LAPLACE TRANSFORM GENERATION THEOREMS
AND LOCAL CAUCHY PROBLEMS

CLAUS MULLER
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We give new criterions to decide if some vector-valued function is a local Laplace trans-
form and apply this to the theory of local Cauchy problems. This leads to an improvement
of known results and new Hille-Yosida-type theorems for local convoluted semigroups.

1. Introduction

Let X be a Banach space, x € X, T >0, h € L,([0,T],K), and f(t) := foth(s)ds the anti-
derivative of h.

Assume A : D(A) — X is some closed (linear) operator in X.

Consider the abstract Cauchy problem

(ACP) Aw(t) =w'(t)if0<t<T,w(0) =x,and w € C'([0,T],X)

and the f-regularized problem
(ACPy) Au(t)+ f(t)x =u'(t) if0 <t < T, u(0) = 0, and u € C'([0, T],X).
If w solves (ACP), then the convolution u := w * f solves (ACPy), since

u=wxf+f(-)x=wxh on[0,T]. (1.1)

Any function u that solves (ACPy) is called h-regularized solution of (ACP).

Now assume that 0 € supp h, which means that 4 does not vanish on any interval [0, ¢),
and which is equivalent to 0 € supp f.

By the theorem of Titchmarsh-Foias (see [3]) the convolution operator

Sy :C([0,T],X) — Co([0,T],X) = {g € C([0,T),X) | g(0) =0},

(1.2)
S;g=g*/f,
can be extended to an isometric isomorphism
8y : CUI([0,T1,X) — Co([0,T1,X), (1.3)
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where the space CI/1([0, T],X) of generalized functions is the completion of C([0,T],X)
with norm |[|g[ := [|Sfgll~. On this construction see also [9]. Thus, if w solves (ACP),
then Syw solves (ACPy).

This gives a reason to extend the notion of solutions of (ACP): a generalized function
w € CYI([0,T],X) is called h-generalized solution of

(ACPy) Aw(t) =w'(t)if0<t<T,w(0) =x

ifu=S rw solves (ACPy), that is, if S rw is an h-regularized solution of (ACP).

The notation of generalized solutions was introduced by Cioranescu and Lumer [5, 6].

If w is an h-generalized solution of (ACPy), there is a sequence (v,), C C([0,T],
(A)) with lim, v, = ' in C([0,T],X) and with lim, v\’ = u in C([0,T],D(A)) (where
(A) denotes the Banach space D(A) with the graph norm).

Thus, lim, v, = «’, and lim,,( Ayl + f(+)x—v,) =01in C([0,T],X).

If (Vn)n C C([0,T],X) converges uniformly and satisfies vm( t) € D(A) for all t and
lim,,( Avl + f(+)x — v4) = 0 uniformly, then (v,), is called h-approximate solution of
(ACP). Thus to every h-generalized solution there is an h-approximate solution.

On the other hand, if (v,), is an h-approximate solution of (ACP), then Wy = g; (vy —

D
D

v,4(0)) converges in C"([0,T],X) to some w, and u = wa = hmn I solves (ACPy).
On approximate solutions see [1, 2]. Consequently, the notations of generalized solution
of (ACPy), of approximate solutions of (ACP), and (classical) solutions of (ACPy) are
equivalent. That is the reason why it is interesting to study problems of type (ACPy).

We first clarify the notations.

If X is some Banach space, g € Llloc( [0,0),X), and a, T > 0, we let

Carpy o ala e L [ty
gC (1) = g9 (1) = r(“)ﬁ)s Lg(t = s)ds (1.4)

be the ath integral of g. If there is some h € C([0,7],X) with g = hl®l, then let g'® = h be

the ath derivative of g.
The finite Laplace transform of g on [0, 7] is given by

a0 =g ()= JOTe_Mg(t)dt. (1.5)

If & > 0 and g is exponentially bounded for large arguments, then gl*! is exponentially
bounded for large arguments, and

MJW e Mglel (1)t = Jw e Mg(H)dt = §(1) = ¢ (V) (1.6)
0 0

for all large ReA, which is the Laplace transform of g.
In fact we have, if 7 > 0,

e L e Mglel (1)t ~, L e Mg(t)dt, (1.7)
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where

fA) ~h(d) = limsupM <-7
Ao A (1.8)
= lim e fFA)—hA)| =0 V8>o0.

This follows from

04

’ A
o —At o [a] _ A =B
A L e Mgl¥l(t)dt (@) (pa-1%g), (1), where pg(s) = s,

04

T

(1.9)
(pa-1)" (V) - g2 V) = g2 (D).

In trying to get a nice theory how to solve abstract Cauchy problems

Au () + f()x =u(t) if0<t=<r,
ux(0) =0, (1.10)
u, € C'([0,7],X),

with continuous inhomogeneity f, it seems to be natural first to consider inhomo-
geneities of type t#, where B € N or, more generally, 8 > 0. The reason for this is that
if the problem is well posed on [0, 7] with this inhomogeneity, that is, A generates a f}-
integrated semigroup on [0, 7], then it is well posed with inhomogeneities KA1 where
h e Li([0,7],K), that is, A generates a local KA+ _convoluted semigroup on [0,7]. This
is shown in Section 2.

Section 3 starts with a generalization of the complex representation theorem, see
[4, 12]. This will lead to an improvement of [7, Theorem II].

In Section 4, we generalize a representation theorem of Priiss [12] and develop a new
Hille-Yosida-type theorem for integrated semigroups.

2. Integrated semigroups

In this section, we show that it is worthwhile to study integrated semigroups, that is,
abstract Cauchy problems (ACP) with inhomogeneities f(t) = P

If 7 > 0, we say that a subspace Y € L;([0,7],K) satiesfies property (A) if Y is closed
and there is some strictly decreasing null sequence (e,,), with 1o} € Y for all n.

The smallest possible Y with property (A) is

Y= { D tnliee | (o), € &m}, (2.1)
n=1

where 1, is the characteristic function on (a,b).

THEOREM 2.1. Let X be a real or complex Banach space, A : D(A) — X a closed linear oper-
ator, T >0, and Y C L,([0,7],K) some subspace with property (A).
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Let B> 0, and assume A generates a local h!#*1-convoluted semigroup on (0,7] for all
heY.
Then Apay generates a B-times-integrated semigroup on [0,7].

Proof. If x € X and h € Y, let u,j, denote the solution of the abstract Cauchy problem
Augp () + RPN (1)x = u () ifos<t<t,

Uy (0) = 0, (2.2)
uy, € CH([0,7],X).

Using the closedness of A and the uniqueness property of the abstract Cauchy problem,
it is easy to see that the linear operator

R, : X — C([0,7],X),

2.3
Ryx = u;,h, (2.3)
has closed graph forallh € Y.
Moreover, for all x € X, the linear operator
Se: Y — C([0,7),X),
, (2.4)
th = ux’h,
has closed graph.
From the uniform boundedness principle, it follows that
sup [[Sx]] < oo; (2.5)
lIxll=1
consequently
sup sup ([, < . 26)
lIxll<1lhlly <1
Now, let by, := (1/€,) - 1{0,¢,]-
Then
p+1
lﬁt+1 ifo<t<e,,
€
r+1) mM =1 g1 (2.7)
1P — (t =) .
ife, <t<r,
p+1 &

thus lim, .. B (8) = #8/0(B+ 1) if 0 < t < 7.

Moreover, sup,, IIhLﬂH] o < c0. From the dominated convergence theorem, it follows

th at
0

[B+1]
n (t) - r(ﬁ+ 1)

dt = 0. (2.8)
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Next, we show that

() limp e @72 (M) = o,
(b) liminf) . (In |(t5/1“(ﬁ+ 1)2(A)I/A) = 0.

We prove (a). We have

supe'” (R ) = (W) )] < (2.9)
since
‘ Jj e”“h;[f“](t)dt’ < suanhL““]Hm : f e M. (2.10)
Moreover,

e/\‘r

(h,[f“]):()t)‘ >

<h;[1ﬁ+l])/\()t) ’ _ M

(W) - (W ] @

Now, (a) follows from

o~

_ o Aey —\ey —A1/2
(Lﬁﬂ])A(M:P;n()L) 1 1-e e e

R TR > SET = forall large A,n.  (2.12)

We prove (b). This follows from [10, Lemma 3.3.5] or [8, Lemma 2.6].
Now we can apply [11, Corollary 13, Theorem 14], which yields the desired results.
O

CoROLLARY 2.2. Let X be a real or complex Banach space, A : D(A) — X a densely defined
closed linear operator, T >0, and 5 = 0.
Then the following assertions are equivalent:
(1) A generates a local B-times-integrated semigroup on [0,7];
(2) A generates a local h!F*1)_convoluted semigroup on [0,7] whenever h € L,([0,7],K);
(3) for one (for all) subspace(s) Y C L,([0,7],K) with property (A), the operator A gen-
erates a local h'P*1)-convoluted semigroup on [0,7] whenever h € Y.

Proof. The proof of (2) follows from (1) by a simple convolution argument even if D(A)
is not dense.
3. The complex representation theorem and its application

In the following, we generalize the complex representation theorem to the local case. The
global version can be found in [4] or [12, Proposition 0.2].

THEOREM 3.1 (complex representation theorem). Let X be a complex Banach space, c,a,
w; >0, F(t):=c(e® —1),and M := {z€ C|Rez>w;, |Imz| < F(Rez — w;)}.
Furthermore, let q : M — X be a holomorphic function satisfying

sup|[Ag(A)|| < oo. (3.1)
AeM
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Then for every b > 0 there is some function g, € C([0,ab),X) such that t — ((ab —t)/
t2)gy(t) is bounded on (0,ab) and with

q) ~ AP (g)f (M) VE € (0,ab). (3.2)

Remark 3.2. If0< b’ < b, then g, =g,£%’7b/] on [0,ab’).
Proof. Letw >w;,b>0,andT:={z€ C|Rez> w, |Imz| < F(Rez—w)}. ThenT =T C
MO =M.

First, we note that

L+ (F/(r)
C}:= -2 < oo, 3.3
! iliop [(w+r)2+F(r)2]bJrl e G-

Let C; := sup, 1 lIAg(1)]l. We parameterize oI by the following two functions:

yt:[0,00) — C, y*(t) =w+t+iF(t),

y :00,0) — C, y (1) =w+t—iF(t). (34)
Let y,; := y*ljo,n) and y, := p~l[0,n]. Then the sequence
g :10,00) — X,
() = ﬁ Jﬁ e*f%d;\, (3.5)

of continuous functions converges uniformly on [0,g9'b] whenever q' € (0,a), since if
t € [0,q'b] and n > m, we obtain

2

gio-gol <[5 Lo

T+ F(r)2

[(w+r)2+F(1’)2](b+1)/2 (3.6)

n
< CCye'® J el e~ gy

m

n
< CZJ et(w+r)
m

n
<C Czet“’J et =) gy,

m
Thus the function

g :[0,ab) — X,

. _LJ' wdA) (3.7)
§W=05]),¢ 2w



Claus Miiller 75

is continuous. In the same way we see that the function

g :[0,ab) — X,

S Mq@ f tqm (3.8)
g 0= J—y 27 e
is continuous.

Let g(t) := g*(¢t) + g~ (t) if t € [0,ab). We show that t — ((ab— t)/tb)g(t) is bounded
on (0,ab). To this end, let R > 0 and consider the three paths

a:[Ry00) —C, a(r)=w+r—iF(r),
)

B:[R,0) — C, «afr)=w+r+iF(r (3.9)
y:[-F(w+R),F(w+R)] — C, y(r)=w+R+ir.
Then, if 0 < t < ab,
1 24
g(t) = i ﬁﬂ/iue 10 da. (3.10)
We have
o (t—ab)R
HJ ehﬂij)d)t“ <G Cze“’tJ elt=abr g, — Cge“’te ,
B A R ab—t
o (ab)R (3.11)
A q wt € -
Hj_ae tvd)t” < C1C2e t ab—1°
Finally,
/ltq(/1 dAH J w+R)C dr
HJ @+ Rz +72) " (3.12)
Gt “’*R)I ds ’
T (w+ R ) & (1+52)(b+1)/2'
If we let R := 1/t, we obtain the desired result.
Next, we show that, if A € T,
qn) 1 J (1/4%) q(p)
WY = o ’11_{{)10 e A du. (3.13)

To this end, consider a path Sz in C consisting of a part of a circle with center w € C and
radius R which connects a point on y* with a point on y~. Its parameterization is given
by

Br:l-y,y] — C, Pr(¢)=w+Re"?, (3.14)

with some y € (0,7/2) depending on R.
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By Cauchy’s formula we have to show that

. (1/u")qp)
11213.10 R du=0. (3.15)
But, if R is large enough,
1/ub /2 ip
HI (1/p )q(#)du SJ }Hqgw+Re I Rdg
S -2 |w+Re"”|” - [A— (w+Re?) | 316
c /2 R p Reco ( . )
< . 0.
2 |w+Re“”|b+l ¢

Consequently, if £ € (0,ab) and A €T,

¢ 1 ¢ (1)
Y _ At ut I\
L e Mg(t)dt il %&n}o - e b dudt

- _hmj J' (- /\)tdtq(.“)
Viva

271
) WD () (3.17)
= —hmj ¢ Md
2min Jyioy, p—A ub
+ L,limJ’ 7(1///! )4 du.
2mion Jyiy,  A—p
It remains to show that, for all ¢ >0,
(u=1)¢ e
e 1M lim J ¢ q(/:) Az, (3.18)
" yicye W—A p
But, if A > w,
ué n ERey™ (1)
e*)la J e Q(#)d‘u AUJ €+ ||q ‘ +(r
yi—A pb o [y —Al" |y+(r dr”
Er
<G fwj 676_“}”0# (3.19)
o [yt(r) =2l

1 _ oo _ A— o0
<CC| sup——— |et@e A"J' el&-abr g, 277
1 2<r>€<y+<r>—)t|) 0
where if A is large enough,

sup (3.20)

1
— <1
=0 |yt(r) = A
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In the same way we obtain

ué .
e—/\o J' e Q(!:)d A 0. (3.21)
e h—A u
This shows
q) ~ A8 (1) VE € (0,ab). (3.22)
Finally, if 0 < " < b, then g, = glg?_b,] on [0,ab").
We have

q) ~ A ()i (V) VE € (0,ab),

A 3.23)
gA) ~g AP (&) (V) V&€ (0,ab), (

thusif &€ € (0,ab’),

A

() O ~¢ 155 (&) ) ~ (677"), (1), (3.24)

The Phragmén Doetsch inversion formula (see, e.g., [4]) shows that g, = gg’*b'] on

[0,ab"). O

THEOREM 3.3. Leta € R, w,c,a >0, F(t) = c(e* — 1), and M := {z€ C | Rez > w, | Imz|
<F(Rez—w)}.

Suppose p : [0,00) — C is locally integrable with |p(t)| < const-e®" for all large t and
with

nﬁrlglf@ >0, (3.25)
sup A%+ | p(A) | < o0, (3.26)

AeM

Furthermore, let X be a complex Banach space, let A : D(A) — X be linear with M C p(A),
and let

sup [A[* - [[P(VRA, A)|| < o0. (3.27)
reM

Then, for all m € (—oo,a — 1), the operator A generates a local p'™-convoluted semi-
group on [0,a(a —m —1)).

Remark 3.4. (i) Condition (3.25) can be omitted if one then assumes in addition that

In|[RA,A)|
p————— <

limsu )

A—oo

0. (3.28)
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(i1) From condition (3.25), it follows that

In[p)|

=0, (3.29)

limsup

A— o0

which is equivalent to 0 € supp p, that is, p does not vanish on any interval [0,¢), € > 0.
This can be shown by using the Phragmén Doetsch inversion formula.

Proof. We first show that p is C(m Yon [0,a(c —m — 1)) if m > 1, that is, there is some
g € C([0,a(e—m—1)),C) with g(0) =0 and p = gl

To this end, define §: M — C by g(A) = A*2p(1).

Then we have sup,_,, [1§(1)| < . Letting b := a — m — 1, the complex representation
theorem shows that there is some g € C([0,a(ae — m — 1)), C) with g(0) = 0 such that

GA) ~e A 1g: (L) VE e (0,a(a—m—1)), (3.30)
thus

A 1 A A
P ~e &)~ (g[’”’”)f ). (3.31)

The Phragmén Doetsch inversion formula shows that pl!l = gl on (0,a(a — m—1)).
Next, we define the holomorphic function

q:M — £(X,D(A)), g(A) = 2*2p(A)R(A,A), (3.32)

where D(A) is the Banach space D(A) with the norm ||x|5(4) = Ilx[l + [[Ax].
If A € M, we obtain

[AgM] < IM 1 P | ([|IRA, A +]]AR(A, A) —id])
<= P | ([[RA, A + AL - ||R(LA)| | +1) (3.33)
< A% l|p(/\ |+|A|“ 1|p(/1 | (1+1A]) ||R(A,A)||.

From conditions (3.26) and (3.27), it follows that

sup [[Ag(V)|] < oo. (3.34)
reM

Letting b := & — m — 1, the complex representation theorem yields some continuous func-
tion H: [0,a(a —m — 1)) — L(X,D(A)) with H(0) = 0 and with

g) ~e AU (L) VE € (0,a(a—m—1)). (3.35)
Consequently, if £ € (0,a(a —m —1)) and x € X,
A( p(’"’”);(/l)R(A,A)x ~e A" Be(V)R(, A)x (3.36)

since || R(1,A) || ~o 0 by conditions (3.25) and (3.27), and since (p{"~ 1)) (A) ~e A1 pe (D).
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Moreover,
A“’zﬁg(A)R(A,A)x ~rqA)x ~¢ Aemm=1 (H(-)x)?(/l). (3.37)
Thus,

A( p('”*l));(/l)R(A,A)x ~g AT B (D)R(L, A)x
~g M(H()x){ (1) (3.38)
~ J "o M, (H(1)x).
0

Therefore, by the theory of local convoluted semigroups, the unique solution of the ab-
stract Cauchy problem

Au () +p"m V(t)x = ul(t) Vte[0,a(a—m—1)),
ux(0) =0, (3.39)
u, € CH([0,a(a —m—1)),X),

is given by

uy(t) = H(t)x. (3.40)

We now state and prove a lemma which we will need frequently in the sequel.

LemMA 3.5. Let 7 >0, $ >0, let h:[0,00) — [0,00) be some function, and T := {z € C |
Rez >0, |[Imz| < h(Rez)}.
Then

Rlilm Me =0 = }im e Ptp(r) = 0. (3.41)
eA— oo —®
Ael

In one of these cases, even if § = 0,

im Aﬁ“J e (d- 1+ (1)) dt = 0 (3.42)
Ael !

whenever d € C and g € ([0, %), C) is exponentially bounded for large arguments.
Moreover, if § > 0,

limsup [APe™ | < 00 <= limsupe™ "P'h(t) < oo, (3.43)
Red—o0 t—o0
Ael
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Proof. We prove (3.41).
“If” part. IfA €T, we obtain

|Aﬁef)lr|2/ﬁ _ (| Im)t|2 + | Re/HZ)ef(ZT/,B)ReA

2 (3.44)
< (h(Re/\)e*(T/ﬁ)Re/\) +|Re)|2e~C7/BIRe),

“Only if” part. Suppose there are some € >0 and numbers x,, € R with x,, — co and with
le~("Pxnpy(x,)| = ¢ for all n. Then z, := x,, + ice'”P* isin T, and

Lear

2/B — lim (X,21 + sze(ZT/ﬁ)x,,)ef(Zr/ﬁ)x” _ 82, (3.45)
n

0 =1lim

which is a contradiction. This shows (3.41).

Now let f(t) := dtf +glF+1(t). Then f'(t) = dBtF~1 + glFl(t) is L'* and exponentially
bounded for large arguments.

Partial integration shows that

MMJ e M F(H)dt = Ne M f(7) +Aﬁe’ATJ MW waT)dw.  (3.46)

T 0 0

COROLLARY 3.6. Let w,a,¢,v >0, u>0, f € (y/a,u/a+v], F(t) = c(e™ — 1), and M :=
{ze C|Rez>w, |Imz| < F(Rez — w)}.

Furthermore, let X be a complex Banach space, let A : D(A) — X be linear with M C
p(A), with

limsup M <0, (3.47)
A—o0 A
and with
sup [AF=*1e MR, A)|| < oo, (3.48)
AeEM

Then A generates a v-times-integrated semigroup on [0,af8 — u).

Proof. Apply Theorem 3.3 to m := 0, a:= f+1, and p(t) := L(u,e0)(t) - (£ — )"~ !, where
L(u) is the characteristic function on (y,0). Then we have p(A) = e MT(v)/\) if
ReA > 0.

Condition (3.25) is omitted, see Remark 3.4.

Condition (3.26) is equivalent to sup, _,; IA# e~ | < co. This follows from Lemma 3.5.
Here we need that 8 < y/a+.

Condition (3.27) is equivalent to sup, ., [IA#*1="e #R(1, A) || < 0.

By Theorem 3.3 the operator A generates a local p!!-convoluted semigroup on [0,af3).
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If x € X, let u, denote the (unique) solution of the abstract Cauchy problem

Au (1) + pM(t)x = ul(t) if0O<t<ap,
ux(0) =0, (3.49)
u, € C'([0,aB),X).
The uniqueness property follows from the Ljubic uniqueness theorem.
Then u,(t) = 0if 0 < t < y, since pl!l(t) = 0if 0 < ¢ < y. Thus if x € X, then
vi:[0,af —pu) — X,

Valt) = tx(t + 1), (3:50)

is the (unique) solution of the abstract Cauchy problem

v

AVX(t)+1/-x =vi(t) ifo<t<af—u,

v¢(0) =0, (3.51)

vy € CH([0,aB — p), X). O

CoROLLARY 3.7. Let X be a complex Banach space, let A : D(A) — X be linear, w,c,a >0,
F(t)=c(e* —1),and M = {z€ C|Rez>w, |Imz| < F(Rez — w)}.
Assume that M C p(A) and

IRALA)|

B <o forsomey e [—1,00). (3.52)
AeEM

Then, for all € > 0, the operator A generates a (y + 1 + ¢)-integrated semigroup on [0,ae).
Proof. Apply Corollary 3.6 to :=0,v:=y+e+1,and f:=¢. g

Remark 3.8. Corollary 3.7 improves [7, Theorem II] if D(A) is dense.

To see this we abbreviate “Cioranescu/Lumer” as “(CL)” and refer to the notation
in [7].

In that theorem, put ®V(r) := Inr, a(®V := 1/a, y(CV) := y, KV ;= phlr+e+1] ] and
€Y := y+ e+ 1. Then ¢!®Y = 1 and y“Y) = 0.

If w is large enough, then M C FL%? B

To apply [7, Theorem II] we have to make the assumptions that y > —1, that hlr+e+1]
is exponentially bounded, and that KD # 0 for all A with large real part. Then, by [7,

Theorem II], A generates a local h7*¢+*2]_convoluted semigroup on [0,7(°V)) = [0, (ICY) —
YD — gC1)/a(CL)) = [0, ge).

Example 3.9. Let X = C([0,1],C), let g € X with g(t) >0 forallt € [0,1], and let D(A) =
{f € C'([0,1],C) | f(0) = 0}.

Then the operator Ah = —gh’ generates a (1 + ¢)-integrated semigroup on [0, ) for
alle >0.
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If A € C, we have

AG(s)
ROLA) f(£) = e 60 f s (OFN (3.53)

o g(s)

where G(t) = [, (ds/g(s))ds.

The assertion follows from Corollary 3.7 since supg. ;.o [IR(A,A)| < 0.

CoRroLLARY 3.10. Let X be a complex Banach space, let A : D(A) — X be linear, w,c,a >0,
F(t)=c(e"—1),and M = {z€ C|Rez>w, |Imz| < F(Rez — w)}.
Assume that M C p(A), that

limsup M <0, (3.54)
A—o0 A
and that
sup|le™R(A,A)|| < 0o for some u = 0. (3.55)
AeM

Then for all € > y/a, the operator A generates a (e + 1)-integrated semigroup on [0,ae — ).
Proof. Apply Corollary 3.6 tov:=1+eand f:=¢. O

TareoreM 3.11. Let >0, 7 >0, g € Li([0,7],K), c € K\ {0}, and f(¢t) := ctf + glB+1(¢).

Furthermore, let h: [0,00) — [0,00) be some function with h(t) = o(e"P)?) as t —
(this condition is always fulfilled if § = 0. In this case T is supposed to be some right half-
plane in C), and let

T:={z€C||Imz| <h(Rez)}. (3.56)

Finally, let X be some real or complex Banach space and let A : D(A) — X be some linear
and closed operator which generates a local f-convoluted semigroup on [0,7].
Then there is some w > 0 such that R(A,A) exists if A € T with Re) > w, and

sup ReA - w < (3.57)
ReA>w Al
Ael
Proof. From Lemma 3.5, it follows that
Jim A8 fr)=c-T(B+1). (3.58)
Ser
Thus, again by Lemma 3.5,
2 f0)| = [A P | - |AF (0| — o if Red — w, L €T, (3.59)

which also holds if = 0.
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From the theory of local convoluted semigroups (see, e.g., [8, 11]), it follows that there
is some w > 0 such that R(A,A) exists if ReA > w, A € T, and that

const

RAMLA) € ————=——.
D= rer g

(3.60)

To be more precise, let 1, denote the solution of the abstract Cauchy problem

Au(t)+ f()x =u,(t) f0o<t=<r,
ux(0) =0, (3.61)
u, € CY([0,7],X).

Let Hx:= Au,(7) and J) := Aﬁ()t) -id—e*"H. From

I d H

= =1d——= > (362)
Af (D) Al f(A)
it follows that J, is invertible if A € T and ReA is large, and
I 1 o u k
b}
= = — | . (3.63)
(Aff()t)> ;go </le}“ﬁ(/1))
Thus, IJ; ' < 2/IAf;(\)] if € T and Re) is large.
From
(O -4) | eMdun = VxeXAeK, (3.64)
0
it follows that R(A,A) exists, and
const
RMA)|| € ———=—. (3.65)
I | Red- |Af:(M)]
([
Example 3.12. Let X = C([0,1],C) and D(A) = {f € C?([0,1],C) | f(0) = f'(0) = 0}.
Then Ah = —h" does not generate a local f-integrated semigroup on [0, 7], independent
of f=0and 7 >0.
We have, if A € C,
1 t
XJ Sinh(As) f(£ = s)ds ifA#0,
R(-A%A4)f()=4""° (3.66)
Jsf(t—s)ds ifA=0.
0

LetT:= {z € C| |Imz| < 4/3 - |Rez|} and consider (o) = —a+2ia if & > 0.
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Then —p? = 3a® +4ia® € T, and

R(—p%,A R(=p*A)D)]] a=o
I (Wp'tzﬁ I [IR( |Z|2ﬁ) leme (3.67)

where 1(t) = 1.

THEOREM 3.13. Let X be a complex Banach space and A : D(A) — X a linear operator.

Then the following assertions are equivalent.

(1) There are § > 0 and & > 0 such that A generates a -times integrated semigroup on
[0,£).

(2) There are c,w,a >0 such that if F(t) := c(e” — 1) and M := {z € C | Rez > w,
[Imz| < F(Rez — w)}, the following is valid:

M c p(A),
su NR)LA <o forsome eR,
Sup || KA for some (3.68)
limsup thR(AM <0.
A— o0

(3) There are w,6 >0 such that if h(t) := e andl:={ze C|Rez>w, |Imz| <h(Rez)},
the following is valid:

I'cp(A),

R(/\ A) (3.69)

sup H<oo for some B € R.

Ael

Proof. (1)=(3). Choose § € (0,&/f3), where &/f3:= oo if 3 = 0. Apply Theorem 3.11 to
g:=0,c:=1,f:=Band choose T € (83,&). Then h(t) = €% fulfills h(t) = o(e”P)*), thus,
by Theorem 3.11, there is some w > 0 such that R(A, A) exists if ReA > w, A € T, and

IRA,A)]

ReA>w |/\|ﬁ
AeTl

(3.70)

Here we needed the uniqueness property on [0, 7], see [10, Theorem 3.5.1].
(3)=(2). Choose a := g, c:= 1, and numbers y > 0, f € R such that ¢ - (B -pB) <.
For example, take y:= 0 and 8 := .
Then M cT,andif A € M,
R(A,A) H
sy alt (3.71)

“j;”R(A,A)H = |AFFe] . '
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If B— B >0, then

limsup ’AB_Ee_A" ’ < oo, (3.72)
Red— oo
AeM
by Lemma 3.5, since
limsupe*(”/(ﬁfg))‘h(t) < 0, (3.73)
t— o0

(2)=(1). First, letﬁz —u/a—1. Choose v > y/a+1 +ﬂ~andlg:= v—ﬁN— L. Thenﬁe
(y/a,u/a+v] and

Ay
e/\ﬁ R(/\,A)H Ve M, Rel > w. (3.74)

|[prte MR, A)|| <

Corollary 3.6 shows that A generates a local v-times integrated semigroup on [0,a(v —

1-B)-p.
Second, assume /§ < —u/a—1.Letv>0and ﬁ = y/a+». Then [? € (u/a,u/a+v] and,
ifw>1,

H)Lﬁ"”fle’“‘R(/l,A)H <

*A‘M
‘}—ER(/\,A)H Ve M, Red > w, (3.75)

since/§+/§—v+1 <0.
Corollary 3.6 shows that A generates a local v-times integrated semigroup on [0,av).
|

4. The theorem of Priiss and its application

Next we generalize a result from Priiss [12, Theorem 0.4] to the local case. In its original
form, the function g has to be defined on some right half-plane and then is the Laplace
transform of some continuous and exponentially bounded function.

This will lead to a new Hille-Yosida-type theorem for integrated semigroups.

THEOREM 4.1. Let X be a complex Banach space, ¢,a,w; >0, F(t) := c(e® — 1), and M :=
{ze C|Rez>wi, |Imz| < F(Rez — w1)}.
Furthermore, let q : M — X be a holomorphic function satisfying

sup [[Ag(V)]| < o0, sup|[A*g' (V)| < co. (4.1)
reM reM

Then there is some H € C((0,a),X) such that t — (t — a)H(t) is bounded on (0,a) and with

qA) ~¢ H:(1) V&€ (0,a). (4.2)



86  Laplace transform and local Cauchy problems

Proof. From the complex representation theorem it follows that there are functions g,/ €

C([0,a),X) such that g(¢)/t and h(t)/t are in L'%°([0,a),X) and with

4
g\ = AJ e Mg(H)dt + (L),
0
&
Ag ) = AI e MR+ e (L),
0

for all & € (0,a), where & and y; are functions satisfying

In|le; ()| In||ye(L)||
A

limsup ———— < -, limsup ———— < -¢.

A

A—oo A—oo

Thus, if 4 > w > w;, then
1 n ¢ 1
J g (V)dl :J J e‘“h(t)dtd)HJ %Md)t
) w JO 0]

& —ot _ ,—nt n
:J et me h(t)dt+J L%
0 t w A

f —wt <9
n—oo [* e “h(t) ye(A)
I Lo dt+L 2

0

Thus, y := lim, .. q(#) exists, and

& Eewth(t) * we(d)
_ wt _ _ AN YV
y wL e Y'g(t)dt — e (w) L ; dt+ L 1 dA

for all w > w; and all € € (0,a).
It is not hard to see that for all § > 0 we have
()
J,

e—wﬁewf

w— 00
—0,

that is,

limsup " e (W;(A)/A)d/lﬂ -

¢

Thus

& & —wt
J ey —g(t)dt ~¢ J ¢ h®)
0

ow.t

£
dt ~¢ I e tHU(1)dt,
0

where H(t) := h(t)/t.

Consequently, y — g(t) = H!(¢) for all 0 < t < a. This shows that y = 0 and

t
g(t)z—J @dt Vo<t<a
0

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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Thus
4
g ~¢ J e MH(¢)dt. (4.11)
0 0

THEOREM 4.2. Let c,a,w; >0, F(t) :=c(e® — 1), M:= {z€ C|Rez > w;, |Imz| < F(Rez
—w1)}, and let p: (0,00) — C be some continuous function satisfying | p(t)| < const-e®!
forallt >0 and

In[pQ0)]

liiriioglf B >0, (4.12)
sup [Ap(1)| < oo, (4.13)
AeM

sup AZiﬁ(A)' < . (4.14)

AeM dA

Let X be a complex Banach space, A : D(A) — X linear with M C p(A),

sup P | - [[RAL,A)?| < o, (4.15)
sup [A2p(A) | - [[R(L,A)|| < o, (4.16)
reM
d ~
;:5 /13%1)()0' - [|RAA)|| < oo. (4.17)

Then the following assertions hold:

(1) A generates a local p!'-convoluted semigroup on [0,a);
(2) the abstract Cauchy problem

Av(t)+p(t)x=v'(t) if0<t<a,
v(0) =0, (4.18)
ve CH(0,a),X) nC([0,a),X),

has a unique solution vy for all x € X;
(3) if p can be continuously extended in 0, then Apyzy generates a local p-convoluted
semigroup on [0,a).

Remark 4.3. Condition (4.12) can be omitted if one then assumes in addition that

In||R(A, A)]

0 <0. (4.19)

limsup

A—oo

Proof. Consider the holomorphic function

9:M — £(X,D(A), q() = PHRM,A). (4.20)
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Then A2q'(A) = =A2p(M)R(A,A)? +A2(dp(A)/dA)R(A, A), thus

g Wl = [2pRa, A1+ [ 20 g ROLA)|

+H(AR(A,A)—id)<,\2§( JROLA) — Azdp N )H
< []A2 (LR, A)?|| + Azdjzi;) (’A)H*'HPA(A)R(/\,APH (4.21)
“diﬁ (40| + W2 BORA )]+ Azd;;g:\) ‘
It follows from the assumptions that
flelﬁ”)tzq’m” <o (4.22)
Moreover,
IAg@)]| < [AFARA, Al +]A5(A) (ARA, A) ~id) |, (4.23)
thus
sup [[Ag(A)]| < . (4.24)

reM

From Theorem 4.1 it follows that there is some H € C((0,a),£(X,D(A))) such that t —
(t —a)H(t) is bounded on (0,a) and with

SOUROLA) ~ Lf e MH(DdE VE € (0,0). (4.25)
From conditions (4.12) and (4.16), it follows that limsup, ., (In [R(A,A)[I/A) < 0, thus
A(ptt! )? (MR, A)x ~¢ pe(M)R(A,A)x
~ Jje“H(t)xdt (4.26)
~ Lj e Md,(H" (t)x).
This shows (1). To be precise, the solution of the abstract Cauchy problem

Au, () +pN()x = ul(t), O0<t<a,
u,(0) =0, (4.27)
u, € C'([0,a),X),

is u,(t) = [y H(s)xds.



Further on, we define v, : [0,a) — X by

0 ift =0,
vi(t) = .
H(t)x if0<t<a.

Since Avi! = (AH()x)V is in C'((0,a),X), we have vy € C'((0,a),

closed, we obtain
Ave()+p(t)x=v (1) if0<t<a.

This shows (2).
Finally if x € D(A), then

Apayvx () +p()x = vi(t) if0<t<a,
Vx(O) = 0)

ve € C'([0,a), D(A)).
The result follows if we can show that

sup sup || (t)]|y <o V&€ (0,a)
0<t<¢ yeD(A)
[Iyll<1

If0<t<&and y € D(A) with || y|l <1, we obtain

v, (0)]] < [|Avy () + p(t)yll = [JAH(£)y + p(£)y|
<||AH®)|gx) + I pll Lo 10,81-
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(4.28)

X), and since A is

(4.29)

(4.30)

(4.31)

(4.32)
O

COROLLARY 4.4. Let c,a,w; >0, F(t) :=c(e* — 1), and M := {z € C| Rez > w;, |Imz| <

F(Rez — wy)}.

Suppose X is a complex Banach space, A : D(A) — X is linear with M C p(A), and that

there is some y = 0 with

IRQ, A
AeEM |A|y—2 ’

IRAA
P S

Then the following assertions hold:

(1) A generates a (y + 1)-integrated semigroup on [0,a);

(4.33)
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(2) the abstract Cauchy problem

Av(t)+t"-x=v'(t) if0<t<a,
v(0) =0, (4.34)
v e C'((0,a),X) nC([0,a),X),

has a unique solution vy for all x € X;
(3) Apay generates a y-integrated semigroup on [0,a).

Proof. Let p(t) = ¢’ and apply Theorem 4.2.
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