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The present work is concerned with unsteady free convection flow of an incompressible
electrically conducting micropolar fluid, bounded by an infinite vertical plane surface
of constant temperature. A uniform magnetic field acts perpendicularly to the plane. The
state space technique is adopted for the one-dimensional problems including heat sources
with one relaxation time. The resulting formulation is applied to a problem for the whole
space with a plane distribution of heat sources. The reflection method together with the
solution obtained for the whole space is applied to a semispace problem with a plane dis-
tribution of heat sources located inside the fluid. The inversion of the Laplace transforms
is carried out using a numerical approach. Numerical results for the temperature, the ve-
locity, and the angular velocity distributions are given and illustrated graphically for the
problems considered.

1. Introduction

Because of the increasing importance of materials flow in industrial processing and else-
where, and the fact that shear behavior cannot be characterized by Newtonian relation-
ships, a new stage in the evaluation of fluid-dynamic theory is in progress. Eringen [3]
proposed a theory of micropolar fluids taking into account the inertial characteristics of
the substructure particles, which are allowed to undergo rotation.

The concept of micropolar fluids deals with a class of fluids that exhibit certain mi-
croscopic effects arising from the local structure and micromotions of the fluid elements.
These fluids contain dilute suspensions of rigid macromolecules with individual motions
that support stress and body moments and are influenced by spin inertia. The theory
of micropolar fluids and its extension to thermomicropolar fluids [4] may form suitable
non-Newtonian fluid models that can be used to analyze the behavior of exotic lubri-
cants, colloidal suspensions, polymeric fluids, liquid crystals, human and animal blood,
and so forth.

Through a review of the subject of micropolar fluid mechanics and its applications,
Peddieson and McNitt [19] derived the boundary-layer equations for a micropolar fluid,
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which are important in a number of technical processes, and applied these equations to
the problems of steady stagnation point flow, steady flow past a semi-infinite flat plate.
Ahmadi [1] studied the fluid flow characteristics of the boundary-layer flow of a micropo-
lar fluid over a semi-infinite plate, using a Runge-Kutta shooting method with Newtonian
iteration. The boundary-layer flow on continuous surfaces is an important type of flow
occurring in a number of technical processes. Flow in the boundary layer on a contin-
uous semi-infinite sheet moving steadily through an otherwise quiescent fluid environ-
ment was first studied theoretically by Sakiadis [20]. Hassanien and Gorla [13] studied
the mixed convection in stagnation flow of micropolar fluid over a vertical surface with
variable surface temperature and uniform surface heat flux. Bhargava and Rani [2] dis-
cussed the heat transfer in a micropolar fluid near a stagnation point. Ezzat and Othman
[10] studied the effect of a vertical AC electric field on the onset of convective instability
in a dielectric micropolar fluid layer heated from below. Gorla et al. [12] analyzed the
heat transfer characteristics of a micropolar fluid over a flat plate. Ezzat et al. [11] studied
some problems of micropolar magnetohydrodynamic boundary-layer flow.

The aim of this paper is firstly constructing a mathematical model of boundary-layer
equations for conducting micropolar fluid in the presence of heat sources with thermal
relaxation time, and secondly studying the effects of some parameters on such fluid.

The solution is obtained using a state space approach [6]. In this approach, the govern-
ing equations are written in matrix form using a state vector that consists of the Laplace
transforms in time of the temperature, the induced electric field, the microrotation com-
ponent, and their gradients. Their integration, subjected to zero initial conditions, is car-
ried out means of matrix exponential method. Influence functions in the Laplace trans-
form domain are explicitly developed.

The resulting formulation is applied to a problem for the whole space with a plane
distribution of heat sources. The solutions obtained are utilized in combination with the
method of images to obtain the solution for a problem with heat sources distributed on
a plane situated inside a semispace the surface of which is bounded by an infinite vertical
plate. The inversion of the Laplace transform is carried out using a numerical technique
[15].

2. Formulation of the problem

The basic equations in vector form for an incompressible conducting micropolar fluid
with thermal relaxation in the presence of both magnetic field and heat source are [3]

(1) continuity equation:

∇·V= 0, (2.1)

(2) momentum equation:

ρ
DV
Dt

= ρf −∇p+ (λ+ 2µ+ k)∇(∇·V)

− (µ+ k)∇∧ (∇∧V) + k(∇∧G) + J∧B,
(2.2)
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(3) angular momentum equation:

ρ j
DG
Dt

= (α+β+ γ)∇(∇·G) + k(∇∧V)− γ∇∧ (∇∧G)− 2kG + ρl, (2.3)

(4) generalized energy equation:

ρCp
D

Dt

(
T + τ0

∂T

∂t

)
= λ∗∇2T +

(
Q+ τ0

∂Q

∂t

)
, (2.4)

where ρ is fluid density, g acceleration due to gravity, V and G velocity and microrotation,
f body force per unit mass, l body couple per unit mass, p thermodynamic pressure, j
microinertia, T temperature, T0 temperature of the plane surface, T∞ temperature of the
fluid away from the plane surface, Cp specific heat at constant pressure, τ0 relaxation time,
λ′ thermal conductivity, Q intensity of the applied heat source, α, β, γ, λ, µ, and k material
constants or viscosity coefficients, B the magnetic induction given by

B= µ0H, (2.5)

and J is the conduction current density given by Ohm’s law

J= σ0

[
E +

∂V
∂t
×B

]
, (2.6)

where H is the magnetic intensity, E the electric intensity, µ0 the magnetic permeability,
and σ0 the electrical conductivity.

The unsteady one-dimensional vertical flow of incompressible electrically conducting
micropolar fluid past an infinite plane surface is considered. The x-axis is taken in the
vertical direction along the plate and the y-axis is normal to it. The velocity components
of the fluid are (u,0,0) and N is the local angular velocity acting in z direction. A con-
stant magnetic field with components (0,H0,0) is assumed to be applied transversely to
the direction of the flow. The induced electric current due to the motion of the fluid
that is caused by the buoyancy forces does not distort the applied magnetic field. The
previous assumption is reasonably true if the magnetic Reynolds number of the flow
(Rm =U0Lσ0µe) is assumed to be very small, which is the case in many aerodynamic ap-
plications where rather low velocities and electrical conductivities are involved. All the
fluid properties are assumed constant except that the influence of the density variation
with temperature is considered only in the body force term. The influence of the density
variations in other terms of the momentum and the energy equations, and the varia-
tions of expansions coefficient with temperature, are considered negligible. This is the
well-known Boussinesq approximation.

Given the above assumptions, we have the following.

(1) The magnetic induction has one nonvanishing component:

By = µ0H0 = B0 (constant). (2.7)
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(2) The pondermotive force F = J ∧ B has one nonvanishing component in x-
direction:

Fx =−σ0B
2
0u

ρ
. (2.8)

(3) The following constitutive equation holds:

(
ρ∞ − ρ

)= ρβ0
(
T −T∞

)
. (2.9)

(4) The physical variables are functions of y and t only.

The system of the boundary-layer equations that govern unsteady one-dimensional
free convection flow through a conducting medium of micropolar fluid in the presence
of a constant magnetic field and if the body couple is absent consists of

(1) momentum equation:

∂u

∂t
= gβ0

(
T −T∞

)
+ ν(1 +∆)

∂2u

∂y2
+
k

ρ

∂N

∂y
− σ0B

2
0

ρ
u, (2.10)

(2) angular momentum equation:

ρ j
∂N

∂t
= γ

∂2N

∂y2
− 2kN − k

∂u

∂y
, (2.11)

(3) generalized energy equation:

ρCp
∂T

∂t
= λ∗

∂2T

∂y2
− ρCpτ0

∂2T

∂t2
+Q+ τ0

∂Q

∂t
, (2.12)

where β0 is the coefficient of volume expansion.

In the energy equation, terms representing viscous and Joule’s dissipation are neglected
as they are assumed to be very small in free convection flows [14]. Also in the energy
equation, the term representing the volumetric heat source is taken as a function of the
space and time variables.

We introduce the following nondimensional variables:

y∗ = yU0

ν
, t∗ = tU2

0

ν
, τ∗0 =

τ0U
2
0

ν
, u∗ = u

U0
,

N∗ = ν

U2
0
N , θ = T −T∞

T0−T∞
, pr =

Cpµ

λ∗
,

Gr = νβg
(
T0−T∞

)
U3

0
, Q∗ = ν2Q

λ∗U2
0

(
T0−T∞

) ,

(2.13)
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where Gr is the Grashof number and pr the Prandtl number. Invoking the nondimen-
sional quantities above, (2.10), (2.11), and (2.12) are reduced to the nondimensional
equations, dropping the asterisks for convenience,

∂u

∂t
=Grθ + (1 +∆)

∂2u

∂y2
+∆

∂N

∂y
−Mu,

∂N

∂t
= λ

∂2N

∂y2
− 2σN − σ

∂u

∂y
,

(
∂2

∂y2
− pr

∂

∂t

(
1 + τ0

∂

∂t

))
θ =−Q− τ0

∂Q

∂t
.

(2.14)

From now on, we will consider a heat source of the form

Q =Q0δ(y)H(t), (2.15)

where δ(x) and H(t) are the Dirac delta function and Heaviside unit step function, re-
spectively, and Q0 is a constant.

We will also assume that the initial state of the medium is quiescent. Taking the Laplace
transform, defined by the relation

g(s)=
∫∞

0
e−stg(t)dt, (2.16)

of both sides of (2.14), we obtain that

(
(1 +∆)

∂2

∂y2
− s−M

)
u=−Grθ−∆

∂N

∂y
,

(
∂2

∂y2
− s+ 2σ

λ

)
N = σ

λ

∂u

∂y
,

(
∂2

∂y2
− prs

(
1 + τ0s

))
θ =−Q0δ(y)

(
1 + τ0s

s

)
.

(2.17)

3. State space formulation

We will choose as state variables the temperature increment θ, the velocity u, the angular
velocity N , and their gradients. Equations (2.17) can be written as follows:

∂θ

∂y
= θ′,

∂u

∂y
= u′,

∂N

∂y
=N ′, (3.1)

∂θ′

∂y
= psθ−Q0δ(y)

(
1 + τ0s

s

)
, (3.2)

∂u′

∂y
= au− bθ− εN ′, (3.3)

∂N ′

∂y
=mN +nu′, (3.4)
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where p = pr(1 + τ0s), a= (s+M)/(1 +∆), b =Gr/(1 +∆), ε = ∆/(1 +∆), m= (s+ 2σ)/λ,
n= σ/λ.

The above equations can be written in matrix form as

d f (y,s)
dy

=A(s) f (y,s) +B(y,s), (3.5)

where

f (y,s)=




θ(y,s)

u(y,s)

N(y,s)

θ′(y,s)

u′(y,s)

N ′(y,s)




, A(s)=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
ps 0 0 0 0 0
−b a 0 0 0 −ε
0 0 m 0 n 0




,

B(y,s)=−Q0δ(y)
(

1 + τ0s

s

)



0

0

0

1

0

0



.

(3.6)

The formal solution of (3.5) can be expressed as

f (y,s)= exp
[
A(y,s)y

](
f (0,s) +

∫ y

0
exp

[−A(s)z
]
B(z,s)dz

)
. (3.7)

In special cases when there is no heat source acting inside the medium, (3.7) simplifies to

f (y,s)= exp
[
A(y,s)y

]
f (0,s). (3.8)

In order to solve the system (3.8), we need first to find the form of the matrix
exp(A(s)y).

The characteristic equation of the matrix A(s) is

k6− a11k
4 + a21k

2− a31 = 0, (3.9)

where

a11 =m+ a+ ps+ εn,

a21 =ma+ ps(m+ a+ εn),

a31 =maps.

(3.10)
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The roots ±k1, ±k2, and ±k3 of (3.9) satisfy the relations

k2
1 + k2

2 + k2
3 = a11,

k2
1k

2
2 + k2

1k
2
3 + k2

2k
2
3 = a21,

k2
1k

2
2k

2
3 = a31.

(3.11)

One of the roots, say k2
1, has a simple expression given by

k2
1 = ps. (3.12)

The other two roots k2
2 and k2

3 satisfy the relations

k2
2 + k2

3 =m+ a+ εn, (3.13a)

k2
2k

2
3 =ma. (3.13b)

The Taylor series expansion of the matrix exponential has the form

exp
[
A(s)y

]= ∞∑
n=0

1
n!

[
A(s) · y]n. (3.14)

Using the well-known Cayley-Hamilton theorem, we can express A4 and higher orders
of the matrix A in terms I , A, A2, and A3, where I is the unit matrix of order 6. Thus, the
infinite series in (3.14) can be reduced to

exp
[
A(s)y

]= a0(y,s)I + a1(y,s)A(s) + a2(y,s)A2(s) + a3(y,s)A3(s)

+ a4(y,s)A4 + a5(y,s)A5,
(3.15)

where a0–a5 are some coefficients depending on y and s. To determine these coefficients,
we use the Taylor series expansions of exp(±ki y), i= 1,2,3,4,5,6, together with (3.9), to
obtain

exp
(± k1y

)= a0± a1k1 + a2k
2
1 ± a3k

3
1 + a4k

4
1 ± a5k

5
1, (3.16a)

exp
(± k2y

)= a0± a1k2 + a2k
2
2 ± a3k

3
2 + a4k

4
2 ± a5k

5
2, (3.16b)

exp
(± k3y

)= a0± a1k3 + a2k
2
3 ± a3k

3
3 + a4k

4
3 ± a5k

5
3 . (3.16c)
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The solution of the above system is given by

a0 =−F
(
k2

2k
2
3C1 + k2

1k
2
3C2 + k2

1k
2
2C3

)
,

a1 =−F
(
k2

2k
2
3S1 + k2

1k
2
3S2 + k2

1k
2
2S3
)
,

a2 = F
[(
k2

2 + k2
3

)
C1 +

(
k2

1 + k2
3

)
C2 +

(
k2

1 + k2
2

)
C3
]
,

a3 = F
[(
k2

2 + k2
3

)
S1 +

(
k2

1 + k2
3

)
S2 +

(
k2

1 + k2
2

)
S3
]
,

a4 =−F
(
C1 +C2 +C3

)
,

a5 =−F
(
S1 + S2 + S3

)
,

(3.17)

where

F = 1(
k2

1 − k2
2

)(
k2

2 − k2
3

)(
k2

3 − k2
1

) ,

C1 =
(
k2

2 − k2
3

)
cosh

(
k1y

)
, S1 =

(
k2

2 − k2
3

)
k1

sinh
(
k1y

)
,

C2 =
(
k2

3 − k2
1

)
cosh

(
k2y

)
, S2 =

(
k2

3 − k2
1

)
k2

sinh
(
k2y

)
,

C3 =
(
k2

1 − k2
2

)
cosh

(
k3y

)
, S3 =

(
k2

1 − k2
2

)
k3

sinh
(
k3y

)
.

(3.18)

Substituting the expressions (3.17) into (3.15) and computing A2, A3, A4, and A5, we ob-
tain, after some lengthy algebraic manipulations, exp(A(s)y)= L(y,s)= [Li j(y,s)], i, j =
1,2,3,4,5,6, where the entries Li j(y,s) are given by

L11 = F
(
k2

1 − k2
2

)(
k2

3 − k2
1

)
C1,

L12 = L13 = 0,

L14 = F
(
k2

1 − k2
2

)(
k2

3 − k2
1

)
S1,

L15 = L16 = 0,

L21 = bF
[(
k2

1 −m
)
C1 +

(
k2

2 −m
)
C2 +

(
k2

3 −m
)
C3
]
,

L22 = F
[(
k2

1 − k2
2

)(
a− k2

3

)
C2 +

(
k2

1 − k2
3

)(
a− k2

2

)
C3
]
,

L23 =mεF
[(
k2

2 − k2
1

)
S2 +

(
k2

3 − k2
1

)
S3
]
,

L24 = bF
[(
k2

1 −m
)
S1 +

(
k2

2 −m
)
S2 +

(
k2

3 −m
)
S3
]
,

L25 = F
[
k2

2 −m
(
k2

1 − k2
2

)
S2 +

(
k2

3 −m
)(
k2

1 − k2
3

)
S3
]
,
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L26 = εF
[(
k2

2 − k2
1

)
C2 +

(
k2

3 − k2
1

)
C3
]
,

L31 =−nbF
[
k2

1S1 + k2
2S2 + k2

3S3
]
,

L32 =−naF
[(
k2

2 − k2
1

)
S2 +

(
k2

3 − k2
1

)
S3
]
,

L33 = F
[(
m− k2

3

)(
k2

1 − k2
2

)
C2 +

(
m− k2

2

)(
k2

1 − k2
3

)
C3
]
,

L34 = bF
[
C1 +C2 +C3

]
,

L35 =−nF
[(
k2

2 − k2
1

)
C2 +

(
k2

3 − k2
1

)
C3
]
,

L36 = F
[(
k2

2 − a
)(
k2

1 − k2
2

)
S2 +

(
k2

3 − a
)(
k2

1 − k2
3

)
S3
]
,

L41 =−Fk2
1

(
k2

1 − k2
2

)(
k2

1 − k2
3

)
S1,

L42 = L43 = 0,

L44 =−F
(
k2

1 − k2
2

)(
k2

1 − k2
3

)
C1,

L45 = L46 = 0,

L51 = bF
[
k2

1

(
k2

1 −m
)
S1 + k2

2

(
k2

2 −m
)
S2 + k2

3

(
k2

3 −m
)
S3
]
,

L52 = aF
[(
k2

1 − k2
2

)(
k2

1 −m
)
S1 +

(
k2

1 − k2
3

)(
k2

3 −m
)
S3
]
,

L53 =− εmF

n
L35,

L54 = L21,

L55 = F
[(
k2

1 − k2
2

)(
k2

2 −m
)
C2 +

(
k2

1 − k2
3

)(
k2

3 −m
)
C3
]
,

L56 =−εF
[
k2

2

(
k2

1 − k2
2

)
S2 + k2

3

(
k2

1 − k2
3

)
S3
]
,

L61 = bnF
(
k2

1C1 + k2
2C2 + k2

3C3
)
,

L62 =−na

ε
L26,

L63 =mL36,

L64 = L31,

L65 =−n

ε
L56,

L66 = F
[(
k2

2 − a
)(
k2

1 − k2
2

)
C2 +

(
k2

3 − a
)(
k2

1 − k2
3

)
C3
]
.

(3.19)

It is worth mentioning here that (3.13a) and (3.13b) have been used repeatedly in order
to write the above entries in the simplest possible form. We will stress here that the above
expression for the matrix exponential is a formal one. In the actual physical problem
the space is divided into two regions accordingly as y ≥ 0 or y < 0. Inside the region
0≤ y ≤∞, the positive exponential terms, not bounded at infinity, must be suppressed.
Thus, for y ≥ 0 we should replace each sinh(ky) by −(1/2)exp(−ky) and each cosh(ky)
by (1/2)exp(−ky). In the region y ≤ 0 the negative exponentials are suppressed instead.
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4. Application to infinite plane distribution of heat sources

We will consider a conducting micropolar fluid occupying the region y ≥ 0 whose state
depends only on the space variables y and time t. We also assume that there is a plane
distribution of continuous heat sources located at the plate y = 0.

We will now proceed to obtain the solution of the problem for the region y ≥ 0. The
solution for the other region is obtained by replacing each y by −y.

Evaluating the integral in (3.7) using the integral properties of the Dirac delta function,
we obtain

f̄ (y,s)= L(y,s)
[
f̄ (0,s) +H(s)

]
, (4.1)

where

H(s)=−Q0
(
1 + τ0s

)
2s




1
2k1

bw

2k1k2k3
(
k1 + k2

)(
k1 + k3

)(
k2 + k3

)
0
1
2
0
nb

2
(
k1 + k2

)(
k1 + k3

)(
k2 + k3

)




(4.2)

and w = k1k2k3 +m(k1 + k2 + k3).
Equation (4.1) expresses the solution of the problem in the Laplace transform domain

in terms of the vector H(s) representing the applied heat source and the vector f̄ (0,s)
representing the conditions at the plane source of heat. In order to evaluate the compo-
nents of this vector, we note first that due to the symmetry of the problem, the velocity
component and the angular velocity component vanish at the plane source of heat, thus,
at t > 0, the boundary conditions are

u(0, t)= 0, u(0,s)= 0,

N(0, t)= 0, N(0,s)= 0,
(4.3)

and the thermal condition at the plane source of heat can be obtained as follows.
Consider a short cylinder of unit base whose axis is perpendicular to the plane source

of heat and whose bases lie on opposite sides of the plane. Applying Gauss’s diver-
gence theorem to this cylinder and noting that there is no heat flux through the lateral
surface, we get, upon taking limits as the height tends to zero and using symmetry of
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the temperature,

q(0, t)= 1
2
H(t)Q0, or q(0,s)= Q0

2s
, (4.4)

while the initial conditions are taken to be homogeneous.
We will use the generalized Fourier law of heat conduction in the nondimensional

form [17], namely,

q+ τ0
∂q

∂t
=−∂θ

∂y
. (4.5)

Taking the Laplace transform of both sides of (4.5) and using (4.4), we get

∂θ

∂y

∣∣∣∣∣
y=0

=−Q0
(
1 + τ0s

)
2s

. (4.6)

Equations (4.3) and (4.6) give three components of the vector f̄ (0,s). To obtain the re-
maining three components, we substitute y = 0 on both sides of (4.1), getting a system of
linear equations whose solution gives

θ(0,s)=−Q0
(
1 + τ0s

)
2sk1

,

u′(0,s)=− Q0bw
(
1 + τ0s

)
2sk1

(
k1 + k2

)(
k1 + k3

)(
k2k3 +m

) ,

N ′(0,s)=− Q0nb
(
1 + τ0s

)
2sk1

(
k1 + k2

)(
k1 + k3

)(
k2k3 +m

) .
(4.7)

Inserting the values from (3.19) and (4.7) into the right-hand side of (4.1) and perform-
ing the necessary matrix operations, we obtain

θ(y,s)= Q0
(
1 + τ0s

)
2sk1

exp
(− k1y

)
,

u(y,s)=−Q0b
(
1 + τ0s

)
2sβm

[(
k2− k3

)
A1 exp

(− k1y
)

+
(
k3− k1

)
A2 exp

(− k2y
)

+
(
k1− k2

)
A3 exp

(− k3y
)]

,

N(y,s)=−Q0nb
(
1 + τ0s

)
2sβ

[(
k2− k3

)(
k2 + k3−w

)
exp

(− k1y
)

+
(
k3− k1

)(
k3 + k1−w

)
· exp

(− k2y
)

+
(
k1− k2

)(
k1 + k2−w

)
exp

(− k3y
)]

,
(4.8)
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where

β = k1
(
k2

1 − k2
2

)(
k2

3 − k2
1

)(
k2b3− k3b2

)
,

A1 =wm
(
k1− k2

)− b2
[
b3−mk3

(
k1 + k3

)]
,

A2 =−b2
[
b3−mk3

(
k1 + k3

)]
,

A3 =−wm
(
k2− k3

)− b2
[
b3−mk3

(
k1 + k3

)]
,

b2 = k2
2 −m, b3 = k2

3 −m.

(4.9)

Equation (4.8) determines completely the state of the fluid for y ≥ 0. We mention in
passing that these equations give also the solution to a semispace problem with a plane
source of heat on its boundary constituting a rigid base. As mentioned before, the so-
lution for the whole space when y < 0 is obtained from (4.8), by taking the symmetries
under considerations.

We will show that the solution obtained above can be used as a set of building blocks
from which the solutions to many interesting problems can be constructed. For future
reference we will write down the solution to the problem in the case when the source of
heat is located in the plane y = c, instead of the plane y = 0. In this case, we have

θ(y,s)= Q0
(
1 + τ0s

)
2sk1

e±k1(y−c), (4.10)

u(y,s)= Q0b
(
1 + τ0s

)
2sβm

[(
k2− k3

)
A1e

±k1(y−c) +
(
k3− k1

)
A2e

±k2(y−c)

+
(
k1− k2

)
A3e

±k3(y−c)],
(4.11)

N(y,s)=−Q0nb
(
1 + τ0s

)
2sβ

[(
k2− k3

)(
k2 + k3−w

)
e±k1(y−c)

+
(
k3− k1

)(
k1 + k3−w

)
e±k2(y−c)

+
(
k1− k2

)(
k1 + k2−w

)
e±k3(y−c)],

(4.12)

where the upper (plus) sign denotes the solution in the region y ≤ c, while the lower
(minus) sign denotes the solution in the region y > c.

5. Application to a semispace problem

We will now consider the problem of a semispace with a plane source of heat located
inside the medium at the position y = c and subject to the following initial and boundary
condition at t ≤ 0, u=N = 0, T = T∞ everywhere.

(a) The shearing stress is vanishing at the wall (y = 0), that is,

∂u(0, t)
∂y

= 0 or
∂u(0,s)
∂y

= 0, t > 0. (5.1)
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(b) The microrotation is vanishing at the wall (y = 0). This represents the case of
concentrated particle flows in which the microelements close to the wall are not
able to rotate [16], that is,

N(0, t)= 0 or N(0,s)= 0, t > 0. (5.2)

(c) The temperature is kept at a constant valueT∞, which means that the temperature
increment θ satisfies

θ(0, t)= 0 or θ(0,s)= 0, t > 0. (5.3)

This problem can be solved in a manner analogous to the one outlined above, though the
calculations will become quite messy. We will instead use the reflection method together
with the solution obtained above for the whole space. This method was proposed by Ezzat
in the context of the hydromagnetic boundary-layer theory [9].

The boundary conditions of the problem can be satisfied by locating two heat sources
in an infinite space, one positive at y = c and the other negative at y =−c. The temper-
ature increment θ is obtained as a superposition of the temperature for both plane dis-
tributions. Thus θ = θ1 + θ2, where θ1 is the temperature due to the positive heat source,
given by (4.10), and θ2 is the temperature due to the negative heat source and is obtained
from (4.10) by replacing c with−c and noting that for all points of the semispace we have
y + c > 0. Thus, θ2 is given by

θ2(y,s)= Q0
(
1 + τ0s

)
2sk1

e−k1(y+c). (5.4)

Combining (4.10) and (5.3), we obtain

θ(y,s)= Q0
(
1 + τ0s

)
2sk1

e−k1 y sinhk1c, for y ≥ c,

θ(y,s)= Q0
(
1 + τ0s

)
2sk1

e−k1c sinhk1y, for y < c.

(5.5)

Clearly, this distribution satisfies the boundary condition (5.3). We turn now to the prob-
lem of finding the distributions velocity, the induced magnetic field, and the electric field.
Unfortunately, the above procedure of superposition cannot be applied to these fields as
to the temperature fields. We define the scalar stream function Ψ by the relation

u= ∂Ψ

∂y
. (5.6)
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Integrating (4.11) and using (5.6), we obtain the stream function due to the positive heat
source at the position y = c as

Ψ= bQ0
(
1 + τ0s

)
2sβm

[(
k2− k3

)
A1

e±k1(y−c)

k1
+
(
k3− k1

)
A2

e±k2(y−c)

k2

+
(
k1− k2

)
A3

e±k3(y−c)

k3

]
,

(5.7)

where the upper sign is valid for the region 0≤ y < c and the lower sign is valid for the re-
gion y ≥ 0. Similarly the stream function for the negative heat source at y =−c is given by

Ψ= bQ0
(
1 + τ0s

)
2sβm

[(
k2− k3

)
A1

e−k1(y+c)

k1

+
(
k3− k1

)
A2

e−k2(y+c)

k2
+
(
k1− k2

)
A3

e−k3(y+c)

k3

]
.

(5.8)

Since Ψ is a scalar field, we can use superposition to obtain the stream function for the
semispace problem as

Ψ=




bQ0
(
1 + τ0s

)
sβm

[(
k2− k3

)
A1

e−k1 y sinhk1c

k1
+
(
k3− k1

)
A2

e−k2 y sinhk2c

k2

+
(
k1− k2

)
A3

e−k3 y sinhk3c

k3

]
, for y ≥ c,

bQ0
(
1 + τ0s

)
sβm

[(
k2− k3

)
A1

e−k1c sinhk1y

k1
+
(
k3− k1

)
A2

e−k2c sinhk2y

k2

+
(
k1− k2

)
A3

e−k3c sinhk3y

k3

]
, for y < c.

(5.9)

Using (5.6) and (5.9), we obtain the velocity distribution

u=




−bQ0
(
1 + τ0s

)
sβm

[(
k2− k3

)
A1e−k1 y sinhk1c+

(
k3− k1

)
A2e−k2 y sinhk2c

+
(
k1− k2

)
A3e−k3 y sinhk3c

]
, for y ≥ c,

−bQ0
(
1 + τ0s

)
sβm

[(
k2− k3

)
A1e−k1c coshk1y +

(
k3− k1

)
A2e−k2c coshk2y

+
(
k1− k2

)
A3e−k3c coshk3y

]
, for y < c.

(5.10)
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Differentiating (5.10) and using the resulting expressions together with (3.4), we obtain

N =




−nbQ0
(
1 + τ0s

)
sβ

[(
k2− k3

)(
k2 + k3−w

)
e−k1 y sinhk1c

+
(
k3− k1

)(
k1 + k3−w

)
e−k2 y sinhk2c

+
(
k1− k2

)(
k1 + k2−w

)
e−k3 y sinhk3c

]
, for y ≥ c,

−nbQ0
(
1 + τ0s

)
sβ

[(
k2− k3

)(
k2 + k3−w

)
e−k1c sinhk1y

+
(
k3− k1

)(
k1 + k3−w

)
e−k2c sinhk2y

+
(
k1− k2

)(
k1 + k2−w

)
e−k3c sinhk3y

]
, for y < c.

(5.11)

Clearly, ∂u(0,s)/∂y =N(0,s)= 0, in agreement with (5.1) and (5.2).

6. Inversion of the Laplace transform

In order to invert the Laplace transforms in (4.8) for the whole-space problem and in
(5.5), (5.10), and (5.11) for the semispace problem, we adopt a numerical inversion
method based on Fourier series expansion [15]. In this method the inverse g(t) of the
Laplace transform g(s) is approximated by the relation

gN (t)= edt

t1

[
1
2
g(d) + Re

( N∗∑
k=1

eikπt/t1gd+
ikπ

t1

)]
, 0≤ t ≤ 2t1, (6.1)

where N∗ is a sufficiently large integer representing the number of terms in the truncated
infinite Fourier series. N∗ must be chosen such that

exp
(
c0t
)

Re

[
f̄

(
c0 +

iN∗π
t1

)
exp

(
iN∗πt
t1

)]
≤ ε0, (6.2)

where ε0 is a reselected small positive number that corresponds to the degree of accuracy
required. The parameter c0 is a positive free parameter that must be greater than the real
parts of all singularities of g(s). The optimal choice of c0 was obtained according to the
criteria described in [15].

In order to find the temperature distribution θ, we use expression (6.1) with θ and θ
replacing g and g, respectively. This procedure is repeated for the other functions.

7. Numerical results

The investigation of the effect of the magnetic field, Prandtl number, and relaxation time
on the free convection of conducting micropolar fluid along an infinite nonmagnetic
plane surface has been carried out in the preceding sections. The one-dimensional prob-
lem for the whole space with a plane distribution of heat sources has been studied. The
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Figure 7.1. The temperature distribution for different values of pr for the whole-space problem.
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Figure 7.2. The temperature distribution for different values of τ0 for the whole space problem.

solutions obtained are utilized in combination with the method of images to obtain the
solution for a semispace problem with a plane distribution of heat sources located inside
the fluid. This enables us to represent the typical numerical results in figures for the
temperature, velocity, and angular velocity for various values of the parameters. Hence
we conclude with the following points.

(i) Figures 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 represent the solution for the whole-space
problem while Figures 7.7, 7.8, and 7.9 represent the solution for the semispace
problem.
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Figure 7.3. The velocity distribution for different values of M for the whole-space problem.
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Figure 7.4. The velocity distribution for different values of τ0 for the whole-space problem.

(ii) In Figures 7.3, 7.4, 7.5, and 7.6 and Figures 7.8 and 7.9, we observe that the effect
of cooling and heating by free convection currents occurs when Gr > 0 and Gr < 0
are in agreement with physical observations that cooling of the surface by free
convection currents occurs for positive values of Gr while heating corresponds to
negative values of Gr . It was also noticed that the velocity and angular velocity
increase with the increase of Gr .
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Figure 7.5. The angular velocity distribution for different values of M for the whole-space problem.
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Figure 7.6. The angular velocity distribution for different values of τ0 for the whole-space problem.

(iii) The velocity and angular velocity profiles for cooling micropolar fluid (Gr > 0)
and for heating micropolar fluid (Gr < 0) are represented in Figures 7.3, 7.4, 7.5,
7.6, 7.8, and 7.9 for different values of M and π0. It is observed that the increase
of M and π0 leads to a decrease in the velocity and angular velocity.

(iv) The temperature distribution for both problems are represented graphically in
Figures 7.1, 7.2, and 7.7 for different values of Prandtl number pr and τ0. It was
found that the increasing of pr leads to a decrease of temperature, while the in-
crease in τ0 leads to an increase in the temperature.
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Figure 7.7. The temperature distribution for different values of p for the semispace problem.
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Figure 7.8. The velocity distribution for different values of M for the semispace problem.

(v) The important phenomenon observed in all computations is that the solution of
any of the considered functions vanishes identically outside a bounded region of
space surrounding the heat source at a distance from it equal to y∗(t). Say y∗(t)
is a particular value of y depending only on the choice of t and is the location
of the wave front. This demonstrates clearly the difference between the solution
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Figure 7.9. The angular velocity distribution for different values of M for the semispace problem.

corresponding to using classical Fourier heat equation (τ0 = 0.0) and that accord-
ing to using the generalized Fourier case (τ0 = 0.2). In the first and older theory,
the waves propagate with infinite speeds, so the value of any of the functions is
not identically zero (though it may be very small) for any large value of y. In
non-Fourier theory the response to the thermal and mechanical effects does not
reach infinity instantaneously but remains in a bounded region of space given by
0 < y < y∗(t) for the semispace problem and by min(0, y∗(t)− c) < y < y + y∗(t)
for the whole-space problem.

8. Concluding remarks

(i) A new stage in the evaluation of fluid-dynamic theory is in progress because of the
increasing importance, in the processing industries and elsewhere, of materials whose
flow behavior in shear cannot be characterized by Newtonian relationships. The theory
of micropolar fluids can be used to explain the flow of colloidal fluids, liquid crystals,
human and animal blood, and so forth.

(ii) Many metallic materials are manufactured after they have been refined sufficiently
in the molten state. Therefore, it is a central problem in metallurgical chemistry to study
the free convection effects on conducting liquid metal. For instance, liquid sodium Na
(100 ◦C) and liquid potassium K (100 ◦C) exhibit very small electrical resistivity (ρL(exp)
= 9.6× 10−6 Ωcm and ρL(exp)= 12.97× 10−6 Ωcm).

(iii) The state space approach is more general than the classical Laplace and Fourier
transform techniques. Consequently, state space is applicable to all systems that can be
analyzed by integral transforms in time, and is applicable to many systems for which
transform theory breaks down [21].
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(iv) Owing to the complicated nature of the governing equations for the unsteady mag-
netohydrodynamic micropolar flow, few attempts have been made to solve problems in
this field. These attempts utilized approximate methods valid for only a specific range of
some parameters. In this work, the method of direct integration by means of the matrix
exponential, which is a standard approach in modern control theory and is developed in
detail in many texts such as [5, 8, 18] is introduced in the field of magnetohydrodynamic
and is applied to specific problems in which the temperature, velocity, and magnetic field
are coupled. This method gives exact solutions in the Laplace transform domain without
any assumed restrictions on the applied magnetic field or the velocity, temperature dis-
tributions, and micropolar parameters. The same approach was used quite successfully
in dealing with problems in generalized thermoelasticity theory [7].
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