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Some hydromechanical systems are investigated by applying the dual integral equation
method. In developing this method we suggest from elementary appropriate solutions
of Laplace’s equation, in the domain under consideration, the introduction of a poten-
tial function which provides useful combinations in cylindrical and spherical coordinates
systems. Since the mixed boundary conditions and the form of the potential function
are quite general, we obtain integral equations with mth-order Hankel kernels. We then
discuss a kind of approximate practicable solutions. We note also that the method has
important applications in situations which arise in the determination of the temperature
distribution in steady-state heat-conduction problems.

1. Introduction

In many circumstances the determination of the impulsive response of a fluid is of par-
ticular interest, that is, the determination of the jump of the velocity field, due to an
impulsive pressure distribution acting on a part of the boundary surface of the fluid, or
due to an impact excitation of some part of its rigid boundary. Since the acceleration of
the boundaries and of the fluid particles takes on very large values over a short duration,
it is natural to study these problems by means of the impulsive form of the equations
of motion (see [1, page 471] or [8, page 91]), derived by integrating the usual equations
over small time interval during which the impulsive forces are exerted. In many cases the
effect of the compressibility and the viscous resistance on the impulsive response of the
fluid can be neglected (see [3, page 272], [7, page 34], and [8, page 92]). Thus, the model
of an ideal and incompressible liquid may be used for the study of the impulsive response
of a fluid, regardless of the specific nature of the latter. This is not true as regards the
evolution of the system after the initial impulsive excitation, where compressibility and
viscosity may seriously affect the fluid motion.

In the present work, we will consider some impulsive problems for the hydromechani-
cal system consisting of a fluid layer horizontally extending at infinity and a sphere totally
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submerged in the fluid. These problems are

(i) the impulsive response of the fluid-sphere system due to an underground explo-
sion beneath the submerged sphere;

(ii) the impulsive response of the fluid due to impulsive expansion of the sphere;
(iii) the impulsive response of the fluid-sphere system due to an impulsive pressure

acting on the free surface of the fluid layer.

It is also noted that steady-state heat-conduction and electrostatic interpretations of the
solved boundary value problems are plausible.

2. Mathematical formulation of the problems

A Cartesian coordinate system Oxyz is used with the Oxy plane on the bottom of the
fluid layer and the Oz-axis directed vertically upwards. A sphere of radius R > 0 centered
at the point (0,0,h1), h1 > R, is totally submerged in the fluid layer, the quiescent free
surface which is represented by the plane z = h1 +h2, h2 > R.

Let S be the fluid domain, that is, the layer between the two planes z = 0 and z = h1 +h2

except the spherical cavity

SC =
{

(x, y,z) : x2 + y2 + (z−h)2 ≤ R2}. (2.1)

The plane bottom z = 0 is divided into two parts by means of a circle of radius 1, centered
at the origin 0. The total boundary ∂S of the fluid domain S consists of the following four
parts:

∂S1 =
{

(x, y,z) : x2 + y2 < 1, z = 0
}

,

∂S2 =
{

(x, y,z) : x2 + y2 > 1, z = 0
}

,

∂S3 =
{

(x, y,z) : x2 + y2 +
(
z−h1

)2 = R2},

∂S4 =
{

(x, y,z) :−∞ < x, y <∞, z = h1 +h2
}

,

(2.2)

and the infinite “boundary” ∂S∞ is defined as

∂S∞ =
{

(x, y,z) :
(
x2 + y2)1/2 −→∞, 0 < z < h1 +h2

}
. (2.3)

The plane bottom of the fluid layer is denoted by ∂S1,2 = ∂S1∪ ∂S2.
We introduce cylindrical coordinates (ρ,φ,z) whose z-direction and origin coincide

with the z-direction and the origin of the Cartesian coordinates, and spherical polar co-
ordinates (r,θ,φ) with their origin at the center of the spherical cavity.

We will now state some “mixed” boundary value problems to distinguish this type of
problems from problems of Dirichlet and Neumann type.

Problem (P1). Find the impulsive response of the fluid-sphere hydromechanical system
due to an underground explosion of a point charge located beneath the submerged
sphere, in the soil, at some point (0,0,−h), h > 0. The sphere is assumed to be rigid
and freely moving under the action of the impulsive hydromechanic pressure. In this
case the action of the underground explosion on the bottom ∂S1,2 can be modeled as an
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axisymmetric impulsive pressure p̄ = f1(ρ) (an overbar denotes the impulse of the cor-
responding quantity defined as p̄ = ∫ τ0 pdt, where [0,τ] is the time interval during which
the impulsive loads are applied) acting on the fluid through some disk ∂S1(b)= {(x, y,z) :
x2 + y2 < b2, z = 0}; the remaining part of the bottom being at rest. The radius b and the
impulse f1(ρ) can be related to the depth h and the energy emitted from the explosion by
the aid of empirical or semi-empirical formulae [7, page 335].

Using the model of an ideal and incompressible liquid, the impulsive response of the
system is described by means of a velocity potential u(x, y,z) which is harmonic in S and
satisfies the boundary conditions

u=− f1(ρ)
d

on ∂S1, (2.4)

∂u

∂η
= 0 on ∂S2, (2.5)

∂u

∂η
=U cosθ on ∂S3, (2.6)

u= 0 on ∂S4, (2.7)

u= 0 on ∂S∞, (2.8)

mU =−d
∫
∂S3

ucosθds, (2.9)

where d is the density of the fluid, U is the vertical velocity that will be gotten by the
sphere just after the impulsive excitation, and m is the mass of the rigid sphere. If other
(i.e., of nonhydrodynamic origin) vertical impulsive forces act simultaneously on the
sphere, their impulse must be added to the right-hand side of (2.9). Since u as well as
U are unknown, it is convenient to divide u into two parts:

u= u1 +Uu2, (2.10)

where u1 satisfies (2.4), (2.5), (2.7), and (2.8) together with ∂u1/∂η = 0 on ∂S3, while u2

satisfies (2.5), (2.7), (2.8), and u2 = 0 on ∂S1, ∂u2/∂η = cosθ on ∂S3. Thus u1 and u2 are
now independent of U and (2.9) is written in the form

(
m+mI

)
U =−d

∫
∂S3

u1 cosθds, (2.11)

where

mI = d
∫
∂S3

u2 cosθds, (2.12)

from which U is obtained immediately by the determination of the potentials u1 and u2.
The quantity mI is an impulsive added mass of the rigid sphere.

Problem (P2). Find the impulsive response of the fluid S due to an impulsive expansion
of the sphere. The impulsive response of the fluid is described by means of a velocity
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potential u(x, y,z) which is harmonic in S and satisfies the boundary conditions

∂u

∂η
= 0 on ∂S1,2 = ∂S2

(
∂S1 =∅

)
,

∂u

∂η
=Uη on ∂S3,

u= 0 on ∂S4,

u= 0 on ∂S∞,

(2.13)

where Uη is the radial velocity of the expanded sphere. This classical problem is of partic-
ular interest in the theory of underwater explosions and has been treated in the past by
the method of images.

The mathematical model corresponding to problems (P1) and (P2) can be readily
adapted to the following mixed boundary value problem.

Problem (P). Suppose that the potential function u(x, y,z) must satisfy Laplace’s equa-
tion in the region S. Find u under the boundary conditions

u= f (1)(ρ,φ), ρ < 1 on ∂S1, (2.14)

∂u

∂η
= f (2)(ρ,φ), ρ > 1 on ∂S2, (2.15)

∂u

∂η
= f (3)(θ,φ) on ∂S3, (2.16)

u= f (4)(ρ,φ) on ∂S4, (2.17)

u−→ 0, as
(
ρ2 + z2)1/2 −→∞. (2.18)

The functions f (m),m= 1,2,4, are considered in cylindrical coordinates while the bound-
ary function f (3) is considered in spherical coordinates. We make the assumption that
f (m) (m= 1, . . . ,4) are continuous functions of both variables in the appropriate regions
∂Sm (m= 1, . . . ,4) and that

f (m)(ρ,φ)=O(ρ−2−ε) as ρ −→∞ uniformly with respect to φ, m= 2,4, ε > 0. (2.19)

In the following we will consider the truncated problem, that is, we suppose that

f (m)(xm,φ
)= N∑

k=0

f (m)
k

(
xm
)
eikφ, xm = ρ, m= 1,2,4; x3 = θ. (2.20)

In fact, it can be shown that the functions f (m) can be approximated uniformly, with
respect to ρ (or θ for m = 3) and φ, as functions of φ by trigonometric polynomials in
the appropriate regions (Weierstrass approximation theorem). By Harnack’s convergence
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theorem we can also write

uN (ρ,z,φ)=
N∑
m=0

um(ρ,z)eimφ, (2.21)

where limN→∞uN = u (uniformly), and introduce a practicable solution.

3. Reduction of problem (P) to a system of dual integral equations

We consider a potential solution of problem (P) of the form

u(ρ,z,φ)=
N∑
m=0

um(ρ,z)eimφ, (3.1)

in the cavity 0≤ z ≤ h1 +h2, where

um(ρ,z)=
∫∞

0

[
α(ξ)sinh(ξz) +β(ξ)cosh(ξz)

]
Jm(ξρ)dξ

+
∞∑
k=0

d(1)
k


 R√

ρ2 +
(
z−h1

)2



k+m+1

Pmk+m


 z−h1√

ρ2 +
(
z−h1

)2


 .

(3.2)

In fact, the functions um are elementary solutions of Laplace’s equation in the domain S;
also, Pmn is an associated Legendre polynomial and Jm(x) is a Bessel function of the first
kind. In order to find the solution u(ρ,z,φ) we have to compute the unknowns α(ξ), β(ξ),

and d(1)
k , which must be chosen in such a way that the functions um satisfy certain bound-

ary conditions on S. At this stage, we make use of the definition of Hankel’s transform
[9], to transform formula (3.2) in the form

um(ρ,z)=Hm
(
ξ−1[α(ξ)sinh(ξz) +β(ξ)cosh(ξz)

]
;ρ
)

+
∞∑
k=0

d(1)
k


 R√

ρ2 +
(
z−h1

)2



k+m+1

Pmk+m


 z−h1√

ρ2 +
(
z−h1

)2


 ,

(3.3)

where Hm is Hankel’s transform of order m. We show (see Appendix A) that the series
and integral in (3.3) are absolutely and uniformly convergent, and that our subsequent
operations with them are justified.

Using (3.1) and (3.2) in condition (2.16) and transforming to spherical coordinates

with origin at the center of the sphere, we obtain a relation between α(ξ), β(ξ), and d(1)
k :

− ∂

∂r

(∫∞
0

[
α(ξ)sinhξ

(
h1 + r cosθ

)
+β(ξ)coshξ

(
h1 + r cosθ

)
Jm(ξr sinθ)dξ

])∣∣∣∣
r=R

+
∞∑
k=0

(k+m+ 1)
R

d(1)
k Pmk+m(cosθ)= f (3)

m (θ), 0≤ θ ≤ π, m= 0,1, . . . ,N.
(3.4)
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It is known (see [12]) that Bessel functions can be expressed through Gegenbauer poly-
nomials:

ezcosθJν−1/2(z sinθ)= Γ(ν)
Γ(1/2)

(2sinθ)ν−1/2
∞∑
n=0

zν+n−1/2

Γ(2ν +n)
Cν
n(cosθ), 0≤ θ ≤ π, (3.5)

where Cν
n(x) represents the Gegenbauer polynomials. Now employing the relation be-

tween Gegenbauer polynomials and Legendre polynomials, we obtain the desired expan-
sion of cylindrical solutions of problem (P) in terms of spherical solutions:

e±ξzJm(ξρ)= (−1)m
∞∑
k=0

(±1)k(ξr)m+k

(2m+ k)!
Pmm+k(cosθ), 0≤ θ ≤ π, (3.6)

where z = r cosθ, 0 < θ < π; see [4].
It follows from (3.6), the orthogonality of associated Legendre polynomials, and (3.4)

that coefficients d(1)
k satisfy

d(1)
k − (−1)m(m+ k)Rm+k

(m+ k+ 1)(2m+ k)!

∫∞
0

[
α(ξ)sinhk

(
ξh1

)
+β(ξ)coshk

(
ξh1

)]
ξm+kdξ

= R

(m+ k+ 1)

√
(k+m+ 1/2)k!

(k+ 2m)!
f (3)
mk , k = 0,1, . . . , m= 0,1, . . . ,N ,

(3.7)

where coshk(x)= (ex + (−1)ke−x)/2, sinhk(x)= (ex − (−1)ke−x)/2, and f (3)
mk are the coeffi-

cients in the expansion of f (3)
m in a series of normalized associated Legendre polynomials.

Using now the well-known relation (see [2]) between Legendre polynomials and Bessel
functions

Pmn
(
z/
√
ρ2 + z2

)
(√
ρ2 + z2

)n+1 = (−1)m

(n−m)!

∫∞
0
e−ξzξnJm(ξρ)dξ, z > 0, (3.8)

and taking also into account the boundary conditions (2.14), (2.15), and (2.17), we obtain

the following relations between the unknowns α(ξ), β(ξ), and d(1)
k :

α(ξ)sinhξ
(
h1 +h2

)
+β(ξ)coshξ

(
h1 +h2

)
+ e−ξh2Q+(ξ)= ξHm

(
f (4)
m (ρ)

)
,

α(ξ)sinhξ
(
h1 +h2

)
+β(ξ)coshξ

(
h1 +h2

)
+ e−ξh2Q−(ξ)= ξHm

(
f (4)
m (ρ)

)
,

(3.9)

where

Q+(ξ)= (−1)mξmRm+1
∞∑
k=0

d(1)
k

k!
(ξR)k,

Q−(ξ)= (−1)mξmRm+1
∞∑
k=0

(−1)kd(1)
k

k!
(ξR)k,

(3.10)
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and

Hm
[
α(ξ) + e−ξh1Q−(ξ)

]= f (2)
m (ρ), ρ > 1,

Hm
[
α(ξ) + e−ξh1Q+(ξ)

]= f (1)
m (ρ), 0 < ρ < 1.

(3.11)

We now eliminate β(ξ) from (3.9)–(3.11) and obtain the following system of dual integral
equations [9, 12]:

Hm
[
p(ξ)

]= f (2)
m (ρ), ρ > 1,

Hm
[
ξ−1p(ξ)tanhξ

(
h1 +h2

)]= f (ρ), 0 < ρ < 1,
(3.12)

where

p(ξ)=−α(ξ)− e−ξh1Q−(ξ) (3.13)

and

f (ρ)= f (1)
m (ρ)−

∫∞
0

eξh2Q−(ξ)− e−ξh2Q+(ξ) + g(4)
m (ξ)

coshξ
(
h1 +h2

) Jm(ξρ)dξ,

g(4)
m (ξ)= ξ

∫∞
0
f (4)
m (ρ)ρJm(ξρ)dρ.

(3.14)

4. Reduction to a Fredholm equation

We can reduce the problem of solving the pair of dual integral equations (3.12) to that of
solving a Fredholm equation of the second kind. Therefore we seek a solution of system
(3.12) in the form

p(ξ)=
√

2
π

∫ 1

0
φ(t)

√
ξtJm−1/2(ξt)dt+

∫∞
1
ρ f (2)

m (ρ)Jm(ξρ)dρ, (4.1)

where φ(t) is an unknown function to be computed below. In fact, using the exact solu-
tion of the equations

∫∞
0
K(y)Jν(xy)dy =G(x), 0 < x < 1,∫∞

0
yK(y)Jν(xy)dy = F(x), x > 1,

(4.2)
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and following some ideas from [11], we transform system (3.12) to the advantageous
form of the following Fredholm equation of the second kind:

φ(t)−√t
∫ 1

0
φ(ρ)

∫∞
0
ξ

exp
[− ξ(h1 +h2

)]
coshξ

(
h1 +h2

) Jm−1/2(ξt) Jm−1/2(ξρ)
√
ρdξ dρ

=
∫ 1

0

d

dx

[
xm f (1)

m (tx)
] dx√

1− x2
− tm

∫∞
1

f (2)
m (ρ)
ρm−1

dρ√
ρ2− t2

+
√
π

2

∫∞
0

(
exp

[− ξ(h1 +h2
)]

coshξ
(
h1 +h2

) √
ξt Jm−1/2(ξt)

∫∞
1
ρ f (2)

m (ρ)Jm(ξρ)dρ
)
dξ

−
√
π

2

∫∞
0

eξh2Q−(ξ)−e−ξh2Q+(ξ)+g(4)
m (ξ)

coshξ
(
h1 +h2

) √
ξt Jm−1/2(ξt)dξ, m=1,2, . . . ,N , 0 <t <1.

(4.3)

5. Reduction to a linear algebraic system

Now we expand the function φ(t) in a Fourier series in [−1,1], assuming that it is con-
tinued as an even function to the negative part of the interval:

φ(t)=
∞∑
n=0

εnd
(2)
n cos(nπt), d(2)

n = 2
∫ 1

0
φ(t)cos(nπt)dt, n= 1,2, . . . ,

ε0 = 1
2

, εn = 1, n= 1,2.

(5.1)

Expressing α(ξ), β(ξ) in terms of p(ξ) and using (3.9) and (3.13), we obtain that

α(ξ)=−p(ξ)− e−ξh1Q−(ξ),

β(ξ)= p(ξ)tanhξ
(
h1 +h2

)
+
e−ξh1 sinhξ

(
h1 +h2

)
Q−(ξ)− e−ξh2Q+(ξ) + g(4)

m (ξ)
coshξ

(
h1 +h2

) .
(5.2)

Employing now the previous relations in (3.7) and taking also into account (4.1) and
the Fourier expansion of φ(t), we obtain the following infinite system of linear algebraic
equations:

d(i)
n +

∞∑
k=0

d(2)
k t(i)nk +

∞∑
k=0

d(1)
k t(i+2)

nk = q(i)
n , n= 1,2, . . . , i= 1,2; (5.3)
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here

t(1)
nk =−

εk√
2π

(−1)m(m+n)Rm+n

(n+m+ 1)(2m+n)!

∫∞
0

(−1)n sinh
(
ξh2

)
coshξ

(
h1 +h2

) ξn+mr(m)
k (ξ)dξ, (5.4)

t(2)
nk =−

εk
2

∫∞
0

e−ξ(h1+h2)

coshξ
(
h1 +h2

) r(m)
k (ξ)r(m)

k (ξ)dξ, (5.5)

t(3)
nk =−

(m+n)Rn+k+2m+1

(n+m+1)(2m+n)!k!

∫∞
0

(−1)n+k sinhn
(
ξh2

)
e−ξh1−coshn

(
ξh1

)
e−ξh2

coshξ
(
h1 +h2

) ξ2m+n+k+1dξ,

(5.6)

t(4)
nk =−

πR

εn

(k+m+ 1)(2m+ k)!
(m+ k)k!

t(1)
kn , (5.7)

q(1)
n =

√
(n+m+ 1/2)n!

(n+ 2m)!
R f (3)

mn

(n+m+ 1)

+
(m+n)Rm+n

(m+n+ 1)(2m+n)!

∫∞
0

(
g(4)
m (ξ)coshn

(
ξh1

)
+ (−1)n sinhn

(
ξh2

)
g(2)
m (ξ)

coshξ
(
h1 +h2

)
)
ξn+mdξ,

(5.8)

q(2)
n = 2

∫ 1

0
cos(nπt)

∫ 1

0

d

dx

[
ξm f (1)

m (tx)
] dx√

1− x2
− 2

∫ 1

0
tm cos(nπt)

∫∞
1

f (2)
m (ρ)
ρm−1

dρ√
ρ2− t2

dt

−
√
π

2

∫∞
0

g(4)
m (ξ)

coshξ
(
h1 +h2

) rmn (ξ)dξ +
√
π

2

∫∞
0

e−ξ(h1+h2)r(m)
k (ξ)g(2)

m (ξ)

coshξ
(
h1 +h2

) dξ,

(5.9)

r(m)
n (ξ)= 2

∫ 1

0

√
ξt Jm−1/2(ξt)cos(nπt)dt, (5.10)

g(2)
m (ξ)=

∫∞
1
f (2)
m (ρ)ρJm(ξρ)dρ. (5.11)

Appendices

A. Investigation of the linear algebraic system

Equations (5.3)–(5.11) can be written in the vector form

�x+L�x =�c, (A.1)

where �x and �c are column vectors formed of the components of the unknowns and the
right-hand side of (A.1), respectively, while L is the coefficient matrix of the system. We
will prove that the double series formed of the squares of the components of L is conver-
gent, and so the infinite matrix L defines a completely continuous operator mapping the
Hilbert space �2 into itself.
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Lemma A.1. For m≥ 1, the following inequality holds on the positive semiaxis:

∣∣r(m)
n (ξ)

∣∣≤
√

2
π

γmξm

π2n22m−1(m− 1)!
Um

2

(
γ2ξ2), (A.2)

where U (m)
k is a kth-degree polynomial in x, with nonnegative coefficients depending on m.

Proof. We note that the function ψm(z) = √z Jm−1/2(z), for m ≥ 0, is continuously dif-
ferentiable an arbitrary number of times on the positive semiaxis. Introducing now the
notation

Wm(z)=
√

2
π

1
2m−1(m− 1)!

∫ π/2
0

cos(z sinθ)(cosθ)2m−1dθ, (A.3)

it follows from the first Sonine integral [12] that ψm(z) = zmWm(z). Taking the z-
derivative of (A.3) and integrating by parts, we obtain the recurrence formula W ′

m(z) =
−zWm+1(z); hence, on the positive semiaxis,

∣∣ψ′m(z)
∣∣≤

√
2
π

zm−1

2m−1(m− 1)!
U (m)

1

(
z2),

∣∣ψ′′m(z)
∣∣≤

√
2
π

[(
1− δm1

) zm−2

2m−1(m− 1)!
U (m)

2

(
z2)+ δm1

]
,

(A.4)

where δmk is the Kronecker delta. The desired result is obtained now by two integrations

by parts of the r(m)
n . �

Lemma A.2. The series formed of the components of the matrix T and the right-hand sides
of the system (5.3)–(5.11) converge absolutely, that is,

∞∑
n,k=0

∣∣t(i)nk∣∣ <∞, i= 1, . . . ,4, (A.5)

∞∑
n=0

∣∣q(i)
n

∣∣ <∞, i= 1,2. (A.6)

Proof. Using Lemma A.1 we find that

∞∑
n,k=0

∣∣t(1)
nk

∣∣≤ c(1)
m (γ)

1
(m− 1)!

(
γ

2h

)m ∞∑
n=1

(n+ 2m+ 4)!
(n+ 2m)!

(
R

h1

)n+m ∞∑
h=1

1
k2

, (A.7)

where c(1)
m (γ) is a positive constant depending on m and γ. Since R < h1, the series on

the right-hand side of the previous relation converge, hence the series of components

t(1)
nk converge absolutely. Using similar arguments we can prove that

∑∞
n, k=0 t

(4)
nk is absolute

convergent as well. Concerning the t(2)
nk , the required bound follows from Lemma A.1 and

the convergence of the integral

∫∞
0

e−ξ(h1+h2)

coshξ
(
h1 +h2

)ξ2m[U (m)
2

(
γ2ξ2)]2

dξ. (A.8)
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Finally, for the integrand in the expression of t(3)
nk , we obtain

∣∣t(3)
nk

∣∣≤ Rk+n+2m+1

(2m+n)!k!

∫∞
0

[
e−2ξh1 + e−2ξh2

]
ξ2m+n+kdξ

≤ 2
(2m+n+ k)!
(2m+n)!k!

(
R

2h∗

)k+n+2m+1

, h∗ =min
{
h1,h2

}
;

(A.9)

this proves (A.5), because the double series formed of the quantities on the right-hand

side of (A.9) is convergent for R < hi, i= 1,2. In order to take an estimate for q(i)
n , i= 1,2,

we have to impose extra conditions on the boundary conditions of the original problem.
Therefore, we assume that the functions

s1(t)=
∫ 1

0

d

dx

[
xm f (1)

m (tx)
] dx√

1− x2
, s2(t)=

∫∞
γ

f (2)
m (ρ)
ρm−1

1√
ρ2− t2

dρ (A.10)

are twice continuously differentiable with respect to t on [0,γ]; to ensure that this as-

sumption holds, it is sufficient to impose that the f (i)
m (ρ), i= 1,2,3, are C3-functions and

f (2)
m together with its derivatives satisfies relation (2.19). Also, let

∞∑
n=0

√
n
∣∣ f (3)

mn

∣∣ <∞. (A.11)

It follows from the conditions imposed on s1(t) and s2(t) that their Fourier coefficients
decrease like 1/n2; hence the series formed of the first two terms on the right-hand side of
(5.9) and the first term on the right-hand side of (5.8) converge absolutely. Bounds for the
other terms in (5.8) and (5.9) can be obtained similarly, and bounds for the components
of matrix T have already been established. �

Lemma A.2 implies the convergence of the series formed of the squares of the elements
of matrix T . Thus we have established that the infinite system (A.1) has a completely con-
tinuous form, and that the nonhomogeneous term �c is in �1 and so in �2. Hence, by virtue
of the existence and uniqueness of a solution of the original problem and the Hilbert al-
ternative, system (A.1) has a unique solution in �2. This solution can be calculated by the
method described in [5, 6]. This result and Lemma A.2 imply that

∣∣d(i)
n

∣∣≤ γ(2)
∞∑
k=0

∣∣t(i)nk∣∣+ γ(1)
∞∑
k=0

∣∣t(i+2)
nk

∣∣+
∣∣q(i)

n

∣∣, n= 0,1, . . . , i= 1,2, (A.12)

where the γ(i) are positive numbers depending on m. It follows from our assumptions

concerning f (3)
m (θ) that

n
(n+ 2m)!
(n+m)!

∣∣d(1)
n

∣∣ < µn,
∞∑
n=0

µn <∞. (A.13)

Therefore it follows from (A.12) that the Fourier and Fourier-Legendre series in the fore-
going formula are uniformly convergent; it also follows that our formal term-by-term
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differentiations and integrations of these series are justified. The boundedness of the d(1)
n

ensures the uniform convergence of the series

∞∑
n=0

∣∣d(1)
n
∣∣(Rξ)n+m

n!
≤ c1(Rξ)meξR, m= 0,1, . . . ,N , (A.14)

on each compact subset of the positive semiaxis. Then (5.2) imply that

∣∣α(ξ)±β(ξ)
∣∣≤ c2

e[∓ξ(h1+h2)]

coshξ
(
h1 +h2

) + c3
e[∓ξ(h1+h2)]

coshξ
(
h1 +h2

)e−ξ(h1−R)

+ c4
e[−ξ(h2−R)]

coshξ
(
h1 +h2

) + c5
1

coshξ
(
h1 +h2

) ,

(A.15)

and this guarantees the absolute and uniform convergence in the domain under consid-
eration of the integrals we have used.

B. The case m= 0

The integral equation (4.3), in the case where m= 0, can take the form

φ(t)−
∫ 1

0
K0(t,ξ)φ(ξ)dξ =Ψ0(t), 0 < t < 1, (B.1)

where

K0(t,ξ)= 4
π
t−1ξ

∫∞
0
U(s)cos(ξs)cos(st)ds,

U(t)= e−2ht

1 + e−2ht
, 0 < t <∞, h= h1 +h2,

Ψ0(t)= 2π−1/2t−1 d

dt

∫ t
0

ξF0(ξ)dξ(
t2− ξ2

)1/2 ,

(B.2)

and F0 is the Hankel zero-order transform of a specific function. The case m = 0 is of
interest since it arises in the discussion of certain contact problems [10].

Setting now tφ(t)= ν(t), we derive the integral equation

ν(t)−
∫ 1

0
M(t,ξ)ν(ξ)dξ = 2

π

d

dt

∫ t
0

ξF0(ξ)dξ(
t2− ξ2

)1/2 , (B.3)

where

M(t,ξ)= 4
π

∫∞
0
U(s)cos(ξs)cos(ts)ds. (B.4)

We can find a sufficient condition which has a physical meaning for the integral equation
(B.3) to have a solution. In fact, if we consider the Hilbert space L2(0,1) and the bounded
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operator M which corresponds to the kernel M(x,ξ), we get the estimate

‖M‖ <
{∫ 1

0

∫ 1

0

∣∣M(x,ξ)
∣∣2
dxdξ

}1/2

<
4
π

{∫∞
0

e−2ht

1 + e−2ht
cos2(xt)dt

}1/2{∫∞
0

e−2ht

1 + e−2ht
cos2(ξt)dt

}1/2

<
2
πh

+
1

π
(
h2 + 1

) ,

(B.5)

and a sufficient condition for M to be a contraction operator is that

2
πh

+
1

π
(
h2 + 1

) < 1. (B.6)

Summary

Impulsive problems for a system consisting of a fluid layer and a sphere totally submerged
in the fluid have been examined by the method of dual integral equations. It has been
shown that a suitable representation of the field can be derived from simple solutions
of Laplace’s equation in the domain under consideration. By this representation, which
is a combination of Legendre polynomials and Bessel functions, mixed boundary con-
ditions have been transformed to the solution of infinite systems and Fredholm integral
equations, in which the kernel is in general expressed as an integral combination of expo-
nentials and Bessel functions of order m. This leads to the investigation of approximating
solutions under various assumptions, and some L2(0,1)-estimates have been investigated.
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