
LAPLACE TRANSFORM GENERATION THEOREMS
AND LOCAL CAUCHY PROBLEMS

CLAUS MÜLLER
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We give new criterions to decide if some vector-valued function is a local Laplace trans-
form and apply this to the theory of local Cauchy problems. This leads to an improvement
of known results and new Hille-Yosida-type theorems for local convoluted semigroups.

1. Introduction

Let X be a Banach space, x ∈ X , T > 0, h ∈ L1([0,T],K), and f (t) := ∫ t0 h(s)ds the anti-
derivative of h.

Assume A :D(A)→ X is some closed (linear) operator in X .
Consider the abstract Cauchy problem

(ACP) Aw(t)=w′(t) if 0≤ t ≤ T , w(0)= x , and w ∈ C1([0,T],X)

and the f -regularized problem

(ACP f ) Au(t) + f (t)x = u′(t) if 0≤ t ≤ T , u(0)= 0, and u∈ C1([0,T],X).

If w solves (ACP), then the convolution u :=w∗ f solves (ACP f ), since

u′ =w′ ∗ f + f (·)x =w∗h on [0,T]. (1.1)

Any function u that solves (ACP f ) is called h-regularized solution of (ACP).
Now assume that 0∈ supph, which means that h does not vanish on any interval [0,ε),

and which is equivalent to 0∈ supp f .
By the theorem of Titchmarsh-Foiaş (see [3]) the convolution operator

S f : C
(
[0,T],X

)−→ C0
(
[0,T],X

)= {g ∈ C([0,T),X
) | g(0)= 0

}
,

S f g = g ∗ f ,
(1.2)

can be extended to an isometric isomorphism

S̃ f : C[ f ]([0,T],X
)−→ C0

(
[0,T],X

)
, (1.3)
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where the space C[ f ]([0,T],X) of generalized functions is the completion of C([0,T],X)
with norm ‖g‖ := ‖S f g‖∞. On this construction see also [9]. Thus, if w solves (ACP),
then S f w solves (ACP f ).

This gives a reason to extend the notion of solutions of (ACP): a generalized function
w ∈ C[ f ]([0,T],X) is called h-generalized solution of

(ACP∗) Aw(t)=w′(t) if 0≤ t ≤ T , w(0)= x
if u= S̃ f w solves (ACP f ), that is, if S̃ f w is an h-regularized solution of (ACP).

The notation of generalized solutions was introduced by Cioranescu and Lumer [5, 6].
If w is an h-generalized solution of (ACP∗), there is a sequence (vn)n ⊂ C([0,T],

D(A)) with limv vn = u′ in C([0,T],X) and with limn v
[1]
n = u in C([0,T],D(A)) (where

D(A) denotes the Banach space D(A) with the graph norm).

Thus, limn vn = u′, and limn(Av[1]
n + f (·)x− vn)= 0 in C([0,T],X).

If (vn)n ⊂ C([0,T],X) converges uniformly and satisfies v[1]
n (t) ∈ D(A) for all t and

limn(Av[1]
n + f (·)x − vn) = 0 uniformly, then (vn)n is called h-approximate solution of

(ACP). Thus to every h-generalized solution there is an h-approximate solution.
On the other hand, if (vn)n is an h-approximate solution of (ACP), thenwn = S̃−1

h (vn−
vn(0)) converges in C[h]([0,T],X) to some w, and u = S̃ f w = limn v

[1]
n solves (ACP f ).

On approximate solutions see [1, 2]. Consequently, the notations of generalized solution
of (ACP∗), of approximate solutions of (ACP), and (classical) solutions of (ACP f ) are
equivalent. That is the reason why it is interesting to study problems of type (ACP f ).

We first clarify the notations.
If X is some Banach space, g ∈ Lloc

1 ([0,∞),X), and α,τ > 0, we let

g(−α)(t) := g[α](t) := 1
Γ(α)

∫ t
0
sα−1g(t− s)ds (1.4)

be the αth integral of g. If there is some h∈ C([0,τ],X) with g = h[α], then let g(α) = h be
the αth derivative of g.

The finite Laplace transform of g on [0,τ] is given by

ĝτ(λ)= g∧τ (λ) :=
∫ τ

0
e−λtg(t)dt. (1.5)

If α > 0 and g is exponentially bounded for large arguments, then g[α] is exponentially
bounded for large arguments, and

λα
∫∞

0
e−λtg[α](t)dt =

∫∞
0
e−λtg(t)dt =: ĝ(λ)= g∧(λ) (1.6)

for all large Reλ, which is the Laplace transform of g.
In fact we have, if τ > 0,

λα
∫ τ

0
e−λtg[α](t)dt ∼τ

∫ τ
0
e−λtg(t)dt, (1.7)
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where

f (λ)∼τ h(λ)⇐⇒ limsup
λ→∞

ln
∣∣ f (λ)−h(λ)

∣∣
λ

≤−τ

⇐⇒ lim
λ→∞

e−δλeλτ
∣∣ f (λ)−h(λ)

∣∣= 0 ∀δ > 0.
(1.8)

This follows from

λα
∫ τ

0
e−λtg[α](t)dt = λα

Γ(α)

(
pα−1∗ g

)∧
τ (λ), where pβ(s)= sβ,

∼τ
λα

Γ(α)

(
pα−1

)∧
(λ) · g∧τ (λ)= g∧τ (λ).

(1.9)

In trying to get a nice theory how to solve abstract Cauchy problems

Aux(t) + f (t)x = u′x(t) if 0≤ t ≤ τ,

ux(0)= 0,

ux ∈ C1([0,τ],X
)
,

(1.10)

with continuous inhomogeneity f , it seems to be natural first to consider inhomo-
geneities of type tβ, where β ∈ N or, more generally, β ≥ 0. The reason for this is that
if the problem is well posed on [0,τ] with this inhomogeneity, that is, A generates a β-
integrated semigroup on [0,τ], then it is well posed with inhomogeneities h[β+1], where
h ∈ L1([0,τ],K), that is, A generates a local h[β+1]-convoluted semigroup on [0,τ]. This
is shown in Section 2.

Section 3 starts with a generalization of the complex representation theorem, see
[4, 12]. This will lead to an improvement of [7, Theorem II].

In Section 4, we generalize a representation theorem of Prüss [12] and develop a new
Hille-Yosida-type theorem for integrated semigroups.

2. Integrated semigroups

In this section, we show that it is worthwhile to study integrated semigroups, that is,
abstract Cauchy problems (ACP f ) with inhomogeneities f (t)= tβ.

If τ > 0, we say that a subspace Y ⊂ L1([0,τ],K) satiesfies property (A) if Y is closed
and there is some strictly decreasing null sequence (εn)n with 1[0,εn] ∈ Y for all n.

The smallest possible Y with property (A) is

Y =
{ ∞∑
n=1

αn1(εn+1,εn)

∣∣∣∣ (αn)n ∈ �∞
}

, (2.1)

where 1(a,b) is the characteristic function on (a,b).

Theorem 2.1. Let X be a real or complex Banach space, A :D(A)→ X a closed linear oper-
ator, τ > 0, and Y ⊂ L1([0,τ],K) some subspace with property (A).
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Let β ≥ 0, and assume A generates a local h[β+1]-convoluted semigroup on [0,τ] for all
h∈ Y .

Then AD(A) generates a β-times-integrated semigroup on [0,τ].

Proof. If x ∈ X and h∈ Y , let ux,h denote the solution of the abstract Cauchy problem

Aux,h(t) +h[β+1](t)x = u′x,h(t) if 0≤ t ≤ τ,

ux,h(0)= 0,

ux,h ∈ C1([0,τ],X
)
.

(2.2)

Using the closedness of A and the uniqueness property of the abstract Cauchy problem,
it is easy to see that the linear operator

Rh : X −→ C
(
[0,τ],X

)
,

Rhx = u′x,h,
(2.3)

has closed graph for all h∈ Y .
Moreover, for all x ∈ X , the linear operator

Sx : Y −→ C
(
[0,τ],X

)
,

Sxh= u′x,h,
(2.4)

has closed graph.
From the uniform boundedness principle, it follows that

sup
‖x‖≤1

∥∥Sx∥∥ <∞; (2.5)

consequently

sup
‖x‖≤1

sup
‖h‖Y≤1

∥∥u′x,h

∥∥∞ <∞. (2.6)

Now, let hn := (1/εn) · 1[0,εn].
Then

Γ(β+ 1) ·h[β+1]
n (t)=


1
εn

tβ+1

β+ 1
if 0≤ t ≤ εn,

1
β+ 1

tβ+1− (t− εn)β+1

εn
if εn ≤ t ≤ τ,

(2.7)

thus limn→∞h
[β+1]
n (t)= tβ/Γ(β+ 1) if 0 < t ≤ τ.

Moreover, supn‖h[β+1]
n ‖∞ <∞. From the dominated convergence theorem, it follows

that ∫ τ
0

∣∣∣∣h[β+1]
n (t)− tβ

Γ(β+ 1)

∣∣∣∣dt n−→ 0. (2.8)
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Next, we show that

(a) limλ,n→∞ eλτ|(h[β+1]
n )∧τ (λ)| =∞,

(b) liminfλ→∞(ln|(tβ/Γ(β+ 1))∧τ (λ)|/λ)≥ 0.

We prove (a). We have

sup
λ,n

eλτ
∣∣∣(h[β+1]

n

)∧
(λ)−

(
h

[β+1]
n

)∧
τ

(λ)
∣∣∣ <∞ (2.9)

since ∣∣∣∣∫∞
τ
e−λth[β+1]

n (t)dt
∣∣∣∣≤ sup

n

∥∥∥h[β+1]
n

∥∥∥∞ ·
∫∞
τ
e−λtdt. (2.10)

Moreover,

eλτ
∣∣∣∣(h[β+1]

n

)∧
τ

(λ)
∣∣∣∣≥ eλτ∣∣∣∣(h[β+1]

n

)∧
(λ)
∣∣∣∣− eλτ∣∣∣∣(h[β+1]

n

)∧
(λ)−

(
h

[β+1]
n

)∧
τ

(λ)
∣∣∣∣. (2.11)

Now, (a) follows from

(
h

[β+1]
n

)∧
(λ)= ĥn(λ)

λβ+1 = 1
λβ+2

1− e−λεn
εn

≥ e−λεn

λβ+1 ≥
e−λτ/2

λβ+1 for all large λ,n. (2.12)

We prove (b). This follows from [10, Lemma 3.3.5] or [8, Lemma 2.6].
Now we can apply [11, Corollary 13, Theorem 14], which yields the desired results.

�

Corollary 2.2. Let X be a real or complex Banach space, A :D(A)→ X a densely defined
closed linear operator, τ > 0, and β ≥ 0.

Then the following assertions are equivalent:

(1) A generates a local β-times-integrated semigroup on [0,τ];
(2) A generates a local h[β+1]-convoluted semigroup on [0,τ] whenever h∈ L1([0,τ],K);
(3) for one (for all) subspace(s) Y ⊂ L1([0,τ],K) with property (A), the operator A gen-

erates a local h[β+1]-convoluted semigroup on [0,τ] whenever h∈ Y .

Proof. The proof of (2) follows from (1) by a simple convolution argument even if D(A)
is not dense. �

3. The complex representation theorem and its application

In the following, we generalize the complex representation theorem to the local case. The
global version can be found in [4] or [12, Proposition 0.2].

Theorem 3.1 (complex representation theorem). Let X be a complex Banach space, c,a,
ω1 > 0, F(t) := c(eat − 1), and M := {z ∈C | Rez > ω1, |Imz| < F(Rez−ω1)}.

Furthermore, let q :M→ X be a holomorphic function satisfying

sup
λ∈M

∥∥λq(λ)
∥∥ <∞. (3.1)
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Then for every b > 0 there is some function gb ∈ C([0,ab),X) such that t �→ ((ab − t)/
tb)gb(t) is bounded on (0,ab) and with

q(λ)∼ξ λ
b · (gb)∧ξ (λ) ∀ξ ∈ (0,ab). (3.2)

Remark 3.2. If 0 < b′ < b, then gb = g[b−b′]
b′ on [0,ab′).

Proof. Let ω > ω1, b > 0, and Γ := {z ∈C | Rez ≥ ω, |Imz| ≤ F(Rez−ω)}. Then Γ= Γ⊂
M0 =M.

First, we note that

C2
1 := sup

r>0

1 +
(
F′(r)

)2[
(ω+ r)2 +F(r)2

]b+1 · e2abr <∞. (3.3)

Let C2 := supλ∈Γ‖λq(λ)‖. We parameterize ∂Γ by the following two functions:

γ+ : [0,∞)−→C, γ+(t)= ω+ t+ iF(t),

γ− : [0,∞)−→C, γ−(t)= ω+ t− iF(t).
(3.4)

Let γ+
n := γ+|[0,n] and γ−n := γ−|[0,n]. Then the sequence

g+
n : [0,∞)−→ X ,

g+
n (t)= 1

2πi

∫
γ+
n

eλt
q(λ)
λb

dλ,
(3.5)

of continuous functions converges uniformly on [0,q′b] whenever q′ ∈ (0,a), since if
t ∈ [0,q′b] and n >m, we obtain

2π
∥∥∥g+

n (t)− g+
m(t)

∥∥∥≤ ∥∥∥∥∫ n
m
etγ

+(r) q
(
γ+(r)

)
γ+(r)b

· d
dr
γ+(r)dr

∥∥∥∥
≤ C2

∫ n
m
et(ω+r)

√
1 +F′(r)2[

(ω+ r)2 +F(r)2
](b+1)/2 dr

≤ C1C2e
tω
∫ n
m
etre−abrdr

≤ C1C2e
tω

∫ n
m
erb(q′−a)dr.

(3.6)

Thus the function

g+ : [0,ab)−→ X ,

g+(t)= 1
2πi

∫
γ+
eλt
q(λ)
λb

dλ,
(3.7)
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is continuous. In the same way we see that the function

g− : [0,ab)−→ X ,

g−(t)= 1
2πi

∫
−γ−

eλt
q(λ)
λb

dλ=− 1
2πi

∫
γ−
eλt
q(λ)
λb

dλ,
(3.8)

is continuous.
Let g(t) := g+(t) + g−(t) if t ∈ [0,ab). We show that t �→ ((ab− t)/tb)g(t) is bounded

on (0,ab). To this end, let R > 0 and consider the three paths

α : [R,∞)−→C, α(r)= ω+ r− iF(r),

β : [R,∞)−→C, α(r)= ω+ r + iF(r),

γ :
[−F(ω+R),F(ω+R)]−→C, γ(r)= ω+R+ ir.

(3.9)

Then, if 0≤ t < ab,

g(t)= 1
2πi

∫
β+γ−α

eλt
q(λ)
λb

dλ. (3.10)

We have ∥∥∥∥∫
β
eλt
q(λ)
λb

dλ
∥∥∥∥≤ C1C2e

ωt

∫∞
R
e(t−ab)rdr = C1C2e

ωt e
(t−ab)R

ab− t ,

∥∥∥∥∫−α eλt q(λ)
λb

dλ
∥∥∥∥≤ C1C2e

ωt e
(t−ab)R

ab− t .
(3.11)

Finally, ∥∥∥∥∫
γ
eλt
q(λ)
λb

dλ
∥∥∥∥≤ ∫∞−∞ et(ω+R)C2

dr[
(ω+R)2 + r2

](b+1)/2

= C2et(ω+R)

(ω+R)b

∫∞
−∞

ds(
1 + s2

)(b+1)/2 .

(3.12)

If we let R := 1/t, we obtain the desired result.
Next, we show that, if λ∈ Γ,

q(λ)
λb

= 1
2πi

lim
n→∞

∫
γ+
n−γ−n

(
1/µb

)
q(µ)

λ−µ dµ. (3.13)

To this end, consider a path βR in C consisting of a part of a circle with center ω ∈C and
radius R which connects a point on γ+ with a point on γ−. Its parameterization is given
by

βR : [−ψ,ψ]−→C, βR(ϕ)= ω+ Reiϕ, (3.14)

with some ψ ∈ (0,π/2) depending on R.
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By Cauchy’s formula we have to show that

lim
R→∞

∫
βR

(
1/µb

)
q(µ)

µ− λ dµ= 0. (3.15)

But, if R is large enough,

∥∥∥∥∥
∫
βR

(
1/µb

)
q(µ)

µ− λ dµ

∥∥∥∥∥≤
∫ π/2
−π/2

∥∥q(ω+ Reiϕ
)∥∥∣∣ω+ Reiϕ

∣∣b ·∣∣λ− (ω+ Reiϕ
)∣∣Rdϕ

≤ C2

∫ π/2
−π/2

R∣∣ω+ Reiϕ
∣∣b+1 dϕ

R→∞−−−→ 0.

(3.16)

Consequently, if ξ ∈ (0,ab) and λ∈ Γ,

∫ ξ
0
e−λtg(t)dt = 1

2πi

∫ ξ
0
e−λt lim

n→∞

∫
γ+
n−γ−n

eµt
q(µ)
µb

dµdt

= 1
2πi

lim
n

∫
γ+
n−γ−n

∫ ξ
0
e(µ−λ)tdt

q(µ)
µb

dµ

= 1
2πi

lim
n

∫
γ+
n−γ−n

e(µ−λ)ξ

µ− λ
q(µ)
µb

dµ

+
1

2πi
lim
n

∫
γ+
n−γ−n

(
1/µb

)
q(µ)

λ−µ dµ.

(3.17)

It remains to show that, for all σ > 0,

e−λσeλξ lim
n

∥∥∥∥∥
∫
γ+
n−γ−n

e(µ−λ)ξ

µ− λ
q(µ)
µb

dµ

∥∥∥∥∥ λ→∞−−−→ 0. (3.18)

But, if λ > ω,

e−λσ
∥∥∥∥∥
∫
γ+
n

eµξ

µ− λ
q(µ)
µb

dµ

∥∥∥∥∥≤ e−λσ
∫ n

0

eξReγ+(t)∣∣γ+(r)− λ∣∣ ·
∥∥q(γ+(r)

)∥∥
|γ+(r)

∣∣b ·
∣∣∣∣ ddr γ+(r)

∣∣∣∣dr
≤ C1C2e

−λσeξω
∫ n

0

eξr∣∣γ+(r)− λ∣∣e−abrdr
≤ C1C2

(
sup
r≥0

1∣∣γ+(r)− λ∣∣
)
eξωe−λσ

∫∞
0
e(ξ−ab)rdr

λ→∞−−−→ 0,

(3.19)

where if λ is large enough,

sup
r≥0

1∣∣γ+(r)− λ∣∣ ≤ 1. (3.20)
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In the same way we obtain

e−λσ
∥∥∥∥∥
∫
γ−n

eµξ

µ− λ
q(µ)
µb

dµ

∥∥∥∥∥ λ→∞−−−→ 0. (3.21)

This shows

q(λ)∼ξ λ
bĝξ(λ) ∀ξ ∈ (0,ab). (3.22)

Finally, if 0 < b′ < b, then gb = g[b−b′]
b′ on [0,ab′).

We have

q(λ)∼ξ λ
b′ · (gb′)∧ξ (λ) ∀ξ ∈ (0,ab′

)
,

q(λ)∼ξ λ
b · (gb)∧ξ (λ) ∀ξ ∈ (0,ab

)
,

(3.23)

thus if ξ ∈ (0,ab′),

(
gb
)∧
ξ (λ)∼ξ

1
λb−b′

(
gb′
)∧
ξ (λ)∼ξ

(
g[b−b′]
b′

)∧
ξ

(λ). (3.24)

The Phragmén Doetsch inversion formula (see, e.g., [4]) shows that gb = g[b−b′]
b′ on

[0,ab′). �

Theorem 3.3. Let α∈R, ω,c,a > 0, F(t)= c(eat − 1), and M := {z ∈C | Rez > ω, |Imz|
< F(Rez−ω)}.

Suppose p : [0,∞)→ C is locally integrable with |p(t)| ≤ const·eωt for all large t and
with

liminf
λ→∞

ln
∣∣ p̂(λ)

∣∣
λ

≥ 0, (3.25)

sup
λ∈M

|λ|α−1 ·∣∣ p̂(λ)
∣∣ <∞. (3.26)

Furthermore, let X be a complex Banach space, let A : D(A)→ X be linear with M ⊂ ρ(A),
and let

sup
λ∈M

|λ|α ·∥∥ p̂(λ)R(λ,A)
∥∥ <∞. (3.27)

Then, for all m∈ (−∞,α− 1), the operator A generates a local p(m−1)-convoluted semi-
group on [0,a(α−m− 1)).

Remark 3.4. (i) Condition (3.25) can be omitted if one then assumes in addition that

limsup
λ→∞

ln
∥∥R(λ,A)

∥∥
λ

≤ 0. (3.28)
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(ii) From condition (3.25), it follows that

limsup
λ→∞

ln
∣∣ p̂(λ)

∣∣
λ

= 0, (3.29)

which is equivalent to 0∈ supp p, that is, p does not vanish on any interval [0,ε), ε > 0.
This can be shown by using the Phragmén Doetsch inversion formula.

Proof. We first show that p is C(m−1)
0 on [0,a(α−m− 1)) if m ≥ 1, that is, there is some

g ∈ C([0,a(α−m− 1)),C) with g(0)= 0 and p = g[m−1].
To this end, define q̃ :M→C by q̃(λ)= λα−2 p̂(λ).
Then we have supλ∈M |λq̃(λ)| <∞. Letting b := α−m− 1, the complex representation

theorem shows that there is some g ∈ C([0,a(α−m− 1)),C) with g(0)= 0 such that

q̃(λ)∼ξ λ
α−m−1ĝξ(λ) ∀ξ ∈ (0,a(α−m− 1)

)
, (3.30)

thus

p̂(λ)∼ξ
1

λm−1
ĝξ(λ)∼ξ

(
g[m−1]

)∧
ξ

(λ). (3.31)

The Phragmén Doetsch inversion formula shows that p[1] = g[m] on (0,a(α−m−1)).
Next, we define the holomorphic function

q :M −→�
(
X ,D(A)

)
, q(λ)= λα−2 p̂(λ)R(λ,A), (3.32)

where D(A) is the Banach space D(A) with the norm ‖x‖D(A) = ‖x‖+‖Ax‖.
If λ∈M, we obtain∥∥λq(λ)

∥∥≤ |λ|α−1
∣∣ p̂(λ)

∣∣(∥∥R(λ,A)
∥∥+

∥∥λR(λ,A)− id
∥∥)

≤ |λ|α−1
∣∣ p̂(λ)

∣∣(∥∥R(λ,A)
∥∥+ |λ| ·∥∥R(λ,A)

∥∥+ 1
)

≤ |λ|α−1
∣∣ p̂(λ)

∣∣+ |λ|α−1
∣∣ p̂(λ)

∣∣ · (1 + |λ|) ·∥∥R(λ,A)
∥∥. (3.33)

From conditions (3.26) and (3.27), it follows that

sup
λ∈M

∥∥λq(λ)
∥∥ <∞. (3.34)

Letting b := α−m− 1, the complex representation theorem yields some continuous func-
tion H : [0,a(α−m− 1))→�(X ,D(A)) with H(0)= 0 and with

q(λ)∼ξ λ
α−m−1Ĥξ(λ) ∀ξ ∈ (0,a(α−m− 1)

)
. (3.35)

Consequently, if ξ ∈ (0,a(α−m− 1)) and x ∈ X ,

λ
(
p(m−1)

)∧
ξ

(λ)R(λ,A)x ∼ξ λ
m p̂ξ(λ)R(λ,A)x (3.36)

since ‖R(λ,A)‖∼0 0 by conditions (3.25) and (3.27), and since (p(m−1))∧ξ (λ)∼ξ λm−1 p̂ξ(λ).
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Moreover,

λα−2 p̂ξ(λ)R(λ,A)x ∼ξ q(λ)x ∼ξ λ
α−m−1(H(·)x)∧ξ (λ). (3.37)

Thus,

λ
(
p(m−1)

)∧
ξ

(λ)R(λ,A)x ∼ξ λ
m−α+2λα−2 p̂ξ(λ)R(λ,A)x

∼ξ λ
(
H(·)x)∧ξ (λ)

∼ξ

∫ τ
0
e−λtdt

(
H(t)x

)
.

(3.38)

Therefore, by the theory of local convoluted semigroups, the unique solution of the ab-
stract Cauchy problem

Aux(t) + p(m−1)(t)x = u′x(t) ∀t ∈ [0,a(α−m− 1)
)
,

ux(0)= 0,

ux ∈ C1([0,a(α−m− 1)
)
,X
)
,

(3.39)

is given by

ux(t)=H(t)x. (3.40)

�

We now state and prove a lemma which we will need frequently in the sequel.

Lemma 3.5. Let τ > 0, β > 0, let h : [0,∞)→ [0,∞) be some function, and Γ := {z ∈ C |
Rez > 0, |Imz| ≤ h(Rez)}.

Then

lim
Reλ→∞
λ∈Γ

λβe−λτ = 0⇐⇒ lim
t→∞e

−(τ/β)th(t)= 0. (3.41)

In one of these cases, even if β ≥ 0,

lim
Reλ→∞
λ∈Γ

λβ+1
∫∞
τ
e−λt

(
d · tβ + g[β+1](t)

)
dt = 0 (3.42)

whenever d ∈C and g ∈ Lloc
1 ([0,∞),C) is exponentially bounded for large arguments.

Moreover, if β > 0,

limsup
Reλ→∞
λ∈Γ

∣∣λβe−λτ∣∣ <∞⇐⇒ limsup
t→∞

e−(τ/β)th(t) <∞. (3.43)
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Proof. We prove (3.41).

“If” part. If λ∈ Γ, we obtain

∣∣λβe−λτ∣∣2/β = (|Imλ|2 + |Reλ|2)e−(2τ/β)Reλ

≤ (h(Reλ)e−(τ/β)Reλ)2
+ |Reλ|2e−(2τ/β)Reλ.

(3.44)

“Only if” part. Suppose there are some ε > 0 and numbers xn ∈R with xn→∞ and with
|e−(τ/β)xnh(xn)| ≥ ε for all n. Then zn := xn + iεe(τ/β)xn is in Γ, and

0= lim
n

∣∣∣zβne−znτ∣∣∣2/β = lim
n

(
x2
n + ε2e(2τ/β)xn

)
e−(2τ/β)xn = ε2, (3.45)

which is a contradiction. This shows (3.41).
Now let f (t) := dtβ + g[β+1](t). Then f ′(t)= dβtβ−1 + g[β](t) is Lloc

1 and exponentially
bounded for large arguments.

Partial integration shows that

λβ+1
∫∞
τ
e−λt f (t)dt = λβe−λτ f (τ) + λβe−λτ

∫∞
0
e−λw f ′(w+ τ)dw. (3.46)

�

Corollary 3.6. Let ω,a,c,ν > 0, µ ≥ 0, β ∈ (µ/a,µ/a + ν], F(t) = c(eat − 1), and M :=
{z ∈C | Rez > ω, |Imz| < F(Rez−ω)}.

Furthermore, let X be a complex Banach space, let A : D(A) → X be linear with M ⊂
ρ(A), with

limsup
λ→∞

ln
∥∥R(λ,A)

∥∥
λ

≤ 0, (3.47)

and with

sup
λ∈M

∥∥∥λβ−ν+1e−λµR(λ,A)
∥∥∥ <∞. (3.48)

Then A generates a ν-times-integrated semigroup on [0,aβ−µ).

Proof. Apply Theorem 3.3 to m := 0, α := β + 1, and p(t) := 1(µ,∞)(t) · (t− µ)ν−1, where
1(µ,∞) is the characteristic function on (µ,∞). Then we have p̂(λ) = e−λµ(Γ(ν)/λν) if
Reλ > 0.

Condition (3.25) is omitted, see Remark 3.4.
Condition (3.26) is equivalent to supλ∈M |λβ−νe−λµ|<∞. This follows from Lemma 3.5.

Here we need that β ≤ µ/a+ ν.
Condition (3.27) is equivalent to supλ∈M ‖λβ+1−νe−λµR(λ,A)‖ <∞.
By Theorem 3.3 the operatorA generates a local p[1]-convoluted semigroup on [0,aβ).
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If x ∈ X , let ux denote the (unique) solution of the abstract Cauchy problem

Aux(t) + p[1](t)x = u′x(t) if 0≤ t < aβ,

ux(0)= 0,

ux ∈ C1([0,aβ),X
)
.

(3.49)

The uniqueness property follows from the Ljubic uniqueness theorem.
Then ux(t)= 0 if 0≤ t ≤ µ, since p[1](t)= 0 if 0≤ t ≤ µ. Thus if x ∈ X , then

vx : [0,aβ−µ)−→ X ,

vx(t)= ux(t+µ),
(3.50)

is the (unique) solution of the abstract Cauchy problem

Avx(t) +
tν

ν · x = v
′
x(t) if 0≤ t < aβ−µ,

vx(0)= 0,

vx ∈ C1([0,aβ−µ),X
)
.

(3.51)

�

Corollary 3.7. Let X be a complex Banach space, let A : D(A)→ X be linear, ω,c,a > 0,
F(t)= c(eat − 1), and M = {z ∈C | Rez > ω, |Imz| < F(Rez−ω)}.

Assume that M ⊂ ρ(A) and

sup
λ∈M

∥∥R(λ,A)
∥∥

|λ|γ <∞ for some γ ∈ [−1,∞). (3.52)

Then, for all ε > 0, the operator A generates a (γ+ 1 + ε)-integrated semigroup on [0,aε).

Proof. Apply Corollary 3.6 to µ := 0, ν := γ+ ε+ 1, and β := ε. �

Remark 3.8. Corollary 3.7 improves [7, Theorem II] if D(A) is dense.
To see this we abbreviate “Cioranescu/Lumer” as “(CL)” and refer to the notation

in [7].
In that theorem, put Φ(CL)(r) := lnr, α(CL) := 1/a, γ(CL) := γ, K (CL) := h[γ+ε+1], and

l(CL) := γ+ ε+ 1. Then σ (CL) = 1 and χ(CL) = 0.

If ω is large enough, then M ⊂ Γ(CL)
α(CL),β(CL) .

To apply [7, Theorem II] we have to make the assumptions that γ > −1, that h[γ+ε+1]

is exponentially bounded, and that K̂ (CL) �= 0 for all λ with large real part. Then, by [7,
Theorem II], A generates a local h[γ+ε+2]-convoluted semigroup on [0,τ(CL))= [0,(l(CL)−
γ(CL)− σ (CL))/α(CL))= [0,aε).

Example 3.9. Let X = C([0,1],C), let g ∈ X with g(t) > 0 for all t ∈ [0,1], and let D(A)=
{ f ∈ C1([0,1],C) | f (0)= 0}.

Then the operator Ah = −gh′ generates a (1 + ε)-integrated semigroup on [0,∞) for
all ε > 0.
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If λ∈C, we have

R(λ,A) f (t)= e−λG(t)
∫ t

0

eλG(s) f (s)
g(s)

ds, (3.53)

where G(t)= ∫ t0(ds/g(s))ds.
The assertion follows from Corollary 3.7 since supReλ>0‖R(λ,A)‖ <∞.

Corollary 3.10. Let X be a complex Banach space, let A :D(A)→ X be linear, ω,c,a > 0,
F(t)= c(eat − 1), and M = {z ∈C | Rez > ω, |Imz| < F(Rez−ω)}.

Assume that M ⊂ ρ(A), that

limsup
λ→∞

ln
∥∥R(λ,A)

∥∥
λ

≤ 0, (3.54)

and that

sup
λ∈M

∥∥e−λµR(λ,A)
∥∥ <∞ for some µ≥ 0. (3.55)

Then for all ε > µ/a, the operator A generates a (ε+ 1)-integrated semigroup on [0,aε−µ).

Proof. Apply Corollary 3.6 to ν := 1 + ε and β := ε. �

Theorem 3.11. Let β ≥ 0, τ > 0, g ∈ L1([0,τ],K), c ∈K\{0}, and f (t) := ctβ + g[β+1](t).
Furthermore, let h : [0,∞) → [0,∞) be some function with h(t) = o(e(τ/β)t) as t →∞

(this condition is always fulfilled if β = 0. In this case Γ is supposed to be some right half-
plane in C), and let

Γ := {z ∈C | |Imz| ≤ h(Rez)
}
. (3.56)

Finally, let X be some real or complex Banach space and let A : D(A)→ X be some linear
and closed operator which generates a local f -convoluted semigroup on [0,τ].

Then there is some ω > 0 such that R(λ,A) exists if λ∈ Γ with Reλ > ω, and

sup
Reλ>ω
λ∈Γ

Reλ ·
∥∥R(λ,A)

∥∥
|λ|β <∞. (3.57)

Proof. From Lemma 3.5, it follows that

lim
Reλ→∞
λ∈Γ

λβ+1 f̂τ(λ)= c ·Γ(β+ 1). (3.58)

Thus, again by Lemma 3.5,∣∣∣λeλτ f̂τ(λ)
∣∣∣= ∣∣∣λ−βeλτ∣∣∣ ·∣∣∣λβ+1 f̂τ(λ)

∣∣∣−→∞ if Reλ−→∞, λ∈ Γ, (3.59)

which also holds if β = 0.
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From the theory of local convoluted semigroups (see, e.g., [8, 11]), it follows that there
is some ω > 0 such that R(λ,A) exists if Reλ > ω, λ∈ Γ, and that

∥∥R(λ,A)
∥∥≤ const

Reλ ·∣∣λ f̂τ(λ)
∣∣ . (3.60)

To be more precise, let ux denote the solution of the abstract Cauchy problem

Aux(t) + f (t)x = u′x(t) if 0≤ t ≤ τ,

ux(0)= 0,

ux ∈ C1([0,τ],X).

(3.61)

Let Hx := Aux(τ) and Jλ := λ f̂τ(λ) · id−e−λτH . From

Jλ

λ f̂τ(λ)
= id− H

λeλτ f̂τ(λ)
, (3.62)

it follows that Jλ is invertible if λ∈ Γ and Reλ is large, and

(
Jλ

λ f̂τ(λ)

)−1

=
∞∑
k=0

(
H

λeλτ f̂τ(λ)

)k
. (3.63)

Thus, ‖J−1
λ ‖ ≤ 2/|λ f̂τ(λ)| if λ∈ Γ and Reλ is large.

From

(λ−A)
∫ τ

0
e−λtdux(t)= Jλx ∀x ∈ X , λ∈K, (3.64)

it follows that R(λ,A) exists, and

∥∥R(λ,A)
∥∥≤ const

Reλ ·∣∣λ f̂τ(λ)
∣∣ . (3.65)

�

Example 3.12. Let X = C([0,1],C) and D(A) = { f ∈ C2([0,1],C) | f (0) = f ′(0) = 0}.
Then Ah=−h′′ does not generate a local β-integrated semigroup on [0,τ], independent
of β ≥ 0 and τ > 0.

We have, if λ∈C,

R
(− λ2,A

)
f (t)=


1
λ

∫ t
0

sinh(λs) f (t− s)ds if λ �= 0,∫ t
0
s f (t− s)ds if λ= 0.

(3.66)

Let Γ := {z ∈C | |Imz| ≤ 4/3 · |Rez|} and consider µ(α)=−α+ 2iα if α > 0.
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Then −µ2 = 3α2 + 4iα2 ∈ Γ, and

∥∥R(−µ2,A
)∥∥

|µ|2β ≥
∥∥R(−µ2,A

)
(1)
∥∥

|µ|2β
α→∞−−−→∞, (3.67)

where 1(t)= 1.

Theorem 3.13. Let X be a complex Banach space and A :D(A)→ X a linear operator.
Then the following assertions are equivalent.
(1) There are β ≥ 0 and ξ > 0 such that A generates a β-times integrated semigroup on

[0,ξ).
(2) There are c,ω,a > 0 such that if F(t) := c(eat − 1) and M := {z ∈ C | Rez > ω,

|Imz| ≤ F(Rez−ω)}, the following is valid:

M ⊂ ρ(A),

sup
λ∈M

∥∥∥∥∥e−λµλβ̃
R(λ,A)

∥∥∥∥∥ <∞ for some µ, β̃ ∈R,

limsup
λ→∞

ln
∥∥R(λ,A)

∥∥
λ

≤ 0.

(3.68)

(3) There areω,δ>0 such that if h(t) := eδt and Γ := {z ∈C | Rez>ω, |Imz|≤h(Rez)},
the following is valid:

Γ⊂ ρ(A),

sup
λ∈Γ

∥∥∥∥R(λ,A)

λβ

∥∥∥∥ <∞ for some β ∈R.
(3.69)

Proof. (1)⇒(3). Choose δ ∈ (0,ξ/β), where ξ/β := ∞ if β = 0. Apply Theorem 3.11 to
g := 0, c := 1, β := β and choose τ ∈ (βδ,ξ). Then h(t)= eδt fulfills h(t)= o(e(τ/β)t), thus,
by Theorem 3.11, there is some ω > 0 such that R(λ,A) exists if Reλ > ω, λ∈ Γ, and

sup
Reλ>ω
λ∈Γ

∥∥R(λ,A)
∥∥

|λ|β <∞. (3.70)

Here we needed the uniqueness property on [0,τ], see [10, Theorem 3.5.1].

(3)⇒(2). Choose a := δ, c := 1, and numbers µ ≥ 0, β̃ ∈ R such that δ · (β− β̃) ≤ µ.

For example, take µ := 0 and β̃ := β.
Then M ⊂ Γ, and if λ∈M,

∥∥∥∥∥e−λµλβ̃
R(λ,A)

∥∥∥∥∥= ∣∣∣λβ−β̃e−λµ∣∣∣ ·
∥∥∥∥R(λ,A)

λβ

∥∥∥∥. (3.71)
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If β− β̃ > 0, then

limsup
Reλ→∞
λ∈M

∣∣∣λβ−β̃e−λµ∣∣∣ <∞, (3.72)

by Lemma 3.5, since

limsup
t→∞

e−(µ/(β−β̃))th(t) <∞. (3.73)

(2)⇒(1). First, let β̃ ≥ −µ/a− 1. Choose ν > µ/a+ 1 + β̃ and β̂ := ν− β̃− 1. Then β̂ ∈
(µ/a,µ/a+ ν] and

∥∥∥λβ̂−ν+1e−λµR(λ,A)
∥∥∥≤ ∥∥∥∥∥e−λµλβ̃

R(λ,A)

∥∥∥∥∥ ∀λ∈M, Reλ > ω. (3.74)

Corollary 3.6 shows that A generates a local ν-times integrated semigroup on [0,a(ν−
1− β̃)−µ).

Second, assume β̃ ≤−µ/a− 1. Let ν > 0 and β̂ = µ/a+ ν. Then β̂ ∈ (µ/a,µ/a+ ν] and,
if ω > 1,

∥∥∥λβ̂−ν+1e−λµR(λ,A)
∥∥∥≤ ∥∥∥∥∥e−λµλβ̃

R(λ,A)

∥∥∥∥∥ ∀λ∈M, Reλ > ω, (3.75)

since β̃+ β̂− ν + 1≤ 0.
Corollary 3.6 shows that A generates a local ν-times integrated semigroup on [0,aν).

�

4. The theorem of Prüss and its application

Next we generalize a result from Prüss [12, Theorem 0.4] to the local case. In its original
form, the function q has to be defined on some right half-plane and then is the Laplace
transform of some continuous and exponentially bounded function.

This will lead to a new Hille-Yosida-type theorem for integrated semigroups.

Theorem 4.1. Let X be a complex Banach space, c,a,ω1 > 0, F(t) := c(eat − 1), and M :=
{z ∈C | Rez > ω1, |Imz| < F(Rez−ω1)}.

Furthermore, let q :M→ X be a holomorphic function satisfying

sup
λ∈M

∥∥λq(λ)
∥∥ <∞, sup

λ∈M

∥∥λ2q′(λ)
∥∥ <∞. (4.1)

Then there is some H ∈ C((0,a),X) such that t �→ (t− a)H(t) is bounded on (0,a) and with

q(λ)∼ξ Ĥξ(λ) ∀ξ ∈ (0,a). (4.2)
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Proof. From the complex representation theorem it follows that there are functions g,h∈
C([0,a),X) such that g(t)/t and h(t)/t are in Lloc∞ ([0,a),X) and with

q(λ)= λ
∫ ξ

0
e−λtg(t)dt+ εξ(λ),

λq′(λ)= λ
∫ ξ

0
e−λth(t)dt+ψξ(λ),

(4.3)

for all ξ ∈ (0,a), where εξ and ψξ are functions satisfying

limsup
λ→∞

ln
∥∥εξ(λ)

∥∥
λ

≤−ξ, limsup
λ→∞

ln
∥∥ψξ(λ)

∥∥
λ

≤−ξ. (4.4)

Thus, if η > ω > ω1, then

∫ η
ω
q′(λ)dλ=

∫ η
ω

∫ ξ
0
e−λth(t)dtdλ+

∫ η
ω

ψξ(λ)
λ

dλ

=
∫ ξ

0

e−ωt − e−ηt
t

h(t)dt+
∫ η
ω

ψξ(λ)
λ

dλ

η→∞−−−→
∫ ξ

0

e−ωth(t)
t

dt+
∫∞
ω

ψξ(λ)
λ

dλ.

(4.5)

Thus, y := limη→∞ q(η) exists, and

y−ω
∫ ξ

0
e−ωtg(t)dt− εξ(ω)=

∫ ξ
0

e−ωth(t)
t

dt+
∫∞
ω

ψξ(λ)
λ

dλ (4.6)

for all ω > ω1 and all ξ ∈ (0,a).
It is not hard to see that for all δ > 0 we have

e−ωδeωξ
∥∥∥∥∫∞

ω

ψξ(λ)
λ

dλ
∥∥∥∥ ω→∞−−−→ 0, (4.7)

that is,

limsup
ω→∞

ln
∥∥∫∞

ω

(
ψξ(λ)/λ

)
dλ
∥∥

λ
≤−ξ. (4.8)

Thus ∫ ξ
0
e−ωt

(
y− g(t)

)
dt ∼ξ

∫ ξ
0

e−ωt

ω
· h(t)

t
dt ∼ξ

∫ ξ
0
e−ωtH[1](t)dt, (4.9)

where H(t) := h(t)/t.
Consequently, y− g(t)=H[1](t) for all 0≤ t < a. This shows that y = 0 and

g(t)=−
∫ t

0

h(t)
t
dt ∀0≤ t < a. (4.10)
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Thus

q(λ)∼ξ

∫ ξ
0
e−λtH(t)dt. (4.11)

�

Theorem 4.2. Let c,a,ω1 > 0, F(t) := c(eat − 1), M := {z ∈C | Rez > ω1, |Imz| < F(Rez
−ω1)}, and let p : (0,∞)→ C be some continuous function satisfying |p(t)| ≤ const·eω1t

for all t > 0 and

liminf
λ→∞

ln
∣∣ p̂(λ)

∣∣
λ

≥ 0, (4.12)

sup
λ∈M

∣∣λp̂(λ)
∣∣ <∞, (4.13)

sup
λ∈M

∣∣∣∣λ2 d

dλ
p̂(λ)

∣∣∣∣ <∞. (4.14)

Let X be a complex Banach space, A :D(A)→ X linear with M ⊂ ρ(A),

sup
λ∈M

∣∣λ3 p̂(λ)
∣∣ ·∥∥R(λ,A)2

∥∥ <∞, (4.15)

sup
λ∈M

∣∣λ2 p̂(λ)
∣∣ ·∥∥R(λ,A)

∥∥ <∞, (4.16)

sup
λ∈M

∣∣∣∣λ3 d

dλ
p̂(λ)

∣∣∣∣ ·∥∥R(λ,A)
∥∥ <∞. (4.17)

Then the following assertions hold:

(1) A generates a local p[1]-convoluted semigroup on [0,a);
(2) the abstract Cauchy problem

Av(t) + p(t)x = v′(t) if 0 < t < a,

v(0)= 0,

v ∈ C1((0,a),X
)∩C([0,a),X

)
,

(4.18)

has a unique solution vx for all x ∈ X ;
(3) if p can be continuously extended in 0, then AD(A) generates a local p-convoluted

semigroup on [0,a).

Remark 4.3. Condition (4.12) can be omitted if one then assumes in addition that

limsup
λ→∞

ln
∥∥R(λ,A)

∥∥
λ

≤ 0. (4.19)

Proof. Consider the holomorphic function

q :M −→�
(
X ,D(A)

)
, q(λ)= p̂(λ)R(λ,A). (4.20)
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Then λ2q′(λ)=−λ2 p̂(λ)R(λ,A)2 + λ2(dp̂(λ)/dλ)R(λ,A), thus

∥∥λ2q′(λ)
∥∥≤ ∥∥λ2 p̂(λ)R(λ,A)2

∥∥+
∥∥∥∥λ2 dp̂(λ)

dλ
R(λ,A)

∥∥∥∥
+
∥∥∥∥(λR(λ,A)− id

)(
λ2 p̂(λ)R(λ,A)− λ2 dp̂(λ)

dλ
· id

)∥∥∥∥
≤ ∥∥λ2 p̂(λ)R(λ,A)2

∥∥+
∥∥∥∥λ2 dp̂(λ)

dλ
R(λ,A)

∥∥∥∥+
∥∥λ3 p̂(λ)R(λ,A)2

∥∥
+
∥∥∥∥λ3 dp̂(λ)

dλ
R(λ,A)

∥∥∥∥+
∥∥λ2 p̂(λ)R(λ,A)

∥∥+
∣∣∣∣λ2 dp̂(λ)

dλ

∣∣∣∣.

(4.21)

It follows from the assumptions that

sup
λ∈M

∥∥λ2q′(λ)
∥∥ <∞. (4.22)

Moreover, ∥∥λq(λ)
∥∥≤ ∥∥λp̂(λ)R(λ,A)

∥∥+
∥∥λp̂(λ)

(
λR(λ,A)− id

)∥∥, (4.23)

thus

sup
λ∈M

∥∥λq(λ)
∥∥ <∞. (4.24)

From Theorem 4.1 it follows that there is some H ∈ C((0,a),�(X ,D(A))) such that t �→
(t− a)H(t) is bounded on (0,a) and with

p̂(λ)R(λ,A)∼ξ

∫ ξ
0
e−λtH(t)dt ∀ξ ∈ (0,a). (4.25)

From conditions (4.12) and (4.16), it follows that limsupλ→∞(ln‖R(λ,A)‖/λ)≤ 0, thus

λ
(
p[1])∧

ξ (λ)R(λ,A)x ∼ξ p̂ξ(λ)R(λ,A)x

∼ξ

∫ ξ
0
e−λtH(t)xdt

∼ξ

∫ ξ
0
e−λtdt

(
H[1](t)x

)
.

(4.26)

This shows (1). To be precise, the solution of the abstract Cauchy problem

Aux(t) + p[1](t)x = u′x(t), 0≤ t < a,

ux(0)= 0,

ux ∈ C1([0,a),X
)
,

(4.27)

is ux(t)= ∫ t0 H(s)xds.
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Further on, we define vx : [0,a)→ X by

vx(t)=
0 if t = 0,

H(t)x if 0 < t < a.
(4.28)

Since Av[1]
x = (AH(·)x)[1] is in C1((0,a),X), we have vx ∈ C1((0,a),X), and since A is

closed, we obtain

Avx(t) + p(t)x = v′x(t) if 0 < t < a. (4.29)

This shows (2).
Finally if x ∈D(A), then

AD(A)vx(t) + p(t)x = v′x(t) if 0≤ t < a,

vx(0)= 0,

vx ∈ C1
(

[0,a),D(A)
)
.

(4.30)

The result follows if we can show that

sup
0≤t≤ξ

sup
y∈D(A)
‖y‖≤1

∥∥v′y(t)∥∥X <∞ ∀ξ ∈ (0,a). (4.31)

If 0 < t ≤ ξ and y ∈D(A) with ‖y‖ ≤ 1, we obtain

∥∥v′y(t)∥∥≤ ∥∥Avy(t) + p(t)y
∥∥= ∥∥AH(t)y + p(t)y

∥∥
≤ ∥∥AH(t)

∥∥
�(X) +‖p‖L∞[0,ξ].

(4.32)

�

Corollary 4.4. Let c,a,ω1 > 0, F(t) := c(eat − 1), and M := {z ∈C | Rez > ω1, |Imz| <
F(Rez−ω1)}.

Suppose X is a complex Banach space, A : D(A)→ X is linear with M ⊂ ρ(A), and that
there is some γ ≥ 0 with

sup
λ∈M

∥∥R(λ,A)2
∥∥

|λ|γ−2 <∞,

sup
λ∈M

∥∥R(λ,A)
∥∥

|λ|γ−1 <∞.
(4.33)

Then the following assertions hold:

(1) A generates a (γ+ 1)-integrated semigroup on [0,a);
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(2) the abstract Cauchy problem

Av(t) + tγ · x = v′(t) if 0 < t < a,

v(0)= 0,

v ∈ C1((0,a),X
)∩C([0,a),X

)
,

(4.34)

has a unique solution vx for all x ∈ X ;
(3) AD(A) generates a γ-integrated semigroup on [0,a).

Proof. Let p(t)= tγ and apply Theorem 4.2.
�
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