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An SI epidemic model for a vertically as well as horizontally transmitted disease is inves-
tigated when the fertility, natural mortality, and disease-induced mortality rates depend
on age and the force of infection corresponds to a special form of intercohort transmis-
sion called proportionate mixing. We determine the steady states and obtain explicitly
computable threshold conditions, and then perform stability analysis.

1. Introduction

In this paper, we study an age-structured SI epidemic model, where age is assumed to be
the chronological age, that is, the time since birth. The disease is fatal and horizontally as
well as vertically transmitted. Horizontal transmission is the passing of infection through
direct or indirect contact with infected individuals, for example, malaria is a horizontally
transmitted disease. Vertical transmission is the passing of infection from parents to new-
born or unborn offspring, for example, AIDS, Chagas, and hepatitis B are vertically (as
well as horizontally) transmitted diseases. Vertical transmission plays an important role
in maintaining some diseases, for example, see [5, 6]. In [14], several examples of ver-
tically transmitted diseases are given, and [5] is devoted to the study of the models and
dynamics of vertically transmitted diseases.

In this paper, we study an SI age-structured epidemic model with vertical transmis-
sion and disease-induced mortality rate. We determine the steady states, prove thresholds
results, and then perform stability analysis.

For the present model, we show that there is a parameter R(α), where α(a) is the
disease-induced mortality rate, which determines the existence of a unique endemic
steady state if R(α) < 1 < R(0) = R0. Actually, in this case, a trivial steady state is also a
possible steady state, and if R0 < 1, then there is only a trivial steady state. The endemic
steady state, under suitable conditions, is locally asymptotically stable whenever it exists;
and the trivial steady state is globally stable if R0 < 1 and unstable if R(α) < 1 < R0.

We also show that if qR(α) > 1, where q is the vertical transmission parameter, see
Section 2 for definitions, then the only steady state for the model is the trivial steady
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state. Note that if q = 0, that is, the case of no vertical transmission, then if R(α) > 1, the
only steady state is the trivial steady state. However, if R(α) > 1, but qR(α) < 1, then an
endemic steady state as well as a trivial steady state are possible steady states; the endemic
steady state may not be unique in this case due to lack of monotonicity.

In addition, we show that if we impose some conditions on the epidemiological and
demographic parameters of the model, then it is possible to show that the model could
give rise to a continuum of nontrivial endemic steady states. In this respect, this model
behaves like the SIR model studied in [8]. Also, by other assumptions, we could obtain
that the total population consists of infectives only or susceptibles only. The stability of
some of these steady states are determined.

In [4], an SIR age-structured epidemic model with disease-induced mortality rate
independent of age, and without vertical transmission, is considered. The analysis was
carried out when the death, birth, and recovery rates are constants independent of age.
Similar threshold conditions for the existence of the unique endemic equilibrium, when
R(α) < 1 < R0, as in this paper are obtained in the special case q = 0. Furthermore, numer-
ical investigations indicated that the endemic equilibrium is locally asymptotically stable,
this is, in agreement with our results in this paper.

In [12, 17], a McKendrick-Von Foerster type equation for an SI age-structured epi-
demic model with disease-induced mortality, but without assuming vertical transmis-
sion, is studied. It is a simpler version of the SIR age-structured epidemic model studied
in [4]. The steady states are determined and some stability results are given. The present
paper generalizes the results of these two papers by including the case of vertical trans-
mission.

In [18], an SI age-structured epidemic model with vertical transmission as well as
horizontal transmission is studied when the disease-induced mortality rate is constant,
and a fraction of the offspring of infected mothers die of AIDS effectively at birth and the
remaining fraction survive. The model is for HIV/AIDS, assuming HIV infection always
leads to AIDS. Analytical results as well as numerical examples are given, and in a simple
example, it has been shown that R0 > 1 is a requirement for the infection to develop; this
is in agreement with our results in this paper. An extension to the model in [18] to an
SIR age-structured epidemic model to model HIV/AIDS, assuming HIV infection does
not necessarily lead to AIDS, is given in [19]. The asymptotic behavior of the solution is
explored and several numerical examples are given. In [1], refinements of the models in
[18, 19] are discussed.

We note that several recent papers have dealt with age-structured epidemic mod-
els with vertical transmission, but without disease-induced mortality, for example, see
[8, 10, 11, 13]. We observe that in such models, there is a restrictive condition on the
epidemiological and demographic parameters of the model for the existence of the en-
demic equilibrium; for example, a typical condition would be, some quantity equals one,
whereas for the models in [12, 17] and this paper, we see that there is some parameter
range of values for which the endemic equilibrium exists.

We also note that the model we investigate in this paper is based on some restrictive
assumptions: we assume that the latent period is negligibly short and the infectivity is
independent of the duration of the infection. As has been stated in [1, 3, 18, 19], this
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simplification is a preliminary to numerical works for a more complicated and realistic
model. For discussions of other types of models and assumptions, see [2, 7, 15, 16, 21, 22].

The organization of this paper is as follows: in Section 2, we describe the model and
obtain the model equations; in Section 3, we reduce the model equations to several sub-
systems; in Section 4, we determine the steady states; and in Section 5, we perform stabil-
ity analysis.

2. The model

In this section, we consider an age-structured population of variable size exposed to a
fatal communicable disease. The disease is both vertically and horizontally transmitted.
We assume the following.

(1) s(a, t) and i(a, t), respectively, denote the age-density for susceptibles and infectives
of age a at time t. Then

∫ a2

a1 s(a, t)da = total number of susceptibles at time t of ages be-
tween a1 and a2 and

∫ a2

a1 i(a, t)da= total number of infectives at time t of ages between a1

and a2.
We assume that the total population consists entirely of susceptibles and infectives.
(2) The horizontal transmission of the disease occurs according to the following pro-

portionate mixing assumption (see Dietz and Schenzle [9]): k1(a)s(a, t)
∫∞

0 k2(a′)i(a′,
t)da′, where k1(a) and k2(a) are bounded, nonnegative, continuous functions of a, and
k2(a) is not identically zero. The term k1(a)

∫∞
0 k2(a′)i(a′, t)da′ is called “force of infec-

tion” and we let λ(t)= ∫∞0 k2(a)i(a, t)da.
(3) The fertility rate β(a) is nonnegative and continuous, with compact support [0,A]

(A > 0). The number of births of susceptibles per unit time is given by s(0, t)=∫∞0 β(a)[s(a,
t) + (1− q)i(a, t)]da, q ∈ (0,1], where q is the probability of vertically transmitting the
disease;

i(0, t)= q
∫∞

0
β(a)i(a, t)da, (2.1)

that is, all newborns from susceptibles are susceptible, but a fraction q of newborns from
infected parents are infective, that is, they acquire the disease via birth (vertical transmis-
sion).

(4) The natural death rate µ(a) is the same for susceptibles and infectives and µ(a) is a
nonnegative, continuous function and there exists a0 ∈ [0,∞) such that

µ(a) > µ > 0 ∀a > a0, µ
(
a2
)
> µ
(
a1
) ∀a2 > a1 > a0. (2.2)

(5) The disease-induced death rate α(a) is a nonnegative, continuous function of a∈
[0,∞).

(6) The initial age distributions s(a,0)= s0(a) and i(a,0)= i0(a) are continuous, non-
negative, and integrable functions of a∈ [0,∞).

These assumptions lead to the following system of nonlinear integro-partial differen-
tial equations with nonlocal boundary conditions, which describes the dynamics of the
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transmission of the disease:

∂s(a, t)
∂a

+
∂s(a, t)
∂t

+µ(a)s(a, t)=−k1(a)s(a, t)λ(t), a > 0, t > 0,

∂i(a, t)
∂a

+
∂i(a, t)
∂t

+µ(a)i(a, t)= k1(a)s(a, t)λ(t)−α(a)i(a, t), a > 0, t > 0,

s(0, t)=
∫∞

0
β(a)

[
s(a, t) + (1− q)i(a, t)

]
da, t ≥ 0,

i(0, t)= q
∫∞

0
β(a)i(a, t)da, t ≥ 0,

λ(t)=
∫∞

0
k2(a)i(a, t)da, t ≥ 0,

s(a,0)= s0(a), i(a,0)= i0(a), a≥ 0.

(2.3)

We note that problem (2.3) is an SI epidemic model; the same model but with q = 0
(the case of no vertical transmission) is dealt with in [12, 17]. Also in [10], problem (2.3)
is considered with α= 0.

3. Reduction of the model

In this section, we develop some preliminary formal analysis of problem (2.3). We define
p(a, t) by

p(a, t)= s(a, t) + i(a, t). (3.1)

Then from (2.3), by adding the equations, we find that p(a, t) satisfies the following:

∂p(a, t)
∂a

+
∂p(a, t)

∂t
+
[
µ(a) +α(a)

]
p(a, t)= α(a)s(a, t), a > 0, t > 0,

p(0, t)= B(t)=
∫∞

0
β(a)p(a, t)da, t ≥ 0,

p(a,0)= p0(a)= s0(a) + i0(a), a≥ 0.

(3.2)

Also, from (2.3), s(a, t) and i(a, t) satisfy the following systems of equations:

∂s(a, t)
∂a

+
∂s(a, t)
∂t

+µ(a)s(a, t)=−k1(a)s(a, t)λ(t), a > 0, t > 0,

s(0, t)=
∫∞

0
β(a)

[
s(a, t) + (1− q)i(a, t)

]
da= B(t)− i(0, t), t ≥ 0,

s(a,0)= s0(a), a≥ 0,

(3.3)

∂i(a, t)
∂a

+
∂i(a, t)
∂t

+µ(a)i(a, t)= k1(a)s(a, t)λ(t)−α(a)i(a, t), a > 0, t > 0,

i(0, t)= q
∫∞

0
β(a)i(a, t)da, t ≥ 0,

i(a,0)= i0(a), a≥ 0,

λ(t)=
∫∞

0
k2(a)i(a, t)da, t ≥ 0.

(3.4)

So, it is clear that (3.2), (3.3), and (3.4) are equivalent to the original problem (2.3).
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4. The steady states

In this section, we look at the steady-state solution of problem (2.3). A steady state s∗(a),
i∗(a), λ∗, and B∗ must satisfy the following equations:

ds∗(a)
da

+µ(a)s∗(a)=−λ∗k1(a)s∗(a), a > 0,

s∗(0)=
∫∞

0
β(a)

[
s∗(a) + (1− q)i∗(a)

]
da= B∗ − i∗(0),

(4.1)

di∗(a)
da

+
[
µ(a) +α(a)

]
i∗(a)= λ∗k1(a)s∗(a), a > 0,

i∗(0)= q
∫∞

0
β(a)i∗(a)da,

(4.2)

λ∗ =
∫∞

0
k2(a)i∗(a)da. (4.3)

Anticipating our future needs, we define the threshold parameter R(α) by

R(α)=
∫∞

0
h(a)da, (4.4)

where h(a) and other related functions are defined as follows:

h(a)= β(a)π2(a), (4.5)

π2(a)= π(a)exp
(
−
∫ a

0
α(τ)dτ

)
, (4.6)

π(a)= exp
(
−
∫ a

0
µ(τ)dτ

)
. (4.7)

Note that R(α) is the expected number of offspring of an infected individual at birth
over a life time. Also note that R(0), usually denoted by R0, is the net reproduction rate.
Thus, R0 is the expected number of offspring produced in a life time by an individual in
the absence of the disease. For example, if R0 > 1, then the total population is growing
and becomes unbounded when t→∞. In this paper, we will see that, in some situations,
R0 may be greater than one but the disease controls the population size and thus, keeps
the size bounded.

By solving (4.1), we obtain that s∗(a) satisfies

s∗(a)= s∗(0)π(a)exp
(
− λ∗

∫ a

0
k1(τ)dτ

)
. (4.8)

By using (4.8) in (4.2), we obtain that i∗(a) satisfies

i∗(a)= i∗(0)π2(a) + λ∗s∗(0)π2(a)
∫ a

0
Fk1 (σ)dσ , (4.9)

where Fυ(σ) is given by

Fυ(σ)= υ(σ)exp
(∫ σ

0

[
α(τ)− λ∗k1(τ)

]
dτ
)
. (4.10)
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Using (4.2) and (4.9), we find that

i∗(0) ·T = qλ∗B∗
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσ da, (4.11)

where T is defined as follows:

T = 1− qR(α) + qλ∗
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσ da. (4.12)

From (4.3) and (4.9), we obtain that

λ∗
[

1− s∗(0)
∫∞

0

∫ a

0
f (a)Fk1 (σ)dσda

]
= i∗(0)

∫∞
0

f (a)da, (4.13)

where f (a) is defined as follows:

f (a)= k2(a)π2(a). (4.14)

In the following proposition, we show that if λ∗ = 0, then the steady state of problem
(2.3) is either the disease-free equilibrium or the trivial equilibrium.

Proposition 4.1. Suppose that λ∗ = 0. Then the steady is either the trivial equilibrium
s∗(a)= 0, i∗(a)= 0, or the disease-free equilibrium

s∗(a)= B∗π(a), i∗(a)= 0, R0 = 1. (4.15)

Proof. If λ∗ = 0, then from (4.13) and assumption (2) in Section 2, i∗(0)= 0; and from
(4.9), i∗(a)= 0. Therefore, from (4.1) and (4.8), s∗(a)= B∗π(a).

From (4.1), we find that B∗[1−R0] = 0; and so if R0 = 1 and B∗ �= 0, we obtain the
disease-free equilibrium (4.15); otherwise, we obtain B∗ = 0, and accordingly, from (4.1)
and (4.8), we obtain the trivial equilibrium s∗(a)= 0, i∗(a)= 0. This completes the proof
of the proposition. �

We note that it is easy to see that (4.15) solves problem (2.3).
We notice that from (4.11) and (4.12), and for a nontrivial equilibrium (B∗ �= 0),T = 0

is equivalent to the following equations:

qR(α)= 1, (4.16)

qλ∗
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσ = 0. (4.17)

In the following proposition, we show that in the special case T = 0 and R0 = 1, the
steady state of problem (2.3) gives rise to a continuum of endemic equilibriums.

Proposition 4.2. Suppose that the following two conditions hold: (1) R0 = q = 1, (2) the
support of both k1(a) and α(a) lie to right of the support of β(a). Then problem (2.3) gives
rise to a continuum of endemic equilibriums.

Proof. From assumptions (1) and (2), we obtain that R(α) = 1, and therefore, (4.16) is
satisfied; also by assumption (2), (4.17) is satisfied, and therefore, T = 0. From (4.11),
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we see that i∗(0) is undetermined. Using (4.9), (4.1), and (4.17), we obtain that s∗(0)
is also undetermined. Using (4.13), we see that for a fixed i∗(0) ∈ (0,B∗] and a fixed
s∗(0)∈ [0,B∗), the left-hand side of (4.13) is an increasing function of λ∗ and approaches
+∞ as λ∗ → ∞, and equals zero if λ∗ = 0. Accordingly, for each i∗(0) ∈ (0,B∗] and
s∗(0) ∈ [0,B∗), we obtain λ∗ > 0 as a solution of (4.13) which gives rise to an endemic
equilibrium. We note that if i∗(0)= 0, then from (4.13), either λ∗ = 0 and thus, the steady
state is given by Proposition 4.1, or λ∗ > 0; and the latter exists if and only if the following
condition holds: s∗(0)

∫∞
0

∫ a
0 f (a)Jk1 (σ)dσda > 1, where Jk1 (σ) is defined as follows:

Jυ(σ)= υ(σ)exp
(∫ σ

0
α(τ)dτ

)
. (4.18)

This completes the proof of the proposition. �

We note that Proposition 4.2 proves that the SI model of this paper and the SIR model
studied in [8] behave in a similar fashion in this special case.

In the following proposition, we determine the steady state of problem (2.3) in the
special case T = 0 and R0 > 1.

Proposition 4.3. Suppose that the following three conditions hold: (1) R0 > 1, (2) qR(α)=
1, and (3) the support of k1(a) lies to the right of the support of β(a). Then the steady state
of problem (2.3) is either the trivial equilibrium or is given by

i∗(a)= B∗π2(a), s∗(a)= 0, R(α)= 1= q. (4.19)

Proof. From B∗ = ∫∞0 β(a)[s∗(a) + i∗(a)]da and (4.8), (4.9), and assumption (3), we ob-
tain that

B∗[R0− 1]= i∗(0)
[
R0−R(α)

]
. (4.20)

So, if R(α) �= R0, then we obtain the following:

i∗(0)= B∗
[
R0− 1

]
[
R0−R(α)

] . (4.21)

Using (4.1), we obtain that s∗(0) satisfies

s∗(0)= B∗
[
1−R(α)

]
[
R0−R(α)

] . (4.22)

From (4.22), we deduce that R(α)≤ 1 since s∗(0)≥ 0, and hence R(α)= 1= q by assump-
tion (2). Accordingly, s∗(0) = 0 and thus, i∗(0) = B∗ from (4.21); and hence we obtain
(4.19) from (4.9).

Now, if R(α)= R0, then from (4.20), we obtain that B∗ = 0 since R0 > 1; and hence the
only steady state, in this case, is the trivial equilibrium s∗(a)= i∗(a)= 0. This completes
the proof of the proposition. �

We note that it is easy to see that (4.19) solves problem (2.3).
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In the next proposition, we determine the steady state of problem (2.3) in the special
case T �= 0 and qR(α)= 1.

Proposition 4.4. Suppose that qR(α)= 1 and (4.17) does not hold. Then the steady state
of problem (2.3) is either the trivial solution or is given by (4.19).

Proof. Since (4.17) does not hold, then T �= 0 and thus, we can use (4.11) to obtain that
i∗(0)= B∗; which implies that s∗(0)= 0 and hence s∗(a)= 0. By using (4.9), we obtain
that i∗(a) = B∗π2(a). From (4.1), we obtain that 0 = s∗(0) = (1− q)B∗R(α) = (R(α)−
1)B∗. Accordingly, either R(α) = 1, and therefore, q = 1; and thus, we obtain (4.19) or
B∗ = 0; and thus, the steady state is the trivial equilibrium. This completes the proof of
the proposition. �

Now, we consider the case T �= 0 and therefore, we can use (4.11) to obtain that i∗(0)
satisfies

i∗(0)= qλ∗B∗

T

∫∞
0

∫ a

0
h(a)Fk1 (σ)dσda. (4.23)

Using (4.23) and (4.1), we obtain that s∗(0) satisfies

s∗(0)= B∗

T

[
1− qR(α)

]
. (4.24)

Thus, using (4.23), (4.24), (4.9), (4.8), and (4.3), we obtain the following:

λ∗
[

1−B∗

T

{(
q
∫∞

0
f (a)da

)∫∞
0

∫ a

0
h(a)Fk1 (σ)dσ da−(1−qR(α)

)∫∞
0

∫ a

0
f (a)Fk1 (σ)dσ da

}]
=0.

(4.25)

In the following theorem, we describe the steady state of problem (2.3) in the case
R(α) < 1 < R0. We note that R0 > 1 describes a situation in which the population size
would grow unboundedly, provided the disease is absent, and the theorem describes a
situation in which the presence of the disease keeps the population size bounded by mor-
tality.

Theorem 4.5. (1) Suppose that R(α) < 1 < R0. Then the steady state of problem (2.3) is ei-
ther the trivial equilibrium, or is given by λ∗ > 0, which is the unique solution of the following
characteristic equation:

1= R(α) + q
[
1−R(α)

]∫∞
0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(τ)dτ

)
da

+ (1− q)
∫∞

0

∫ a

0
h(a)Fα(σ)dσda.

(4.26)

(2) Suppose that R0 < 1. Then the trivial equilibrium s∗(a)= i∗(a)= 0 is the only steady
state.
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Proof. To prove (1), note that since R(α) < 1, then by (4.12), T > 0. Therefore, using B∗ =∫∞
0 β(a)[s∗(a) + i∗(a)]da, and (4.8), (4.9), (4.23), and (4.24), we obtain that

B∗
{

1−R(α)− q
[
1−R(α)

]∫∞
0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(τ)dτ

)
da

− (1− q)
∫∞

0

∫ a

0
h(a)Fα(σ)dσda

}
= 0.

(4.27)

Accordingly, if the steady state is not trivial (B∗ �= 0), then λ∗ satisfies (4.26).
Now, if the support of k1(a) lies to the right of the support of β(a), that is,∫∞

0 β(a)π(a)exp(−λ∗ ∫ a0 k1(τ)dτ)da = R0, then from (4.26), we obtain that (R0 − 1)[1−
qR(α)]= 0, which is not possible since R0 > 1 and R(α) < 1 by assumption (1). Therefore,
(4.27) gives B∗ = 0; and therefore, in the case of nonfertile infectibles, the only steady
state is the trivial equilibrium. If this special case does not occur, then we observe that
the right-hand side of (4.26) is a decreasing function of λ∗ and has a value equal to
[1− qR(α)]R0 + qR(α) > 1, if λ∗ = 0, and tends to R(α) < 1 as λ∗ →∞. Therefore, there
exists a unique λ∗ > 0 which solves (4.26) and gives rise to a unique endemic equilibrium
via (4.25), (4.12), (4.9) (4.23), (4.24), and (4.8). This proves (1).

On the other hand, ifR0 < 1, then this implies thatR(α) < 1, and therefore, from (4.12),
T > 0. Thus, (4.27) holds; and accordingly as before, if the support of k1(a) lies to the right
of the support of β(a), then similar arguments to that given in the proof of (1) show that
the only steady state, in this special case, is the trivial equilibrium. If this special case does
not occur, then as before, the right-hand side of (4.26) is a decreasing function of λ∗,
assumes the value [1− qR(α)]R0 + qR(α) < 1, if λ∗ = 0, and tends to R(α) < 1 as λ∗ →∞.
Therefore, (4.26) and (4.27) give B∗ = 0, and thus, the only steady state for problem
(2.3), if R0 < 1, is the trivial equilibrium. This completes the proof of (2) and therefore,
the proof of Theorem 4.5 is completed. �

In the following proposition, we determine the steady state of problem (2.3) in the
special case of nonfertile infectibles and qR(α) < 1.

Proposition 4.6. Suppose that qR(α) < 1 and the support of k1(a) lie to the right of the
support of β(a). Then the steady state of problem (2.3) is the trivial equilibrium if R0 �= 1;
and if R0 = 1, then the steady state is either the one given by Proposition 4.1 or a continuum
of endemic equilibriums.

Proof. From (4.9) and (4.2), we obtain i∗(0)[1− qR(α)] = 0 and thus, i∗(0) = 0 since
qR(α) < 1. Hence from (4.9) and (4.13), we obtain the following:

i∗(a)= λ∗s∗(0)π2(a)
∫ a

0
Fk1 (σ)dσ , (4.28)

λ∗
[

1− s∗(0)
∫∞

0

∫ a

0
f (a)Fk1 (σ)dσ da

]
= 0. (4.29)

Now, from (4.8), (4.1), and the assumption about the support of k1(a), we obtain that

s∗(0)[1−R0]= 0. (4.30)
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So, if R0 �= 1, then from (4.30), we deduce that s∗(0)= 0, and hence (4.28) and (4.8) give
the trivial equilibrium. Otherwise, if R0 = 1, then (4.30) gives that s∗(0) is undetermined.
Accordingly, from (4.29), we see that either λ∗ = 0, and therefore, Proposition 4.1 gives
the steady state, or

1= s∗(0)
∫∞

0

∫ a

0
f (a)Fk1 (σ)dσ da. (4.31)

We notice that the right-hand side of (4.31) is a decreasing function of λ∗ with a value
greater than one (provided we choose s∗(0) > [

∫∞
0

∫ a
0 f (a)Jk1 (σ)dσ da]−1) when λ∗ = 0

and approaches zero as λ∗ → ∞. Therefore, there exists λ∗ > 0 as a solution of (4.29)
which gives rise to an endemic equilibrium. Thus, we obtain a continuum of endemic
equilibriums. This completes the proof of the proposition. �

In the following lemma, we prove that if qR(α) > 1, then the only steady state of prob-
lem (2.3) is the trivial equilibrium. Note that if q = 0, that is, the case of no vertical
transmission, then from (4.26), we can see that if R(α) > 1, then the only steady state of
problem (2.3), in this special case, is the trivial equilibrium.

Lemma 4.7. Suppose that qR(α) > 1. Then the only steady state of problem (2.3) is the trivial
equilibrium.

Proof. We note that from (4.9) and (4.2), we obtain that

i∗(0)
[
1− qR(α)

]= qλ∗s∗(0)
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσda. (4.32)

Thus, (4.32) gives that i∗(0) = 0 since i∗(0) ≥ 0 and qR(α) > 1. Also from (4.32), we
obtain that

qλ∗B∗
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσ da= 0. (4.33)

Now, from (4.8), (4.9), (4.33), and (4.1), we obtain that

B∗
[

1−
∫∞

0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(τ)dτ

)
da
]
= 0. (4.34)

Therefore, from (4.34), we see that either the steady state is trivial (B∗ = 0) or

1=
∫∞

0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(τ)dτ

)
da. (4.35)

By integrating (4.12) by parts and using (4.35), we conclude that T ≥ 0. Accordingly,
(4.33) gives the result since B∗ must be equal to zero; otherwise, T is negative. Note that
T > 0 gives s∗(0) = 0 by (4.24) since s∗(0) ≥ 0. This completes the proof of the lemma.

�
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In the following theorem, we prove that problem (2.3) has an endemic equilibrium,
when qR(α) < 1 < R0. Note that Lemma 4.7 proved that if qR(α) > 1, then the only steady
state for problem (2.3) is the trivial equilibrium.

Theorem 4.8. Suppose that qR(α) < 1 < R0. Then the steady state of problem (2.3) is either
the trivial equilibrium or is given by λ∗ > 0 which is a solution of the following characteristic
equation:

1= qR(α) +
[
1− qR(α)

]∫∞
0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(τ)dτ

)
da

+ λ∗(1− q)
∫∞

0

∫ a

0
h(a)Fk1 (σ)dσ da.

(4.36)

Proof. We note that T > 0 since qR(α) < 1, and therefore, using (4.26), we obtain (4.36)
by integration by parts.

Now, if the support of k1(a) lies to the right of the support of β(a), then similar ar-
guments to that given in the proof of Theorem 4.5 show that the only steady state, in
this special case, is the trivial equilibrium. If this special case does not occur; then the
right-hand side of (4.36) assumes the value [1− qR(α)]R0 + qR(α) > 1, if λ∗ = 0, and ap-
proaches qR(α) < 1 as λ∗ →∞. Therefore, (4.36) has a solution λ∗ > 0, which gives rise
to an endemic equilibrium via (4.23), (4.24), (4.12), (4.9), and (4.8). This completes the
proof of the theorem. �

We note that this endemic equilibrium may not be unique since the right-hand side of
(4.36) may not be monotone.

5. Stability of the steady states

In this section, we study the stability of the steady states for problem (2.3) as given by the
results in Section 4. Note that as in Section 4, we will continue to define Fυ, f , h, and Jυ,
respectively, by (4.10), (4.14), (4.5), and (4.18) throughout this section.

By integrating problem (3.3) along characteristics lines t− a= constant, we find that

s(a, t)=


s0(a− t)e−

∫ t
0 [µ(a−t+τ)+k1(a−t+τ)λ(τ)]dτ , a > t,[

B(t− a)− i(0, t− a)
]
π(a)e−

∫ a
0 k1(τ)λ(t−a+τ)dτ , a < t.

(5.1)

By integrating problem (3.2) along characteristics lines t− a= constant, we find that

p(a, t)

=




p0(a−t)exp
(
−
∫ t

0

[
µ(a−t+τ)+α(a−t+τ)

]
dτ
)

+
∫ t

0
exp

(
−
∫ t

σ

[
µ(a−t+τ)+α(a−t+ τ)

]
dτ
)
α(a−t+σ)s(a−t+σ ,σ)dσ , a > t,

B(t−a)π2(a)+
∫ a

0
exp

(
−
∫ a

σ

[
µ(τ)+α(τ)

]
dτ
)
α(σ)s(σ , t−a+σ)dσ , a < t.

(5.2)
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From (3.2) and (5.2), we find that

B(t)=
∫ t

0
h(a)B(t−a)da+

∫ t

0

∫∞
0
β(a+σ)exp

(
−
∫ a+σ

a

[
µ(τ)+α(τ)

]
dτ
)
α(a)s(a, t−σ)dadσ

+
∫∞
t
β(a)exp

(
−
∫ a+σ

a

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)
p0(a− t)da.

(5.3)

By integrating problem (3.4) along characteristics lines t− a= constant, we find that

i(a, t)

=




i0(a− t)exp
(
−
∫ t

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)

+
∫ t

0
exp

(
−
∫ t

σ

[
µ(a−t+τ)+α(a−t+τ)]dτ

)
k1(a−t+σ)s(a−t+σ ,σ)λ(σ)dσ , a > t,

i(0, t−a)π2(a)+
∫ a

0
exp

(
−
∫ a

σ

[
µ(τ)+α(τ)

]
dτ
)
k1(σ)s(σ , t−a+σ)λ(t−a+σ)dσ , a < t.

(5.4)

From (3.4) and (5.4), we find that

λ(t)=
∫ t

0

∫∞
0
k2(a+ σ)exp

(
−
∫ a+σ

a

[
µ(τ) +α(τ)

]
dτ
)
k1(a)s(a, t− σ)λ(t− σ)dadσ

+
∫∞
t
k2(a)i0(a− t)exp−

∫ t

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
da+

∫ t

0
f (a)i(0, t− a)da.

(5.5)

Setting i(0)=V(t) and using (3.4) and (5.4), we obtain that

V(t)= q
∫ t

0
h(a)V(t− a)da

+ q
∫ t

0

∫∞
0
β(a+ σ)exp

(
−
∫ a+σ

a

[
µ(τ) +α(τ)

]
dτ
)
k1(a)s(a, t− σ)λ(t− σ)dadσ

+ q
∫∞
t
β(a)i0(a− t)exp

(
−
∫ a

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)
da.

(5.6)

We note that, by assumptions (3), (4), and (6) in Section 2, and the dominated con-
vergence theorem,

∫∞
t
β(a)p0(a− t)exp

(
−
∫ t

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)
da−→ 0, as t −→∞.

(5.7)
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Also, by the same reasoning as above,

∫∞
t
k2(a)i0(a− t)exp

(
−
∫ t

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)
da−→ 0, as t −→∞,

q
∫∞
t
β(a)i0(a− t)exp

(
−
∫ t

0

[
µ(a− t+ τ) +α(a− t+ τ)

]
dτ
)
da−→ 0, as t −→∞.

(5.8)

Consequently, B(t), λ(t), and V(t) satisfy the following limiting equations (see Miller
[20]):

B(t)=
∫∞

0
h(a)B(t−a)da

+
∫∞

0

∫∞
0
h(a+σ)

[
B(t−a−σ)−V(t−a−σ)

]
Jα(a)exp

(
−
∫ a

0
k1(τ)λ(t−a−σ+τ)dτ

)
dadσ ,

λ(t)=
∫∞

0
f (a)V(t−a)da+

∫∞
0

∫∞
0
f (a+σ)Jk1 (a)

[
B(t−a−σ)−V(t−a−σ)

]

× exp
(
−
∫ a

0
k1(τ)λ(t−a+σ+τ)dτ

)
λ(t−σ)dadσ ,

V(t)=q
∫∞

0
h(a)V(t−a)da+q

∫∞
0

∫∞
0
h(a+σ)

[
B(t−a−σ)−V(t−a−σ)

]

× Jk1 (a)exp
(
−
∫ a

0
k1(τ)λ(t−a−σ+τ)dτ

)
λ(t−σ)dadσ.

(5.9)

Now, we linearize the system of (5.9) by considering perturbations w(t), η(t), and ζ(t)
defined by

w(t)= λ(t)− λ∗, η(t)= B(t)−B∗, ζ(t)=V(t)−V∗. (5.10)

Now, if we define

x(t)=


w(t)
η(t)
ζ(t)


 , (5.11)

then the linearization of (5.9) can be rewritten as follows:

x(t)=
∫∞

0
A(σ)x(t− σ)dσ , (5.12)

where A(σ) is given by

A(σ)=




Y11 λ∗ f (σ)
∫ σ

0
Fk1 (a)da f (σ)

[
1−λ∗

∫ σ

0
Fk1 (a)da

]

Y12 h(σ)
[

1+
∫ σ

0
Fα(a)da

]
−h(σ)

∫ σ

0
Fα(a)da

Y13 λ∗qh(σ)
∫ σ

0
Fk1 (a)da qh(σ)

[
1−λ∗

∫ σ

0
Fk1 (a)da

]




, (5.13)
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where

Y11 =
(
B∗ −V∗)[∫∞

0
Fk1 (a) f (a+ σ)da− λ∗

∫ σ

0

∫∞
0

f (a+ σ)Fk1 (a+ τ)dadτ
]

,

Y12 =
(
V∗ −B∗

)∫ σ

0

∫∞
0
h(a+ σ)Fα(a+ τ)k1(a)dadτ,

Y13 = q
(
B∗ −V∗)[∫∞

0
h(a+ σ)Fk1 (a)da− λ∗

∫ σ

0

∫∞
0
h(a+ σ)k1(a)Fk1 (a+ τ)dadτ

]
.

(5.14)

In the following theorem, we show that the trivial equilibrium s∗(a) = i∗(a) = 0 is
unstable if R0 > 1 and locally asymptotically stable if R0 < 1.

Theorem 5.1. The trivial equilibrium B∗ = 0 is unstable if R0 > 1 and locally asymptoti-
cally stable if R0 < 1.

Proof. We note that the characteristic equation for the system (5.12) is given in Appendix
A.

If B∗ = 0, then λ∗ = V∗ = 0, whence the characteristic equation (A.1) becomes [1−
q
∫∞

0 e−σzh(σ)dσ]{1− ∫∞0 e−σzh(σ)dσ − ∫∞0
∫ σ

0 e−σzh(σ)Jα(a)dadσ} = 0, and therefore,

[
1− q

∫∞
0
e−σzh(σ)dσ

][
1−

∫∞
0
e−σzβ(σ)π(σ)dσ

]
= 0. (5.15)

Setting z = x + iy and if we suppose that 1 = ∫∞0 e−σ(x+iy)β(σ)π(σ)dσ , then we obtain
that

1=
∫∞

0
e−σxβ(σ)π(σ)cosσ ydσ , (5.16)

0=
∫∞

0
e−σxβ(σ)π(σ)sinσ ydσ. (5.17)

If R0 > 1, then from (5.16), we see that if we set y = 0 and define a function g(x) by

g(x)=
∫∞

0
e−σxβ(σ)π(σ)dσ , (5.18)

then g(x) is a decreasing function for x > 0, g(x)→ 0 as x→∞, and g(0)= R0 > 1. There-
fore, there exists x∗ > 0 such that g(x∗)= 1. Accordingly, the trivial equilibrium is unsta-
ble.

If R0 < 1, then (5.16) cannot be satisfied for x ≥ 0. Also, by similar argument, we see
that 1− q

∫∞
0 e−σzh(σ)dσ = 0 cannot be satisfied for x ≥ 0. Therefore, the trivial equi-

librium is locally asymptotically stable if R0 < 1. This completes the proof of the theo-
rem. �
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In the next theorem, we show that the trivial equilibrium B∗ = 0 is globally stable if
R0 < 1. A proof of this theorem is essentially contained in [5], and therefore, we omit the
proof.

Theorem 5.2. Suppose that R0 < 1. Then the trivial equilibrium is globally stable.

In the following theorem, we show that the steady state given by Proposition 4.3 is
always unstable, whereas the steady state given by Proposition 4.4 is either locally asymp-
totically stable or unstable, depending on a threshold parameter.

Theorem 5.3. (1) The steady state given by Proposition 4.3 is unstable.
(2) The steady state given by Proposition 4.4 is locally asymptotically stable if∫∞

0 β(a)π(a)exp(−λ∗ ∫ a0 k1(c)dc)da < 1, and unstable if
∫∞

0 β(a)π(a)exp(−λ∗ ∫ a0 k1(c)dc)da
> 1.

Proof. To prove (1), we note that in this case, B∗ = V∗, and therefore, the characteristic
equation (A.1) satisfies the following:

[
1−

∫∞
0
e−σzh(σ)dσ

][
1−

∫∞
0
e−σzβ(σ)π(σ)exp

(
− λ∗

∫ σ

0
k1(c)dc

)
dσ
]
= 0. (5.19)

Whence, by assumption (3) of Proposition 4.3, we obtain that

∫∞
0
β(a)π(a)exp

(
− λ∗

∫ a

0
k1(c)dc

)
da=

∫∞
0
β(a)π(a)da= R0 > 1. (5.20)

Therefore, this steady state is unstable by similar arguments as given in the proof of
Theorem 5.1. This completes the proof of (1). The proof of (2) is similar and therefore is
omitted. This completes the proof of the theorem. �

We note that if we set λ∗ = 0, then the characteristic equation (A.1) satisfies the fol-
lowing:

[
1−

∫∞
0
e−azβ(a)π(a)da

]{[
1− q

∫∞
0
e−azh(a)da

]

×
[

1−B∗
∫∞

0

∫∞
0
e−σz f (a+σ)Jk1 (a)dadσ

]

− qB∗
(∫∞

0
e−az f (a)da

)∫∞
0

∫∞
0
e−σzh(a+σ)Jk1 (a)dadσ

}
= 0.

(5.21)

Then if we set B∗ = 0, we see that we can recover the stability result for the trivial equi-
librium given by Theorem 5.1; but in general, the stability of the disease-free equilibrium
given by Proposition 4.1 is not determined due to lack of information about B∗.

Anticipating our future needs, we define a function D(b;λ∗;B∗) in Appendix B.
In the following theorem, we show that in the special case q = 0, the endemic equilib-

rium with λ∗ > 0 is locally asymptotically stable when R(α) < 1 < R0.
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Theorem 5.4. Suppose that

(1) R(α) < 1 < R0,
(2) dD(b;λ∗;B∗)/db ≤ 0,
(3) β(0) +B∗

∫∞
0 f (a)Fk1 (a)da > 0.

Then the unique endemic steady state with λ∗ > 0 is locally asymptotically stable.

Proof. We start by noting that the imaginary part of the characteristic equation (A.1) can
be rewritten in the following form:

∫∞
0
e−xb sin ybD

(
b;λ∗;B∗)db = 0. (5.22)

We also note that D(0;λ∗;B∗)= β(0) +B∗
∫∞

0 f (a)Fk1 (a)da > 0 by assumption (3).
We can check that D(b;λ∗;B∗) → 0 as b→∞ since β(b) has compact support; and

µ(a) is nonnegative and eventually positive and increasing. Therefore, by assumption (2),
D(b;λ∗;B∗) decreases to zero as b→∞ and e−xbD(b;λ∗;B∗) decreases to zero for x ≥ 0.
Accordingly,

∫∞
0
e−xb sin ybD

(
b;λ∗;B∗

)
db �= 0, if y �= 0. (5.23)

If y = 0, then the real part of the characteristic equation (A.1) satisfies

[
1−B∗

∫∞
0

∫∞
0
e−xσ f (a+ σ)Fk1 (a)dadσ

+ λ∗B∗
∫∞

0

∫ σ

0

∫∞
0
e−xσ f (a+ σ)Fk1 (a+ τ)k1(a)dadτ dσ

]
X

[
1−

∫∞
0
e−xσh(σ)dσ −

∫∞
0

∫ σ

0
e−xσh(σ)Fα(a)dadσ

]

+ λ∗B∗
[∫∞

0

∫ σ

0
e−xσ f (σ)Fk1 (a)dadσ

]

×
[∫∞

0

∫ σ

0

∫∞
0
e−xσh(a+ σ)Fα(a+ τ)k1(a)dadτ dσ

]
= 0.

(5.24)

Now, using (4.26) and (4.25), we get that (5.24) cannot be satisfied when x ≥ 0. Ac-
cordingly, the steady state with λ∗ > 0 is locally asymptotically stable. This completes the
proof of the theorem. �

In the general case q �= 0, we can show that the endemic equilibrium is locally asymp-
totically stable as in Theorem 5.4. But observe that the function D(b;λ∗;B∗;V∗), which
corresponds to the function D(b;λ∗;B∗), in the special case q = 0, takes several pages to
write, and therefore, we omit the details of the proof.



M. El-Doma 251

Appendices

A. The characteristic equation for the system (5.12)

{
1− (B∗ −V∗)[∫∞

0

∫∞
0
e−σz f (a+ σ)Fk1 (a)dadσ

− λ∗
∫∞

0

∫ σ

0

∫∞
0
e−σz f (a+ σ)Fk1 (a+ τ)k1(a)dadτ dσ

]}

×
{[

1−
∫∞

0
e−σzh(σ)dσ −

∫∞
0

∫ σ

0
e−σzh(σ)Fα(a)dadσ

]

×
[

1− q
∫∞

0
e−σzh(σ)dσ + qλ∗

∫∞
0

∫ σ

0
e−σzh(σ)Fk1 (a)dadσ

]

+ λ∗q
(∫∞

0

∫ σ

0
e−σzh(σ)Fα(a)dadσ

)(∫∞
0

∫ σ

0
e−σzh(σ)Fk1 (a)dadσ

)}

+ λ∗
∫∞

0

∫ σ

0
e−σz f (σ)Fk1 (a)dadσ

×
{(

B∗ −V∗)
∫∞

0

∫ σ

0

∫∞
0
e−σzh(a+ σ)Fα(a+ τ)k1(a)dadτ dσ

×
[

1− q
∫∞

0
e−σzh(σ)dσ + qλ∗

∫∞
0

∫ σ

0
e−σzh(σ)Fk1 (a)dadσ

]

+ q
(
B∗ −V∗)∫∞

0

∫ σ

0
e−σzh(σ)Fα(a)dadσ

×
[∫∞

0

∫∞
0
e−σzh(a+ σ)Fk1 (a)dadσ

− λ∗
∫∞

0

∫ σ

0

∫∞
0
e−σzh(a+ σ)Fk1 (a+ τ)k1(a)dadτ dσ

]}

+
[
λ∗
∫∞

0

∫ σ

0
e−σz f (σ)Fk1 (a)dadσ −

∫∞
0
e−σz f (σ)dσ

]

×
{
λ∗q

(
V∗ −B∗

)∫∞
0

∫ σ

0

∫∞
0
e−σzh(a+ σ)Fα(a+ τ)k1(a)dadτdσ

×
(∫∞

0

∫ σ

0
e−σzh(σ)Fk1 (a)dadσ

)

+ q
(
B∗ −V∗)[1−

∫∞
0
e−σzh(σ)dσ −

∫∞
0

∫ σ

0
e−σzh(σ)Fα(a)dadσ

]

×
[∫∞

0

∫∞
0
e−σzh(a+ σ)Fk1 (a)dadσ

− λ∗
∫∞

0

∫ σ

0

∫∞
0
e−σzh(a+ σ)Fk1 (a+ τ)k1(a)dadτ dσ

]}
= 0,

(A.1)

where Fυ(σ), f (a), and h(a) are given, respectively, by (4.10), (4.14), and (4.5).
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B. The function D(b;λ∗;B∗)

D
(
b;λ∗;B∗

)= h(b) +h(b)
∫ b

0
Fα(a)da

+B∗
{∫∞

0
f (a+ b)Fk1 (a)da

−
∫∞

0

∫ b

0

∫ b

0
h(b− σ) f (a+ σ)Fk1 (a)Fα(m)dmdσ da

−
∫∞

0

∫ b

0
h(b− σ) f (a+ σ)Fk1 (a)dσ da

}

+ λ∗B∗
{∫∞

0

∫ b

0

∫ b

0

∫ σ

0
f (a+ σ)Fk1 (a+ τ)k1(a)Fα(m)h(b− σ)dτ dmdσ da

−
∫∞

0

∫ b

0

∫ b

0

∫ σ

0
f (b− σ)h(a+ σ)Fα(a+ τ)k1(a)Fk1 (m)dτ dmdσ da

+
∫ b

0

∫∞
0

∫ σ

0
h(b− σ) f (a+ σ)Fk1 (a+ τ)k1(a)dτ dadσ

−
∫ b

0

∫∞
0

f (a+ b)Fk1 (a+ τ)k1(a)dadτ
}

,

(B.1)

where Fυ(σ), f (a), and h(a) are given, respectively, by (4.10), (4.14), and (4.5).
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