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We let Q(r) be the axially symmetric bounded domains which satisfy some suitable con-
ditions, then the ground-state solutions of the semilinear elliptic equation in Q(r) are
nonaxially symmetric and concentrative on one side. Furthermore, we prove the neces-
sary and sufficient condition for the symmetry of ground-state solutions.

1. Introduction

Let N > 2 and 2 < p < 2*, where 2* = 2N/(N —2) for N > 3 and 2* = o for N = 2.
Consider the semilinear elliptic equation

—Au+u=|ulP?u inQ,

1.1
u=0 onoQ, (L.1)

where ) is a domain in RN. When Q is a bounded domain in RN being convex in the
z; direction and symmetric with respect to the hyperplane {z; = 0}, the famous theorem
by Gidas, Ni, and Nirenberg [6] (or see Han and Lin [7]): if u is a positive solution of
(1.1) belonging to C?(Q) N C(Q), then u is axial symmetric in z;. However, the axially
symmetry of positive solution generally fails if Q) is not convex in the z; direction. For
instance, Dancer [5], Byeon [2, 3], and Jimbo [8] proved that (1.1) in axially symmetric
dumbbell-type domain has nonaxially symmetric positive solutions. Wang and Wu [13]
and Wu [15] showed the same result in a finite strip with hole. In this paper, we want to
show that the symmetry and concentration behavior of ground-state solutions in axially
symmetric bounded domains Q(r) (will be defined later), where the domains Q(r) are
different from those of Dancer [5], Byeon [2, 3], Jimbo [8], and are extensions of Wang
and Wu [13] and Wu [15]. The definition of ground-state solution of (1.1) is stated as
follows. Consider the energy functionals a, b, and J in H} (Q),

a(u)=jﬂ(|w|2+u2>, b(u)=jﬂ|u|f’, 1(u>=§a<u>—%b(u). (12)
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It is well known that the solutions of (1.1) are the critical points of the energy func-
tional J. Consider the minimax problem

ar(Q) = yeilrl(fmtgl[g}/(y(t)), (1.3)
where
I(Q) = {y € C([0,1],H§(Q)) | y(0) = 0,y(1) = e}, (1.4)

J(e) =0 and e # 0. We call a non zero critical point u of J in H¢(Q) with J(u) = ar(Q)
a ground-state solution. It follows easily from the mountain pass theorem of Ambrosetti
and Rabinowitz [1] that such a ground-state exists. We remark that the ground-state
solutions of (1.1) can also be obtained by the Nehari minimization problem

a(Q) = veglof(m](V), (1.5)

where My(Q) = {u € Hj(Q)\{0}|a(u) = b(u)}. Note that My()) contains every nonzero
solution of (1.1) and ar(Q) = ap(Q) (see Willem [14] and Wang [12]).

Now, we consider the following assumptions of an axially symmetric unbounded do-
main Q. For the generic point z = (x,y) € RN xR,

(Q1) Qis a y-symmetric (axially symmetric) domain of R¥, that is, (x, y) € Q if and
only if (x,—y) € Q;

(Q2) Q is separated by a y-symmetric bounded domain D, that is, there exist two dis-
joint subdomains ; and Q, of Q such that

(x,y) € O, ifand only if (x,—y) € Q,

_ (1.6)

Q\D=0Q;UQy;

(Q3) equation (1.1) in Q does not admit any solution u € H}(Q) such that J(u) =
(X()(Q).

Now, we give some examples. The infinite strip with hole: Q" = A"\w, where A" =
BN"1(0;r) x Rand w C A" isa y-symmetric bounded domain, and Q" = {(x, y) € RN "1 x
R||x|? < |yl +1}. Clearly, Q" and Q" satisfy (1) and (Q2). Furthermore, by Lien, Tzeng,
and Wang [9, Lemma 2.5], if Q) is a ball-up domain in RV, then (1.1) in Q does not admit
any solution u € H}(Q) such that J(u) = ao(Q). Thus, the domain Q" satisfies (Q3).
Moreover, along the same line of the proof of Lien, Tzeng, and Wang [9, Lemma 2.5], we
obtain a(Q)') = ap(A"). By Lemma 2.8, the domain )’ satisfies (Q23) (or see Wang [12,
Example 2.13 and Proposition 2.14]).

Let Q(r) = QN BY(0;7) be a y-symmetric bounded domain and let Qf = {(x,y) € Q|
y>t}and Q; = {(x,y) € Q| y < t}, then our first main result is the following theorem.

THEOREM 1.1. Suppose that Q satisfies (Q1), (Q2), and (Q3). Then, for each € >0 and
1> 0 there exists an ¥(g,1) > 0 such that for r > ¥(e,1), if v is a ground-state solution of (1.1)
in Q(r), then either fQ; |v|P < e or IQ[ [v|P <.
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Note that, if we take ¢ = (p/(p — 2))ao(Q2) and I = 0, then there exists an ry > 0 such
that for r > ry, every ground-state solution of (1.1) in Q(r) is not y-symmetric. Then, we
have the following result.

CorOLLARY 1.2. Let e = (p/(p —2))ao(Q) and | = 0, then there exists an ry > 0 such that
forr >ry, (1.1) in Q(r) has at least three positive solutions of which one is y-symmetric and
the other two are not y-symmetric.

By Theorem 1.1, for each € > 0 and [ > 0 there exists an m € N such that for each m >
mo, (1.1) in Q(m) has a ground-state solution vy, that satisfies IQT [V |P < € or IQZ; [V |P <
&. Then, we have the following results.

TaeOREM 1.3. (i) The sequence {v,,} is a (PS)q,q)-sequence in Hy (Q) for J;
(ii) vy — O weakly in LP(Q) and in H}(Q) as m — oo,

By Theorem 1.1, the ground-state solutions of (1.1) in Q(r) are not y-symmetric for
large r. In this motivation, we consider the positive ground-state solutions of the follow-
ing equation:

—Au+u=f(u) in0,

u=0 onoao, (1.7)

where ® is a y-symmetric bounded domain and the nonlinear term f is usually assumed
to satisfy the following conditions:
(f1) f(=t)=—f(t) and f(t) = o(|t]) near t = 0;
(f2) there exist two constants 6 € (0,1/2) and Cy > 0 such that 0 < F(u) = [y f(s)ds <
Ou f (u) for all u = C;
(f3) If(0)] <CJt]|1 forsome 1 < g< (N+2)/(N—-2)if N>2,1<g< oo if N=2and
for large t;
(f4) 0*f/0t3(t) = 0 for t # 0.
f(£) = [t|P~2t is a typical example. Under the conditions (/1) through (f3), the def-
inition of ground-state solutions of (1.7) is similar to the minimax problem (1.3). Here,
we modify the proof of Chern and Lin [4] to get the following results.

THEOREM 1.4. Let v € C*(®) N C(®) be a positive ground-state solutions of (1.7) in ©.
Then, there existsazo € {y =0} N @ such that (0v/0y)(zy) =0 if and only if v is y-symmetric.

CoroLLARY 1.5. If v is a positive ground-state solution of (1.1) in Q(r) as in Corollary 1.2
and z is a critical point of v, then z. & {y = 0} N Q. In particular, either (dv/dy)(z) <0 or
(0v/0y)(z) >0 forallz € {y =0} N Q.

2. Preliminaries

We define the y-symmetric domains and y-symmetric functions as follows.

Definition 2.1. (i) Q is y-symmetric provided that z = (x,y) € Q if and only if (x,—y) €
Q

(i) let Q be a y-symmetric domain in RY. A function u: Q — R is y-symmetric (axi-
ally symmetric) if u(x, y) = u(x,—y) for (x,y) € Q.
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Throughout this paper, let Q be a y-symmetric domain in RN, H,(Q) the H!- closure
of the space {u € Cy’(Q) | u is y-symmetric} and let X(Q) be either the whole space
H{}(Q) or the y-symmetric Sobolev space H;(Q). Then, Hy(Q) is a closed linear subspace
of H}(Q). Let H;'(Q) be the dual space of H,(Q).

We define the Palais-Smale (PS) sequences, (PS)-values and (PS)-conditions in X(Q)
for J as follows.

Definition 2.2. We define the following:

(i) for B € R, a sequence {u,} is a (PS)g-sequence in X(Q) for J if J(u,) = f+o(1)
and J'(u,) = o(1) strongly in X~'(Q) as n — oo;
(ii) B € Ris a (PS)-value in X(Q) for ] if there is a (PS)g-sequence in X(Q) for J;
(iii) J satisfies the (PS)g-condition in X (Q) if every (PS)g-sequence in X(Q) for J con-
tains a convergent subsequence.

By Willem [14], for any B € R, a (PS)g-sequence in X (Q) for ] is bounded. Moreover,
a (PS)-value 8 should be nonnegative.

LEmma 2.3. Let B € R and {u,} be a (PS)s-sequence in X(Q) for ], then there exists a
positive number c(f3) such that ||u,|lm < c(B) for large n. Furthermore,

a(tan) = b(u) +0(1) = %/mm 2.1

and 8 = 0. Moreover, c(f3) can be chosen so that ¢() — 0 as § — 0.

Now, we consider the Nehari minimization problem
ax(Q) = inf J(u), (2.2)
ueM(Q)

where M(Q) = {u € X(Q)\{0} | a(u) = b(u)}. Note that M(Q) contains every nonzero
solution of (1.1) in Q, ax(Q) >0 and if uy € M(Q) achieves ax(Q), then uy is a positive
(or negative) solution of (1.1) in Q (see [13, 14]). Moreover, we have the following useful
lemma, whose proof can be found in [13, Lemma 7].

LemMaA 2.4. Let {u,} be in X(Q). Then, {u,} is a (PS)ay()-sequence in X(Q) for J if and
only if J(u,) = ax(Q) +o(1) and a(u,) = b(u,) +o(1).
We denote
(1) ax(Q) by ap(Q) for X(Q) = H}(Q) and ax (Q) by as(Q) for X(Q) = H,(Q),
(i) M(Q) by My(Q) for X(Q) = H (Q) and M(Q) by M(Q) for X(Q) = H,(Q).
Remark 2.5. By the principle of symmetric criticality (see [11]), we have every (PS)s-
sequence in X (Q) for J is a (PS)s-sequence in H}(Q) for J.

Let Q be any unbounded domain and & € C*([0,00)) such that 0 <& < 1 and

o fort e [0,1],
§0) = {1 fort € [2,00). (2.3)
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Let

2
bio=¢(22) 4
n
Then, we have the following results whose proof can be found in [15].

ProrosITION 2.6. Equation (1.1) in Q does not admit any solution ug such that J(uy) =
ax(Q) if and only if for each (PS)ayq)-sequence {u,} in X(Q) for J, there exists a subse-
quence {uy} such that {&,uy} is also a (PS)qy (q)-sequence in X(Q) for J.

PRrOPOSITION 2.7. ] does not satisfy the (PS)qy q)-condition in X (Q) for J if and only if there
exists a (PS)qy () -sequence {uy} in X (Q) for ] such that {&,u,} is also a (PS) ) -sequence
in X(Q) for].

Let Q; € O, clearly ax(Q1) = ax (). Then, we have the following useful results.
= y g

LEmMMA 2.8. Let O ; Oy and ] : X(Q,) — R be the energy functional. Suppose that ax (1)
= ax(Q,). Then, the following hold:

(i) equation (1.1) in O, does not admit any solution uy € X(Q1) such that J(uy) =
ax();
(ii) ] does not satisfy the (PS)qy (q,)-condition.

The proof is given by Wang and Wu [13, Lemma 13].
By the Rellich compact theorem, J satisfies the (PS)qy(q)-condition in X(Q) if Q is a
bounded domain.

LEMMA 2.9. Let Q be a bounded domain in RN. Then, the (PS)ayq)-condition holds in
X(Q) for ]J. Furthermore, (1.1) in Q has a positive solution ug such that J(ug) = ax(Q).

3. Concentration behavior
We need the following results.

LemMA 3.1. Let Q be an unbounded domain. Then,

ax (Q(r)) N ax(Q) asr /7 co. (3.1)
Proof. Since Q(r) is a bounded domain for all r > 0, by Lemmas 2.8 and 2.9, we have
ax(Q(r)) is monotone decreasing as r is monotone increasing and ax(Q(r)) > ax(Q).
Thus, there exists a dy > ax(Q) such that

ax (Q(r)) Ndy asr /oo, (3.2)

Claim that dy < ax(Q). Let {u,} be a (PS)q,(q)-sequence in X(Q) for J. By Lemma 2.3,
there exists a ¢ > 0 such that

L2|Vun|2+uf,SC, J0|un|Psc (3.3)
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for all n € N. Thus, for each n € N, there exists a sequence {r,} such that r, >0 with
7, / o asn — o and

2 1 1
J | Vi, | +1d < =, f lun |7 < = (3.4)
Qnflzl=r,} n Qnflzl=r,} n

Now, define #,, (z) = n(2|z|/r,), where n € CZ®([0,0)) satisfies 0 < # < 1 and

) = 1 forte0,1], (3.5)
V=70 for t € [2, ). '

Then, #,,u, € X(Q). From (3.4), we obtain

a(fy,un) = a(un) +o(1),
b(1s,un) = b(uy) +0(1). (3.6)

By the routine computations, there exists a sequence {s,} C R* such that a(s,#,,u,) =
b(suHr,Un), sn = 1+0(1) and

J(sutr,tin) = J (11, u) +0(1) = ax(Q) +o(1), (3.7)

that is, s,7,, un € M(Q(1,)) and J(su#y, ttn) = ax(Q(r,)) = do + 0o(1). Taking n — oo , we
get ax (Q) > dy. Therefore, ax(Q) = do. O

Let Of = {(x,y) € Q| y >t} and Q; = {(x,y) € Q| y < t}. Then, we have the follow-
ing result.

LEMMA 3.2. Suppose that the domain Q satisfies (A1), (Q2), and (Q3). Then, for each e >0
and | = 0, there exists a §(&,1) > 0 such that if u € My(Q) and J(u) < ap(Q) + 6(¢,1), then
either [op [ul? <eor o lul? <e.

Proof. If not, there exist ¢ >0, Iy = 0, and {u,} C My(Q) such that J(u,) = ao(Q) +0(1),

L)* lun|? = c, J;r lun|? = c. (3.8)

Iy =l

By Lemma 2.4, {u,} is a (PS)4q)-sequence in H}(Q) for J. Now, Q satisfies condi-
tion (Q3). By Proposition 2.6, there exists a subsequence {u,} such that {,u,} is also
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a (PS)g,(q)-sequence in H} (Q) for J, where &, is as in (2.4). Let v,, = &,u,,. We obtain

J(vn) = ao(Q) +0(1),

J'(va) =0o(1) in H}(Q). (3.9)

Since Q) is a y-symmetric domain in RY separated by a bounded domain, there exists a
no > lp such that v, = 0 in Q(np) for n > 2no, and Q\Q(ny) = Q1 U Oy, where Q) = QO
and Q, = Q~, . Moreover, v, = v, +v2, where

vi(z) =

n fa Qi
{V (@) forzeli o i 1, (3.10)

0 forz & Q;
Then, v}, € H}(€;) and a(vi)) = b(vi,) + o(1). By (3.9), we obtain
J'(vi) = o(1) strongly in H™!(Q;) fori=1,2. (3.11)
Assume that
J(v.)) =ci+o(l) fori=1,2. (3.12)

Since J(vy) = J(v)) +J(v2) = ao(Q) + o(1), we have ¢ + ¢; = ag(Q). Since ¢; are (PS)-
values in Hj (Q;) for J, by Lemma 2.3, ¢; > 0 and

2p )\ _ 1P _ p
cl<p_2)—J%|vn| +o(1) J%|un| +o(1),

(3.13)
q(ﬁz) = L} [val” +o(1) =j |t ” 4 0(1).
By (3.8), we have ¢; > 0 for i = 1,2. We have that
ap(Q) =c1+c = ap(Qr) +a0(Q2), (3.14)
which contradicts the fact that ag(Q) < ao(Q;) fori=1,2. O

Now, we begin to show the proof of Theorem 1.1. By Lemma 3.1, for each ¢ >0 and
I > 0, there exists a §(g,I) > 0 such that if u € My(Q) and J(u) < ag(Q) + 6(e&,1), then
IQ? |ul? < ¢ or ‘[Q:l lul? < &. Moreover, by Lemma 3.2, there exists an 7 > 0 such that
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ap(Q(r)) < ap(Q) + 8(e) for all r > 7. Thus, if v is a ground-state solution of (1.1) in
H}(Q(r)) for r > 7, then v € Mo(Q(r)) C Mo(Q), J(v) < ao(Q) + 8(¢) and either
JQT [v|P < € or fQ:I [v|P <e.

Now, we begin to show the proof of Theorem 1.3.

(i) By Lemma 3.1, we have J (vy,,) = ao(Q(m)) = ap(Q) +0(1). Since v, € Mo(Q(m)) C
M, (Q), from Lemma 2.4 we can conclude that {v,,} is a (PS)q,(q)-sequence in H}(Q)
for]J.

(ii) Let v € L1(Q)), where 1/p +1/g = 1. Then, for each & > 0 there exists an [ > 0 such
that

J ]9 < g, (3.15)
Q)¢
By Theorem 1.1, there exists an 1 > I such that
J |V |T< &P Ym>my. (3.16)
Q)

Thus, for each € > 0 there exists an mg such that

1/p 1/q
J vmv=J vmv+J vmvs(J |vm|P) <I |v|‘1>
Q Q)¢ Q) Q) Q)¢

1/p 1/q
+<J \Vm|P> (J V|q> <(c+c)e VYm>my,
Q) Q)

where ¢; = ((2p/(p —2))ap(Q)) and ¢; = [|v]lzq. This implies that v, — 0 weakly in LP(Q))
as m — 0. Since v,, is a solution of (1.1) in Q(m), we have

(3.17)

J vaV¢+vm¢=J |vm|p72vm<p V¢ € Hy (Q(m)). (3.18)
Q(m) Q(m)
First, we need to show for each ¢ >0 and ¢ € C!(S) there exists an m such that
J VvuVo+tvup<e Ym>my (3.19)
Q(m)

for ¢ € C(Q). Let K = supp ¢, then K C Q is compact and there exists an m; such that
K c Q(m) for all m = m;. From Theorem 1.4, for each ¢ > 0 there exist [ > 0 and m, such
that ¢ € Hj(Q(m)),

J lpl? =0, J |V | < €27DP > my. (3.20)
(Q(lp))e Q)

c



Tsung-Fang Wu 1027

We obtain
P2 _J P2 I
v, vV, = v, V. + vV,
o Lol vmg= | vl g |
(p-1/p 1/p
(j |vm|") (J |<p|P)
Q)¢ @) (3.21)
(p=1/p /p
(] b |"> (f | |P)
< Q) " Q(ly) ¢

)
1P ube

IA

< cg,
Vv,V +j Vi@ = Vv,V +J vV,
J;) mV e Q mg Q(m) mV Q(m) m¢ (3 22)
:J |vm|p72vm(p Vm > my.
Q(m)
We have that
J vaV<p+I Vm@ < ce  Ym>my. (3.23)
Q Q

Since ap(Q(m+1)) < ap(Q), there exists a C > 0 such that ||v,,]|g1 < C. Thus, for each
€ >0and y € H}(Q), there exists a ¢ € C!(Q) such that

ly — @llm < % (3.24)

From (3.23) and (3.24), we can conclude that for each ¢ >0 and y € H}(Q) there exists
an myg > 0 such that

Vs W) g = Vs ¥ = @) i + (Vi @)
<Clly = ollg + Vi, @) i (3.25)
<e+ce form>my.

This implies that v,, — 0 weakly in Hg (Q).

4. Symmetry
Now, we begin to show the proof of Theorem 1.4. Let v be a ground-state solution of
(1.7) in © and let z* = (x,—y) be the reflection point of z = (x, y) with respect to the
hyperplane T := {y = 0}. First, we claim that either

v(z) =v(z*) VzeO' (4.1)

or

v(z) <v(z*) Vze® (4.2)
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where ©7 is one of half domain ®\T. If not, then the following two sets

Ay ={z€e 0@ |v(z) >v(z¥)}, (4.3)
A_={ze®' | v(z) <v(z*)}, (4.4)

are nonempty. Let w(z) = v(z) — v(z*) for z € ®F. Then, w satisfies

Aw—w+ f,({(2))w=0, in®%,

4.5
w=0, ind®, (4.5)
where {(z) is between v(z) and v(z*). Let
A*=1{z"zeA_}. (4.6)
For d > 0, we define a function
w(z) ifzeA,,
ug(z) =4dw(z*) ifze A*, (4.7)
0 otherwise.
Since [, w¢1 >0and [, w¢; <0, there exists a constant dy >0 such that
j Udy 1 = J wr +d0J wer =0, (4.8)
) A, A
where ¢, is the first positive eigenfunction of the following eigenvalue problem:
A-1+£{(2))p+Ap=0 in®,
( f(§(2)))¢+A¢ (49)

¢=0 onodo.

Let A, be the second eigenvalue of (4.9). Since v is a ground-state solution of (1.7), by the
same method of the proof of Theorem 2.11 in [10], we have A, is nonnegative. Moreover,
by (4.3)—(4.7), we have

Aug—ug+ f,({(z))ua >0 forze A,
Aug—ug+ f,({(z))ua<0 forze A*, (4.10)
Aug—ug+ f,({(z))ua =0 otherwise.
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Therefore, from (4.8) and (4.10), we have
0> || ~ua@)[Bua(2) = s+ £,(0(2)us(2))dz
_ J@ [ Vua(2) |+ — £, ({(2)i(2)]dz (4.11)
2 >
> J@ us(z)dz = 0,

a contradiction. This proves inequalities (4.1) and (4.2). By (4.1) and (4.2), we may as-
sume w(z) = 0 for all z € ®*, if w(z) > 0 for some z € ®@*. Since w satisfies (4.5), by using
the strong maximum principle, we have w >0 in @*. Similarly, if w(z) < 0 and w(z) <0
for some z € ®*, we have w < 0 in ®*. Suppose that w(z) >0 for all z € ®@*. Then, from
(4.5) and applying the Hopf Lemma, we have

ow v

(Z()) = —2@(20) <0. (4.12)

Similarly, if w(z) < 0 for all z € ®, we have (dv/9) y(zo) < 0, this contradicts the fact that
(0v/0) y(zp) = 0. Therefore, w(z) = 0 forallz € ®* or v(x, y) = v(x,—y) forall (x, y) € ©.
The converse is obvious.
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