = ap(rAgly-1)s = ap(rly-1)Ags = ap(rly-1)s, so s € I,. Hence
Ry = @peyr Jp" and 7T = (IAg)(Iy-13m) = Cuphy = CAy for each h € H.
We conclude from [13, Theorem 1] that RAy is a central Galois algebra with Galois group
H induced by a. O

Corollary 4.7. Suppose that X\ is a minimal element of (B,-). Then H) is a subgroup of
G and R is a central Galois algebra with Galois group Hy induced by a.

Proof. This follows immediately from Propositions and and the fact that Ay, =
A O

We next focus on minimal elements of (B,-) with certain property. For the following

results, we define the length of an element A in (B, -) to be the cardinality of the set H).

Proposition 4.8. Let M = {\1, A2, ..., A} be the set of minimal elements in (B,-) with
mazimum length L. Then ay(M1g-1\{0}) = M1, \ {0} for each g € G.

Proof. Let g € G. Suppose A € M such that A1,-1 # 0. By Lemma (ii), we have
ag()\lg_1) = )‘gHAg_llg' If AgHAg gH,\g_l n (B, '),
then its length is greater than |gH g gHyg—1 1S @ minimal
element in (B,-) with length £; that is A\jy, ;1 € M. We have shown that a,(M1,-1\
{0}) € M1, \ {0}; the other inclusion relation is similar. O

-1y for some k € G is smaller than A

~1| = L, a contradiction. Thus,

Proposition 4.9. Suppose that A1, Ao, ..., A are as in the preceding proposition. Then

iy Ai is an a-invariant element.

Proof. Suppose A, X" € M are distinct such that A1, # 0 % A\'1,, where g € G. Then notice
that A1, # N1, for otherwise, A1, = (A1,)? = AN'1, = 0, a contradiction. Fix a g € G
and let N = {i € {1,2,...,7} | Nilg # 0} and N, = {i € {1,2,...,7} | Ailg—1 # 0}.
Then by the previous argument and Proposition it follows that {\jl, | i € N} =
{ag(Aily-1) | @ € N, } and this set consists of exactly [N, | = |N/| elements. Hence
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ag((Z§:1 Ai)lg—l) = Zig]\g O‘g(/\ilg—l) = ZieN; Ailg = (22:1 Ai)1g; that is, Zgzl Ai 18

a-invariant. O

Corollary 4.10. Let Ao =1 —>""_; X\i. If Ao # 0, then RXo is a partial Galois algebra
with the partial action of G induced by a.

Proof. By the preceding proposition, Ag € R®. Since these A\;, i = 1,2,...,r, are minimal
elements in (B,-), they are mutually orthogonal central idempotents of R. Hence \g =
1 =37, A is also a central idempotent of R. If Ao # 0, then by [20, Theorem 4.4], RX\o
is a partial Galois extension with the partial action of G induced by «. Since (RAg)® =
RY\g C CAg = Z(RX\p), the center of R\y, we conclude that R\ is an a-partial Galois
algebra. O

We are now ready to state and prove the generalized structure theorem for partial

Galois algebras.

Theorem 4.11. Suppose that R is an a-partial Galois algebra. Then there are orthogonal
central idempotents ey, e, ..., en in R and subgroups Hy, Ho, ..., Hy, of G such that each
Rej is a central Galois algebra with Galois group H; and R = @Tzl Rej or R = @;n:o Rej,
where eg = 1 — Z;”:l ej and Rey = Ceq is a commutative partial Galois algebra with the
partial action of G induced by o.

Proof. Following the previous notations and results, we have R = @;_, R\;, where each
RX;, 1 <1 <r,is a central Galois algebra with Galois group H), and R\g, if A9 # 0, is an
a-partial Galois algebra. Hence if Ay = 0, then we are done; if X\g # 0, but I;\g = {0} for
each g # 1 in GG, then the a-partial Galois algebra RA\g = @QGG Igho = Iy Ao = CXp is
commutative, and hence we are done too. Suppose now that I,\g # {0} for some g # 1 in
G. By applying the preceding result to the a-partial Galois algebra R\g, we obtain some
orthogonal central idempotents Ag1, Aoz, - - -, Aor, 0f RAg and subgroups Ho1, Hoz, - - ., Hor,
of G such that each RAgAg; is a central Galois algebra with Galois group Hy;, and if A\gg =
Xo—> L1 Aoi # 0, then RA\gAgp is an a-partial Galois algebra, which is commutative if and
only if I;AoAoo = {0} for each g # 1 in G. Hence R = (@;_; R\:) & (DL, RAoi) BRAo oo
is a direct sum of central Galois algebras possibly with an a-partial Galois algebra. The
idempotents Ag;, 1 < ¢ < rq, are in fact the minimal elements with maximum length in
the Boolean semigroup generated by the nonzero central idempotents of R of the form
tgro, g € G, and Ho; = {g € G | Agipigro = Aoi} for each 1 <4 < ry. Thus these Ag;
and AgAgo are elements of the Boolean algebra generated by ug, g € G, which is finite.
Therefore if I; Ao oo # {0} for some g # 1¢ in G, then we can continue this process but
in finitely many steps, we will stop at a stage where R = @'_, Re; or R = D] Re;

for some orthogonal central idempotents e; such that each Rej;, 1 < j < m, is a central
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Galois algebra with Galois group a subgroup of G and Rep is a commutative a-partial

Galois algebra. m
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