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On Partial Galois Algebras

Xiaolong Jiang, Jung-Miao Kuo* and George Szeto

Abstract. We generalize, in the context of partial group action, the Kanzaki com-

mutator theorem for Galois extensions and the structure theorem for Galois algebras

given by Szeto and Xue.

1. Introduction

The notion of Galois extension for commutative ring extensions was firstly introduced by

Auslander and Goldman [2], and Chase, Harrison and Rosenberg continued the study,

giving characterizations and the fundamental theorem for a commutative Galois algebra

in the celebrated paper [5]. DeMeyer and Kanzaki respectively generalized the notion

of commutative Galois extension to the case of noncommutative ring (see [6, 7, 15, 17]).

Since then more investigation have been done by several authors (see [1, 8, 11, 13, 14,

16, 21, 24]). Particularly, Kanzaki showed the following important commutator theorem

(see [16, Proposition 1]): if R is a Galois extension of RG with Galois group G and C

is the center of R, then the commutator subring of RG in R is a direct sum of certain

C-submodules of R, namely, Jg := {x ∈ R | xr = g(r)x for all r ∈ R}, where g ∈ G. By

investigating further these Jg and applying the Kanzaki commutator theorem, Szeto and

Xue derived a structure theorem for Galois algebras (see [25, Theorem 3.8]), which we will

describe in the next section.

The notion of partial Galois extension was recently introduced by Dokuchaev, Ferrero

and Paques in [10], where the authors developed the partial Galois theory of rings, gen-

eralizing the results on Galois theory of commutative rings given in [5]. More properties

were obtained for partial Galois extensions in [4], using the theory of Galois corings, and

for partial Galois Azumaya extensions in [12,22,23], generalizing the results in [1]. In the

series of papers [18–20], the authors, among other things, characterized (partial) Galois

extensions generated by central idempotents in a partial Galois extension, which we will

apply later in Section 4.

The purpose of the present paper is to generalize, in the context of partial group

action, the Kanzaki commutator theorem for Galois extensions and the structure theorem
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for Galois algebras given by Szeto and Xue. Let R be a ring with a partial action α

of a finite group G and C denote its center. For each g ∈ G, let Ig = {x ∈ R | xr =

αg(r1g−1)x for all r ∈ R}. In Section 3, we generalize the Kanzaki commutator theorem

for Galois extensions by showing that if R is an α-partial Galois extension of Rα, then

the commutator subring of Rα in R is a direct sum of these C-submodules Ig of R (see

Theorem 3.3). In Section 4, we firstly derive several properties of these Ig, associated to

which a Boolean semigroup is then introduced. By investigating certain minimal elements

of this Boolean semigroup and applying the generalized commutator theorem for partial

Galois extensions, we extend the structure theorem for Galois algebras given by Szeto and

Xue to a structure theorem for partial Galois algebras (see Theorem 4.11). It is worth

mentioning that this structure theorem can be applied straightforwardly without going

through the process of the globalization of R as defined in [9]. In the next section, we

recall some notions and results which will be used later.

2. Preliminary

Let R be a ring with 1. Suppose that G is a finite automorphism group of R and let

RG = {r ∈ R | g(r) = r for each g ∈ G}. If there exist elements ai, bi in R, i = 1, 2, . . . ,m

for some integer m, such that
∑m

i=1 aig(bi) = δ1,g1R for each g ∈ G, then R is called a

Galois extension of RG with Galois group G, and the set {ai, bi | i = 1, 2, . . . ,m} is called

a G-Galois system for R. Furthermore, let C denote the center of R; if RG ⊆ C, then the

Galois extension R is called a Galois algebra with Galois group G or simply a G-Galois

algebra, and a central G-Galois algebra when RG = C.

For any ring Y and any non-empty subset X of Y , let CY (X) denote the centralizer

(or commutator subring) of X in Y . Below we recall the Kanzaki commutator theorem

for Galois extensions.

Theorem 2.1. [16, Proposition 1] Suppose R is a Galois extension of RG with Galois

group G. Let Jg = {x ∈ R | xr = g(r)x for all r ∈ R} for each g ∈ G. Then

CR(RG) =
⊕
g∈G

Jg as C-modules.

More properties of Jg, g ∈ G, were derived in [25], followed by a structure theorem for

Galois algebras as stated below.

Theorem 2.2. [25, Theorem 3.8] Suppose R is a Galois algebra with Galois group G.

Then there exist orthogonal central idempotents e1, e2, . . . , em and subgroups H1, H2, . . . ,

Hm of G such that each Rei is a central Galois algebra with Galois group Hi and R =⊕m
i=1Rei or R =

⊕m
i=0Rei, where e0 = 1 −

∑m
i=1 ei and Re0 = Ce0 is a commutative

Galois algebra with Galois group G.
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The main purpose of this paper is to generalize these two results in the context of

partial group action. To do this, we recall the notions of partial group action and partial

Galois extension and some derived properties we shall use later.

Let R be a ring with a partial action α of a finite group G. This means, as defined in [9],

there exist a collection {Rg | g ∈ G} of ideals of R and isomorphisms of (non-necessarily

unital) rings αg : Rg−1 → Rg such that

(i) R1 = R and α1 is the identity automorphism of R;

(ii) αg(Rg−1 ∩Rh) = Rg ∩Rgh for all g, h ∈ G;

(iii) (αg ◦ αh)(r) = αgh(r) for every r ∈ Rh−1 ∩R(gh)−1 and g, h ∈ G.

In this paper, we assume that for each g ∈ G, Rg has an identity 1g which is a central

idempotent of R. Under this assumption, α has a globalization (see [9, Theorem 4.5]).

This means that there exist a ring T and a (global) action β of G on T by automorphisms

of T such that R can be considered as an ideal of T generated by a central idempotent 1R

of T and the following conditions hold:

(i) T =
∑

g∈G βg(R);

(ii) Rg = R ∩ βg(R) for every g ∈ G;

(iii) αg = βg|Rg−1 for every g ∈ G.

We have the following properties (see [10, p. 79]):

(F1) 1g = 1Rβg(1R) for every g ∈ G;

(F2) αg(r1g−1) = βg(r)1R for every r ∈ R and g ∈ G; in particular,

(F3) αg(1h1g−1) = 1gh1g for all g, h ∈ G.

As defined in [10], the subring of the invariant elements of R under α is defined to

be Rα = {r ∈ R | αg(r1g−1) = r1g for all g ∈ G}, and R is called an α-partial Galois

extension of Rα if there exist elements xi, yi in R, i = 1, 2, . . . ,m for some integer m,

such that
∑m

i=1 xiαg(yi1g−1) = δ1,g1R for each g ∈ G; in this case, {xi, yi | i = 1, 2, . . . ,m}
is called an α-partial Galois system for R. Here, if Rα ⊆ C, then we call the α-partial

Galois extension R an α-partial Galois algebra, and a central α-partial Galois algebra

when Rα = C.

For a ring R with a partial action α of a finite group G and its globalization T with

an action β of G, we list some known results we shall apply later without special mention.

(i) (see [3, Theorem 1.4]) Rα = T β1R.
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(ii) (see [22, Lemma 2.1]) CR(Rα) = CT (T β)1R and CR(R) = CT (T )1R.

(iii) (see [10, Theorem 3.3]) R is an α-partial Galois extension of Rα if and only if T is

a Galois extension of T β with Galois group G.

(iv) (see [10, Theorem 4.2]) If R is an α-partial Galois algebra, then it is separable over

Rα.

3. The generalized Kanzaki commutator theorem

Throughout the rest of this paper, let R denote a ring with a partial action α of a finite

group G and T its globalization with an action β of G; let C and Z denote the center of

R and that of T , respectively. For each g ∈ G, let

Jg = {u ∈ T | ut = βg(t)u for all t ∈ T}

and

Ig = {x ∈ R | xr = αg(r1g−1)x for all r ∈ R}.

Then each Jg (Ig resp.) is a submodule of T (R resp.) over Z (C resp.). In this section,

we shall generalize the Kanzaki commutator theorem for Galois extensions to a commu-

tator theorem for partial Galois extensions, and present a relation between rankC(Ig) and

rankZ(Jg) when R is an α-partial Galois algebra.

Lemma 3.1. If R is an α-partial Galois extension of Rα, then CR(Rα) =
⊕

g∈G Jg1R as

C-modules.

Proof. Since R is a α-partial Galois extension of Rα, T is a Galois extension of T β with Ga-

lois group G. Hence CT (T β) =
⊕

g∈G Jg as Z-modules by Theorem 2.1. Since CR(Rα) =

CT (T β)1R and C = Z1R, it follows that CR(Rα) =
⊕

g∈G Jg1R as C-modules.

Lemma 3.2. For each g ∈ G, Jg1R ⊆ Ig ⊆ CR(Rα) ∩R1g.

Proof. Fix a g ∈ G. Let u ∈ Jg. We have u1R ∈ R since R is an ideal of T . For each

r ∈ R, (u1R)r = (ur)1R = (βg(r))u1R = (βg(r)1R)(u1R) = αg(r1g−1)(u1R) (see (F2) in

Section 2). Hence u1R ∈ Ig. Next, let x ∈ Ig. Then x = x1R = αg(1R1g−1)x ∈ R1g;

furthermore, if r ∈ Rα, then we have that xr = αg(r1g−1)x = r1gx = rx1g = rx. Hence

x ∈ CR(Rα) ∩R1g.

We are ready to show the generalized Kanzaki commutator theorem for partial Galois

extensions.



On Partial Galois Algebras 1371

Theorem 3.3. If R is a α-partial Galois extension of Rα, then

CR(Rα) =
⊕
g∈G

Ig as C-modules.

Proof. By Lemmas 3.1 and 3.2, CR(Rα) =
⊕

g∈G Jg1R ⊆
∑

g∈G Ig ⊆ CR(Rα). Therefore,

it remains to show that for each g, Ig ∩
∑

h6=g Ih = (0). Fix a g and let x ∈ Ig ∩
∑

h6=g Ih.

Then x ∈ Ig and x =
∑

h6=g xh for some xh ∈ Ih with h 6= g. Thus for each r ∈ R, we have

xr = αg(r1g−1)x = βg(r)1Rx =
∑
h6=g

βg(r)1Rxh,

and on the other hand,

xr =

∑
h6=g

xh

 r =
∑
h6=g

αh(r1h−1)xh =
∑
h6=g

βh(r)1Rxh.

Hence for all r ∈ R,

0 =
∑
h6=g

(βg(r)− βh(r))1Rxh =
∑
h6=g

βg(r − β−1g βh(r))xh1R.

Now let {ai, bi ∈ R | i = 1, 2, . . . ,m} be an α-partial Galois system for R; that is, for each

g ∈ G,
∑m

i=1 aiαg(bi1g−1) = δ1,g1R or
∑m

i=1 aiβg(bi)1R = δ1,βg1R. By what we just derived

above,
∑

h6=g βg(bi − β−1g βh(bi))xh1R = 0 for each i = 1, 2, . . . ,m. Therefore,

0 =

m∑
i=1

βg(ai)

∑
h6=g

βg(bi − β−1g βh(bi))xh1R


=

m∑
i=1

∑
h6=g

βg
(
ai(bi − β−1g βh(bi))

)
xh1R

=
∑
h6=g

βg

(
m∑
i=1

ai
(
bi − β−1g βh(bi)

))
xh1R

=
∑
h6=g

βg(1R − 0)xh1R = βg(1R)1R

∑
h6=g

xh

 = 1gx = x,

where the second last equality holds by (F1) in Section 2 and the last equality holds

because x ∈ Ig and Ig ⊆ R1g by Lemma 3.2. We conclude that CR(Rα) =
⊕

g∈G Ig.

Corollary 3.4. If R is an α-partial Galois extension of Rα, then Ig = Jg1R for each

g ∈ G.

Proof. By Lemma 3.1 and Theorem 3.3, CR(Rα) =
⊕

g∈G Jg1R =
⊕

g∈G Ig. But for each

g ∈ G, Jg1R ⊆ Ig by Lemma 3.2, so Jg1R = Ig.
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Corollary 3.5. If R is an α-partial Galois algebra, then R =
⊕

g∈G Ig as C-modules.

We next show that R is an α-partial Galois algebra if and only if T is a β-Galois

algebra. To do this, we recall some central idempotents of T as defined in [10]. DenoteG by

{β1 = 1, β2, . . . , βn}. Let e1 = 1R and ei = (1T−1R)(1T−β2(1R)) · · · (1T−βi−1(1R))βi(1R)

for i = 2, . . . , n. Then e1, e2, . . . , en are orthogonal central idempotents of T such that∑n
i=1 ei = 1T . Also in [10], the authors introduced a (left and right) T β-linear and

multiplicative map ψ : T → T defined by ψ(y) =
∑n

i=1 βi(y)ei for each y ∈ T . It was

shown in [3, Theorem 1.4] that ψ restricted to Rα is a ring isomorphism from Rα onto T β

with the inverse map given by sending y to y1R for each y ∈ T β.

Lemma 3.6. Let ei, i = 1, 2, . . . , n, be as above. Then Z =
⊕n

i=1 βi(C)ei and

⋃
P⊆C

n⋃
i=1

βi(P )ei ⊕
∑
j 6=i

βj(C)ej

 ,

where P runs over all prime ideals of C, is the set of all prime ideals of Z.

Proof. Recall that C = Z1R ⊆ Z. Hence C is an ideal of Z and so is each βi(C). Thus⊕
i βi(C)ei is an ideal of Z containing

∑n
i=1 βi(1R)ei =

∑n
i=1 ei = 1T , so Z =

⊕
i βi(C)ei.

Therefore, for each prime ideal P of C and for each i = 1, 2, . . . , n, βi(P )ei⊕
∑

j 6=i βj(C)ej

is a prime ideal of Z, and conversely every prime ideal of Z is of this form.

Lemma 3.7. Rα ⊆ C if and only if T β ⊆ Z.

Proof. Suppose that Rα ⊆ C. Recall the map ψ as defined above. Then

T β = ψ(Rα) ⊆ ψ(C) =

{
n∑
i=1

βi(c)ei | c ∈ C

}
⊆

n∑
i=1

βi(C)ei,

which is exactly Z by the preceding lemma. The other direction is easy: if T β ⊆ Z, then

Rα = T β1R ⊆ Z1R = C.

Proposition 3.8. R is an α-partial Galois algebra if and only if T is a β-Galois algebra.

Proof. Recall that R is an α-partial Galois extension of Rα if and only if T is a Ga-

lois extension of T β with Galois group G. Hence the result follows immediately from

Lemma 3.7.

Corollary 3.9. If R is an α-partial Galois algebra, then Ig and Jg are finitely generated

projective modules over C and Z respectively for each g ∈ G.
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Proof. By the preceding proposition, T is a β-Galois algebra. In particular, T is an

Azumaya Z-algebra. Hence T is a finitely generated projective Z-module. Furthermore,

T =
⊕

g∈G Jg as Z-modules by the Kanzaki commutator theorem (see Theorem 2.1).

Thus each Jg is a finitely generated projective Z-module. Since Ig = Jg1R for each g ∈ G
by Corollary 3.4 and C = Z1R, it follows that each Ig is a finitely generated projective

C-module.

Corollary 3.10. If R is an α-partial Galois algebra, then R is a finitely generated pro-

jective C-module.

Proof. Suppose that R is an α-partial Galois algebra. Then by Corollary 3.5, R =
⊕

g∈G Ig

as C-modules and by Corollary 3.9, each Ig is a finitely generated projective C-module.

Hence the result follows.

Remark 3.11. We can derive the previous two results in reverse order and without going

through the process of globalization. Indeed, since R is an α-partial Galois algebra, it

follows that R is separable over Rα, which is contained in C. Hence R is an Azumaya C-

algebra. In particular, R is a finitely generated projective C-module, and hence so is each

Ig by the generalized Kanzaki commutator theorem (see Theorem 3.3) or Corollary 3.5.

We end this section by showing that when R is an α-partial Galois algebra, the ranks

rankC(Ig) and rankZ(Jg), g ∈ G, satisfy the following property.

Theorem 3.12. Let R be an α-partial Galois algebra. Then

(i) For each g ∈ G, if rankZ(Jg) = 1, then rankC(Ig) = 1.

(ii) If rankC(Ig) = 1 for all g ∈ G, then rankZ(Jg) = 1 for all g ∈ G.

Proof. Fix a g ∈ G and suppose that rankZ(Jg) = 1. Then (Jg)Q ∼= ZQ for each prime

ideal Q of Z. Take any prime ideal P of C. By Lemma 3.6, Q = β1(P )e1⊕
∑

j 6=1 βj(C)ej is

a prime ideal of Z. Since Q1R = P , Z1R = C and furthermore Ig = Jg1R by Corollary 3.4,

it follows that (Ig)P = (Jg1R)Q1R
∼= (Z1R)(Q1R) = CP . Hence rankC(Ig) = 1.

Now suppose that rankC(Ig) = 1 for each g ∈ G. Then (Ig)P ∼= CP for each g ∈ G
and for any prime ideal P of C, and in particular Jg 6= (0) since Jg1R = Ig for each

g ∈ G. We firstly show that (Jg)Q 6= (0) for each g ∈ G and for each prime ideal

Q of Z. Fix a g ∈ G and a prime ideal Q of Z. We have Jg =
∑n

j=1 Jgej , and by

Lemma 3.6, Q = βk(P )ek
⊕

t6=k βt(C)et for some 1 ≤ k ≤ n and some prime ideal P of

C. Noticing that since ek /∈ Q and ejek = 0 for all j 6= k, we have (Jgej)Q = (0) for all

j 6= k. Furthermore, since ek = βk(1R)ek, we have Jgek = Jgβk(1R)ek = βk(β
−1
k (Jg)1R)ek.

But β−1k (Jg) = Jg′ for some g′ ∈ G by the proof of Lemma 3.2(1) in [25], so Jgek =

βk(Jg′1R)ek = βk(Ig′)ek. Thus the localization of Jgek at Q; that is, the localization
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of βk(Ig′)ek at βk(P )ek
⊕

t6=k βt(C)et, is isomorphic to (Ig′)P ∼= CP 6= (0). Therefore,

(Jg)Q =
∑n

j=1(Jgej)Q = (Jgek)Q 6= (0). This shows that rankZQ((Jg)Q) ≥ 1 for each

g ∈ G and for each prime ideal Q of Z. Because T is a β-Galois algebra by Proposition 3.8,

T =
⊕

g∈G Jg, rankTβ (T ) = n and rankZ(T ) is defined since T is an Azumaya Z-algebra.

Thus we have that

n = rankTβ (T ) ≥ rankZ(T ) = rankZQ(TQ) =
∑
g∈G

rankZQ((Jg)Q) ≥ n

for each prime ideal Q of Z. Consequently, rankZQ((Jg)Q) = 1 for each g ∈ G and for

each prime ideal Q of Z. Therefore rankZ(Jg) = 1 for each g ∈ G.

Corollary 3.13. Let R be an α-partial Galois algebra. Then R is a central α-partial

Galois algebra if rankC(Ig) = 1 for each g ∈ G.

Proof. Since R is an α-partial Galois algebra, T is a β-Galois algebra by Proposition 3.8,

and thus T =
⊕

g∈G Jg, rankTβ (T ) = n and rankZ(T ) is defined. Suppose that rankC(Ig) =

1 for each g ∈ G. Then rankZ(Jg) = 1 for each g ∈ G by the preceding theorem. Hence

rankZ(T ) =
∑

g∈G rankZ(Jg) = n = rankTβ (T ). It follows that Z = T β, and hence

C = Z1R = T β1R = Rα, as desired.

4. A structure theorem

In this section, we shall generalize the structure theorem for Galois algebras as described in

Theorem 2.2 to a structure theorem for partial Galois algebras. As before, for each g ∈ G,

let Ig = {x ∈ R | xr = αg(r1g−1)x for all r ∈ R}. We firstly derive several properties of

these Ig, generalizing those of Jg obtained in [16, 25]. In particular, each Ig determines

uniquely a central idempotent of R, from which a Boolean semigroup is then defined.

By investigating certain minimal elements of this Boolean semigroup and applying the

generalized commutator theorem for partial Galois extensions, we shall obtain a structure

theorem for partial Galois algebras without going through the process of globalization.

Lemma 4.1. Let R be a ring with a partial action α of a group G. Then for any g, h ∈ G,

(i) IgIh ⊆ Igh;

(ii) αg(Ih1g−1) = Ighg−11g;

(iii) RIg = IgR is a two sided ideal of R.

Proof. Suppose x ∈ Ig, y ∈ Ih and r ∈ R. First,

αgh(r1(gh)−1)xy = αgh(r1h−1g−1)1gxy (since Ig ⊆ R1g by Lemma 3.2)
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= αgh(r1h−1g−11h−1)xy (we have applied (F3) in Section 2)

= αg(αh(r1h−1)1g−1)xy

= xαh(r1h−1)y = xyr,

so xy ∈ Igh. Hence IgIh ⊆ Igh. Next,

αghg−1(r1gh−1g−1)αg(y1g−1) = αghg−1(r1gh−1g−11gh−1)αg(y1g−1)

= αg(αhg−1(r1gh−1g−11gh−1))αg(y1g−1) = αg(αhg−1(r1gh−1)1g−1)αg(y1g−1)

= αg(αhg−1(r1gh−1)y1h1g−1) (since y ∈ Ih ⊆ R1h)

= αg(αhg−1(r1gh−11g)y1g−1) = αg(αh(αg−1(r1g)1h−1)y1g−1)

= αg(yαg−1(r1g)1g−1) = αg(y1g−1)αg(αg−1(r1g)) = αg(y1g−1)r,

showing that αg(y1g−1) ∈ Ighg−1 . Hence αg(Ih1g−1) ⊆ Ighg−11g, from which we then also

have αg−1(Ighg−11g) ⊆ Ih1g−1 ; hence Ighg−11g ⊆ αg(Ih1g−1). Finally, by definition of Ig,

xr = αg(r1g−1)x ∈ RIg and rx = r1gx = xαg−1(r1g) ∈ IgR.

Proposition 4.2. Let R be an α-partial Galois algebra. Then for any g, h ∈ G,

(i) IgIh = IgIg−1Igh = IhIh−1Igh;

(ii) IgIg−1 = Ig−1Ig;

(iii) IgIg−1 is an ideal of C generated by an idempotent element µg of C.

Proof. The proof is similar to that of [16, Proposition 2]. Firstly, since R is an α-partial

Galois algebra, R is separable over Rα, which is contained in C. Hence R is an Azumaya

C-algebra. Thus for each g ∈ G, IgR = cgR, where cg = IgR ∩ C. Furthermore, by

Corollary 3.5 that R =
⊕

h∈G Ih, we have IgR =
∑

h∈G IgIh and cgR =
⊕

h∈G cgIgh.

Since IgIh ⊆ Igh by Lemma 4.1(i), it follows that cgIgh = IgIh for any g, h ∈ G, and hence

cg = IgIg−1 by taking h = g−1. Similarly, since for each h ∈ G, chR =
⊕

g∈G chIgh and

IhR = RIh =
∑

g∈G IgIh, it follows that chIgh = IgIh for any g, h ∈ G, and hence by

taking h = g−1, we obtain cg−1 = IgIg−1 . At this point, we have derived parts (i) and (ii).

In particular, for any g ∈ G, cgIg = IgC, so c2g = cgIgIg−1 = IgIg−1C = cg. Since Ig is a

finitely generated module over C, cg is a finitely generated idempotent ideal of C, and it

follows that cg is generated by an idempotent element of C. This completes the proof of

part (iii).

Corollary 4.3. Let R be an α-partial Galois algebra. Then for any g, h ∈ G,

(i) R(IgIh) = R(IhIg);

(ii) RI2g = RIg.
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Proof. Following the notations in the proof of the preceding proposition, we haveR(IgIh) =

(RIg)(RIh) = (Rcg)(Rch) = (Rch)(Rcg) = (RIh)(RIg) = R(IhIg) and RI2g = (RIg)(RIg)

= (Rcg)(Rcg) = Rc2g = Rcg = RIg.

From now on, let R be an α-partial Galois algebra. By Proposition 4.2(iii), for each

g ∈ G, there exists (uniquely surely) some idempotent element µg of C such that IgIg−1 =

Cµg. Let (B, ·) denote the Boolean semigroup, deleting the zero element of R if exists,

generated by those nonzero µg under the multiplication of R. For each λ ∈ (B, ·), let

Hλ = {g ∈ G | λµg = λ}, and for each subset H of G, let λH =
∏
h∈H µh. It is obvious

that for each element λ in (B, ·), λ =
∏
h∈Hλ µh = λHλ and Hλ is closed under the inverse

operation since µg = µg−1 for each g ∈ G.

Lemma 4.4. For any nonempty subset H of G, we have

(i) R
(∏

h∈H Ih
)

= R
(
Ik−1

∏
h∈H Ih

)
for any k ∈ H; in particular, RλH = R

(∏
h∈H Ih

)
.

(ii) αg(λH1g−1) = λgHg−11g for any g ∈ G.

Proof. By applying Proposition 4.2 and Corollary 4.3, we have

R

(∏
h∈H

Ih

)
= R

(
IgIk

∏
h∈H

Ih

)
(for any g, k ∈ H)

= R

(
IkIk−1Igk

∏
h∈H

Ih

)
= R

(
IkI

2
k−1Igk

∏
h∈H

Ih

)
= R

(
Ik−1

∏
h∈H

Ih

)
;

hence, RλH = R
(∏

h∈H µh
)

= R
(∏

h∈H Ih−1Ih
)

= R
(∏

h∈H Ih−1

) (∏
h∈H Ih

)
= R

(∏
h∈H Ih

)
. Now for any g ∈ G,

Rαg(λH1g−1) = αg(RλH1g−1)

= αg

(
R

(∏
h∈H

Ih

)
1g−1

)
= R

(∏
h∈H

αg(Ih1g−1)

)

= R

(∏
h∈H

Ighg−11g

)
(by Lemma 4.1(ii))

= RλgHg−11g,

so αg(λH1g−1) = λgHg−11g.

We shall derive a structure theorem for partial Galois algebras via certain minimal

elements of (B, ·). To do this, we firstly show that each minimal element has the following

property.



On Partial Galois Algebras 1377

Proposition 4.5. If λ is a minimal element of (B, ·), then Hλ is a maximal subset of

G such that
∏
h∈Hλ Ih 6= {0}. Conversely, if H is a maximal subset of G such that∏

h∈H Ih 6= {0}, then λH is a minimal element of (B, ·) with HλH = H.

Proof. Let λ be a minimal element of (B, ·) and suppose that g ∈ G \ Hλ such that(∏
h∈Hλ Ih

)
Ig 6= {0}. Then by Lemma 4.4, {0} 6= R

(∏
h∈Hλ Ih

)
Ig = R

(∏
h∈Hλ Ih

)
IgIg−1

= RλHλµg = Rλµg. But this means that λµg is an element in (B, ·) which is smaller than

λ, a contradiction to the minimality of λ.

Suppose that H is a maximal subset of G such that
∏
h∈H Ih 6= {0}. In particular,

λH 6= 0 by Lemma 4.4(i). To show that λH is minimal, assume that g ∈ G \ H such

that λH 6= λHµg 6= 0. Then RλH 6= RλHµg 6= {0}. It follows that R
(∏

h∈H Ih
)
6=

R
(∏

h∈H Ih
)
IgIg−1 6= {0}, providing a contradiction to the maximality of H. We conclude

that λH is a minimal element of (B, ·). Finally, we claim that HλH = H. It is obvious

that H ⊆ HλH . Assume that g ∈ HλH \H. Then λHµg = λH and
(∏

h∈H Ih
)
Ig = {0}.

But then {0} 6= RλH = RλHµg = R
(∏

h∈H Ih
)

(IgIg−1) = {0}, a contradiction.

In the following proposition, we show that the maximal subset H of G in the preceding

proposition is in fact a subgroup of G, and the ideal of R generated by the central idem-

potent λH is a central H-Galois algebra by applying the generalized commutator theorem

for partial Galois extensions.

Proposition 4.6. Suppose that H is a maximal subset of G such that
∏
h∈H Ih 6= {0}.

Then H is a subgroup of G and RλH is a central Galois algebra with Galois group H

induced by α.

Proof. To show that H is a subgroup of G, suppose that g, k ∈ H. Then

R

(∏
h∈H

Ih

)
= R

(∏
h∈H

Ih

)
IgIk = R

(∏
h∈H

Ih

)
IgIg−1Igk

= R

(∏
h∈H

Ih

)
IgIg−1IgkIgk = R

(∏
h∈H

Ih

)
Igk,

which forces that gk ∈ H by the the maximality of H. Similarly, R
(∏

h∈H Ih
)

=

R
(∏

h∈H Ih
)
Ig−1 by Lemma 4.4(i), so g−1 ∈ H.

Since H is a subgroup of G and λH is a nonzero central idempotent of R, we ap-

ply [20, Theorem 4.4] to show that RλH is a Galois extension with Galois group H in-

duced by α. To do so, recall that RαH := {r ∈ R | αg(r1g−1) = r1g for each g ∈ H}
and N(λH) := {g ∈ G | λH1g = λH}. We claim that λH ∈ RαH and H ⊆ N(λH).

For any g ∈ H, it follows from Lemma 4.4 that αg(λH1g−1) = λgHg−11g = λH1g and

RλH1g = R
(∏

h∈H Ih
)

1g = R
(∏

h∈H Ih
)
Ig1g = R

(∏
h∈H Ih

)
Ig = RλH , where Ig1g = Ig
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since Ig ⊆ R1g by Lemma 3.2, so λH1g = λH . We conclude that RλH is a Galois extension

with Galois group H induced by α (see [20, Theorem 4.4]). Next, we apply [13, Theorem 1]

to show that the invariant subring of RλH under H is exactly its center. Notice that since

R is an α-partial Galois algebra, R is separable over Rα, and hence so is RλH over RαλH ,

which is contained in both CλH , the center of RλH , and RαHλH = (RλH)H . By Corol-

lary 3.5, R =
⊕

g∈G Ig, so RλH =
⊕

g∈G IgλH =
⊕

h∈H IhλH , where we have applied the

maximality of H to derive that for each g ∈ G\H, RIgλH = R
(∏

h∈H Ih
)
Ig = {0}. On the

other hand, for each h ∈ H, let JλHh = {s ∈ RλH | st = h(t)s for all t ∈ RλH}. It is easy

to see that JλHh = IhλH . Indeed, if x ∈ Ih and y ∈ R, then xλHyλH = αh(y1h−1)xλH =

αh(yλH1h−1)xλH = h(yλH)xλH ; conversely, if s ∈ JλHh , then s = sλH and for each r ∈ R,

sr = srλH = h(rλH)s = αh(rλH1h−1)s = αh(r1h−1)λHs = αh(r1h−1)s, so s ∈ Ih. Hence

RλH =
⊕

h∈H J
λH
h and JλHh JλH

h−1 = (IhλH)(Ih−1λH) = CµhλH = CλH for each h ∈ H.

We conclude from [13, Theorem 1] that RλH is a central Galois algebra with Galois group

H induced by α.

Corollary 4.7. Suppose that λ is a minimal element of (B, ·). Then Hλ is a subgroup of

G and Rλ is a central Galois algebra with Galois group Hλ induced by α.

Proof. This follows immediately from Propositions 4.5 and 4.6 and the fact that λHλ =

λ.

We next focus on minimal elements of (B, ·) with certain property. For the following

results, we define the length of an element λ in (B, ·) to be the cardinality of the set Hλ.

Proposition 4.8. Let M = {λ1, λ2, . . . , λr} be the set of minimal elements in (B, ·) with

maximum length L. Then αg(M1g−1 \ {0}) =M1g \ {0} for each g ∈ G.

Proof. Let g ∈ G. Suppose λ ∈ M such that λ1g−1 6= 0. By Lemma 4.4(ii), we have

αg(λ1g−1) = λgHλg−11g. If λgHλg−1µk for some k ∈ G is smaller than λgHλg−1 in (B, ·),
then its length is greater than |gHλg

−1| = L, a contradiction. Thus, λgHλg−1 is a minimal

element in (B, ·) with length L; that is λgHλg−1 ∈ M. We have shown that αg(M1g−1 \
{0}) ⊆M1g \ {0}; the other inclusion relation is similar.

Proposition 4.9. Suppose that λ1, λ2, . . . , λr are as in the preceding proposition. Then∑r
i=1 λi is an α-invariant element.

Proof. Suppose λ, λ′ ∈M are distinct such that λ1g 6= 0 6= λ′1g, where g ∈ G. Then notice

that λ1g 6= λ′1g, for otherwise, λ1g = (λ1g)
2 = λλ′1g = 0, a contradiction. Fix a g ∈ G

and let N+
g = {i ∈ {1, 2, . . . , r} | λi1g 6= 0} and N−g = {i ∈ {1, 2, . . . , r} | λi1g−1 6= 0}.

Then by the previous argument and Proposition 4.8, it follows that {λi1g | i ∈ N+
g } =

{αg(λi1g−1) | i ∈ N−g } and this set consists of exactly |N−g | = |N+
g | elements. Hence
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αg((
∑r

i=1 λi)1g−1) =
∑

i∈N−g αg(λi1g−1) =
∑

i∈N+
g
λi1g = (

∑r
i=1 λi)1g; that is,

∑r
i=1 λi is

α-invariant.

Corollary 4.10. Let λ0 = 1 −
∑r

i=1 λi. If λ0 6= 0, then Rλ0 is a partial Galois algebra

with the partial action of G induced by α.

Proof. By the preceding proposition, λ0 ∈ Rα. Since these λi, i = 1, 2, . . . , r, are minimal

elements in (B, ·), they are mutually orthogonal central idempotents of R. Hence λ0 =

1−
∑r

i=1 λi is also a central idempotent of R. If λ0 6= 0, then by [20, Theorem 4.4], Rλ0

is a partial Galois extension with the partial action of G induced by α. Since (Rλ0)
α =

Rαλ0 ⊆ Cλ0 = Z(Rλ0), the center of Rλ0, we conclude that Rλ0 is an α-partial Galois

algebra.

We are now ready to state and prove the generalized structure theorem for partial

Galois algebras.

Theorem 4.11. Suppose that R is an α-partial Galois algebra. Then there are orthogonal

central idempotents e1, e2, . . . , em in R and subgroups H1, H2, . . . ,Hm of G such that each

Rej is a central Galois algebra with Galois group Hj and R =
⊕m

j=1Rej or R =
⊕m

j=0Rej,

where e0 = 1 −
∑m

j=1 ej and Re0 = Ce0 is a commutative partial Galois algebra with the

partial action of G induced by α.

Proof. Following the previous notations and results, we have R =
⊕r

i=0Rλi, where each

Rλi, 1 ≤ i ≤ r, is a central Galois algebra with Galois group Hλi and Rλ0, if λ0 6= 0, is an

α-partial Galois algebra. Hence if λ0 = 0, then we are done; if λ0 6= 0, but Igλ0 = {0} for

each g 6= 1G in G, then the α-partial Galois algebra Rλ0 =
⊕

g∈G Igλ0 = I1Gλ0 = Cλ0 is

commutative, and hence we are done too. Suppose now that Igλ0 6= {0} for some g 6= 1G in

G. By applying the preceding result to the α-partial Galois algebra Rλ0, we obtain some

orthogonal central idempotents λ01, λ02, . . . , λ0r1 of Rλ0 and subgroups H01, H02, . . . ,H0r1

of G such that each Rλ0λ0i is a central Galois algebra with Galois group H0i, and if λ00 =

λ0−
∑r1

i=1 λ0i 6= 0, then Rλ0λ00 is an α-partial Galois algebra, which is commutative if and

only if Igλ0λ00 = {0} for each g 6= 1G in G. Hence R = (
⊕r

i=1Rλi)⊕(
⊕r1

i=1Rλ0i)⊕Rλ0λ00
is a direct sum of central Galois algebras possibly with an α-partial Galois algebra. The

idempotents λ0i, 1 ≤ i ≤ r1, are in fact the minimal elements with maximum length in

the Boolean semigroup generated by the nonzero central idempotents of R of the form

µgλ0, g ∈ G, and H0i = {g ∈ G | λ0iµgλ0 = λ0i} for each 1 ≤ i ≤ r1. Thus these λ0i

and λ0λ00 are elements of the Boolean algebra generated by µg, g ∈ G, which is finite.

Therefore if Igλ0λ00 6= {0} for some g 6= 1G in G, then we can continue this process but

in finitely many steps, we will stop at a stage where R =
⊕m

j=1Rej or R =
⊕m

j=0Rej

for some orthogonal central idempotents ej such that each Rej , 1 ≤ j ≤ m, is a central
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Galois algebra with Galois group a subgroup of G and Re0 is a commutative α-partial

Galois algebra.
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