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The paper deals with the vector discrete dynamical system xk+1 = Akxk + fk(xk). The well-
known result by Perron states that this system is asymptotically stable if Ak ≡ A = const
is stable and fk(x)≡ f̃ (x)= o(‖x‖). Perron’s result gives no information about the size of
the region of asymptotic stability and norms of solutions. In this paper, accurate estimates
for the norms of solutions are derived. They give us stability conditions for (1.1) and
bounds for the region of attraction of the stationary solution. Our approach is based on
the “freezing” method for difference equations and on recent estimates for the powers
of a constant matrix. We also discuss applications of our main result to partial reaction-
diffusion difference equations.

1. Introduction and notation

Let Cn be the set of n-complex vectors endowed with the Euclidean norm ‖ · ‖. Consider
in Cn the equation

xk+1 = Akxk + fk
(
xk
)

(k = 0,1,2, . . .), (1.1)

whereAk (k = 0,1,2, . . .) are n×n-complex matrices and fk : Cn→Cn are given functions.
A well-known result of Perron which dates back to 1929 (see [11, page 270], [8, Theorem
9.14], and [6]) states that (1.1) is asymptotically stable if Ak ≡A= const is stable (i.e., the
spectral radius rs(A) of A is less than 1) and fk(x)= f̃ (x)= o(‖x‖). Clearly, this result is
purely local. It gives no information about the size of the region of asymptotic stability
and norms of solutions.

In this paper, we derive accurate estimates for the norms of solutions. Our approach is
based on the “freezing” method for difference equations and on recent estimates for the
powers of a constant matrix. Note that the “freezing” method for difference equations was
developed in [5]. It is based on the relevant ideas for differential equations (cf. [2, 3, 7]).

Firstly, we consider the linear difference equation

xk+1 =Akxk (k = 0,1,2, . . .). (1.2)
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As it is well known, the fundamental matrix X(k) of (1.2) can be expressed as

X(m)= AmAm−1 ···A0. (1.3)

But such a representation does not yield much information about the asymptotic value
of solutions, except in the case of constant coefficients Ak = A (k = 0,1,2, . . .), when
X(k)= Ak and the Jordan canonical form of A determines the asymptotic behavior of the
solutions. To prove the stability of (1.2) is equivalent to proving the boundedness of the
sequence {‖X(m)‖}∞1 . This problem is easy to solve under the condition supk ‖Ak‖ ≤ 1.
But it is rather restrictive. The “freezing” method allows us to avoid this condition in the
case ∥∥Ak −Aj

∥∥≤ qk− j (
qk = q−k = const≥ 0, q0 = 0; j,k = 0,1,2, . . .

)
. (1.4)

For example, if Ak = sin(ck)B (c = const > 0), where B is a constant matrix, then condi-
tion (1.4) holds with qk = 2‖B‖|sin(ck/2)|, since

sinα− sinβ = 2sin
(
α−β

2

)
cos

(
α+β

2

)
(1.5)

for real α, β.
For an n×n-matrix A, denote

g(A)=
[
N2(A)− n∑

j=1

∣∣λj(A)
∣∣2
]1/2

, (1.6)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of a matrix A : N2(A) =
Trace(AA∗), and λ1(A),λ2(A), . . . ,λn(A) are the eigenvalues of A including their multi-
plicities. The relations

g(A)≤ [N2(A)−∣∣Trace
(
A2)∣∣]1/2

,

g(A)≤
√

1
2
N
(
A∗ −A) (1.7)

are true [3, Section 2.1]. Here A∗ is the adjoint matrix. If A is a normal matrix: A∗A =
AA∗, then g(A)= 0. If A= (ai j) is a triangular matrix such that ai j = 0 for 1≤ j ≤ i≤ n,
then

g2(A)=
∑

1≤i≤ j≤n

∣∣ai j∣∣2
. (1.8)

For a natural number n > 1, introduce the numbers

γn,p =
√√√√ C

p
n−1

(n− 1)p
(1.9)
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for p = 1,2, . . . ,n− 1 and γn,0 = 1. Here and below,

C
k
m =

m!
(m− k)!k!

(k = 0,1,2, . . . ,m; m= 1,2, . . .) (1.10)

are the binomial coefficients. Evidently, for n > 2,

γ2
n,p =

(n− 2)(n− 3)···(n− p)
(n− 1)p−1p!

≤ 1
p!
. (1.11)

Due to [4, Theorem 1.2.1], for any n×n-matrix A, the inequality

∥∥Am∥∥≤ m1∑
k=0

m!rm−ks (A)gk(A)γn,k

(m− k)!k!

=
m1∑
k=0

C
k
mr

m−k
s (A)gk(A)γn,k

(
m1 =min{n− 1,m}) (1.12)

holds for every integer m, where rs(A) is the spectral radius of A.

2. Preliminary facts

Firstly, we recall a boundedness result for (1.2) which is proven in [5, Lemma 1.1], namely,
we recall the following lemma.

Lemma 2.1. Under condition (1.4), let

ζ0 ≡
∞∑
k=1

qk sup
l=1,2,...

∥∥Akl ∥∥ < 1. (2.1)

Then, every solution {xk} of (1.2) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ β0
∥∥x0

∥∥(1− ζ0
)−1

, (2.2)

where

β0 = sup
k,l=0,1,2,...

∥∥Akl ∥∥. (2.3)

As a consequence, it is possible to establish the next corollaries.

Corollary 2.2. Let the conditions∥∥Ak −Ak+1
∥∥≤ q̃ (

k = 1,2, . . . ; q̃ = const > 0
)
, (2.4)

θ0 ≡
∞∑
k=1

sup
l=1,2,...

∥∥Akl ∥∥k < q̃−1 (2.5)

hold. Then, every solution {xk} of (1.2) satisfies the inequality∥∥xk∥∥≤ β0
∥∥x0

∥∥(1− q̃θ0
)−1

(k = 1,2, . . .). (2.6)
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Indeed, under condition (2.4), we have∥∥Ak −Aj

∥∥≤ q̃|k− j| ( j,k = 0,1,2, . . .). (2.7)

So ζ0 ≤ q̃θ0. Now, the required result follows from Lemma 2.1.

Corollary 2.3. Let condition (2.4) hold. In addition, for a constant v > 0, let

θ(v)≡
∞∑
k=1

v−k−1 sup
l=1,2,...

∥∥Akl ∥∥k < q̃−1. (2.8)

Then, every solution {xk} of (1.2) satisfies the inequality∥∥xk∥∥≤ vkm(v)
∥∥x0

∥∥(1− q̃θ(v)
)−1

(k = 1,2, . . .), (2.9)

where

m(v)≡ sup
l,k=0,1,2,...

v−k
∥∥Akl ∥∥. (2.10)

Indeed, due to condition (2.8), m(v) <∞. Putting xk = vkzk in (1.2) , we get

zk+1 = v−1Akzk. (2.11)

Corollary 2.2 and condition (2.8) imply

sup
k=1,2,...

∥∥zk∥∥≤m(v)
∥∥z0

∥∥(1− q̃θ(v)
)−1

(k = 1,2, . . .). (2.12)

Hence, the required estimate follows. Recall also the following result from [5].

Theorem 2.4. Under condition (1.4), let

ρ0 ≡ sup
l=1,2,...

rs
(
Al
)
< 1, v0 ≡ sup

l=0,1,2,...
g
(
Al
)
<∞, (2.13)

ξ ≡
∞∑
m=1

n−1∑
k=0

C
k
mρ

m−k
0 vk0γn,kqm < 1. (2.14)

Then, every solution {xk} of (1.2) is bounded. Moreover,

sup
k=1,2,...

∥∥xk∥∥≤M0
∥∥x0

∥∥(1− ξ)−1, (2.15)

where

M0 =
n−1∑
k=0

vk0γn,k
(
ψk + k

)k
ρ
ψk
0 (2.16)

with ψk =max{0,−k(1 + logρ0)/logρ0}.
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3. The main result

The previous estimates give us a possibility to investigate (1.1) as a nonlinear perturbation
of (1.2). For a positive r ≤∞, denote the ball

Br =
{
x ∈C

n : ‖x‖ ≤ r} (3.1)

and assume that there are constants µ,ν≥ 0, such that∥∥ fk(x)
∥∥≤ ν‖x‖+µ

(
x ∈ Br ; k = 0,1,2, . . .

)
. (3.2)

Recall that the quantities ρ0, v0, and M0 are defined by (2.13) and (2.16). Let

ψ(A)≡
∞∑
k=0

n−1∑
j=0

C
j
kρ

k− j
0 v

j
0γn, j . (3.3)

Now we are in a position to formulate the main result of the paper.

Theorem 3.1. Under the conditions (1.4), (2.13), and (3.2), let

S( f ;A)≡
∞∑
k=0

n−1∑
j=0

C
j
kρ

k− j
0 v

j
0γn, j

(
qk + ν

)
< 1. (3.4)

Then, any solution {xk}∞=0 of (1.1) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ M0
∥∥x0

∥∥+µψ(A)
1− S( f ;A)

, (3.5)

provided that

M0
∥∥x0

∥∥+µψ(A)
1− S( f ;A)

≤ r. (3.6)

The proof of this theorem is given afterwards.
Recall that

β0 = sup
k,l=0,1,...

∥∥Akl ∥∥ (3.7)

and let

θ1 ≡
∞∑
k=0

sup
l=0,1,...

∥∥Akl ∥∥. (3.8)

Lemma 3.2. Under conditions (1.4) and (3.2), let

S0 ≡
∞∑
k=0

(
qk + ν

)
sup

l=0,1,2,...

∥∥Akl ∥∥ < 1. (3.9)
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Then, every solution {xk} of (1.1) satisfies the inequality∥∥xk∥∥≤ [β0
∥∥x0

∥∥+ θ1µ
](

1− S0
)−1

(k = 1,2, . . .), (3.10)

provided that [
β0
∥∥x0

∥∥+ θ1µ
](

1− S0
)−1 ≤ r. (3.11)

Proof. Rewrite (1.1) as

xk+1−Alxk =
(
Ak −Al

)
xk + fk

(
xk
)

(3.12)

with a fixed integer l. The variation of parameters formula yields

xl+1 = Al+1
l x0 +

l∑
j=0

A
l− j
l

[(
Aj −Al

)
xj + f j

(
xj
)]
. (3.13)

There are two cases to consider: r =∞ and r <∞. First, assume that (3.2) is valid with
r =∞, then, by (1.4),

∥∥xl+1
∥∥≤ β0

∥∥x0
∥∥+

l∑
j=0

∥∥Al− jl

∥∥[ql− j∥∥xj∥∥+ ν
∥∥xj∥∥+µ

]

≤ β0
∥∥x0

∥∥+
l∑
j=0

∥∥Al− jl

∥∥(ql− j + ν
)∥∥xj∥∥+ θ1µ

≤ β0
∥∥x0

∥∥+ max
k=0,...,l

∥∥xk∥∥ l∑
k=0

∥∥Akl ∥∥(qk + ν
)

+µθ1

≤ β0
∥∥x0

∥∥+ max
k=1,...,l

∥∥xk∥∥
 ∞∑
k=0

(
qk + ν

)
sup

l=0,1,2,...

∥∥Akl ∥∥
+µθ1.

(3.14)

Consequently,

max
k=1,2,...,l+1

∥∥xk∥∥≤ β0
∥∥x0

∥∥+ S0 max
k=0,1,...,l+1

∥∥xk∥∥+µθ1. (3.15)

But β0 ≥ 1. So

max
k=0,1,2,...,l+1

∥∥xk∥∥≤ β0
∥∥x0

∥∥+ S0 max
k=0,1,...,l+1

∥∥xk∥∥+µθ1. (3.16)

Hence,

sup
k=0,1,2,...

∥∥xk∥∥≤ β0
∥∥x0

∥∥+µθ1

1− S0
. (3.17)

Let now r <∞. Define the function

f̃k(x)=
 fk(x), ‖x‖ ≤ r,

0, ‖x‖ > r. (3.18)
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Since ∥∥∥ f̃k(x)
∥∥∥≤ ν‖x‖+µ, k = 0,1, . . . ; x ∈ B∞, (3.19)

then the sequence {x̃k}∞=0 defined by

x̃0 = x0, x̃k+1 = Akx̃k + f̃k
(
x̃k
)
, k = 0,1, . . . , (3.20)

satisfies the inequality

sup
k=0,1,...

∥∥x̃k∥∥≤ β0
∥∥x0

∥∥+µθ1

1− S0
≤ r (3.21)

according to the above arguments and condition (3.11). But f and f̃k(x) coincide on Br .
So xk = x̃k for k = 0,1,2, . . . . Therefore, (3.10) is satisfied, thus concluding the proof. �

proof of Theorem 3.1. As it was proved in [5, Lemma 2.2], β0 ≤M0. Moreover, due to
(1.12), we have θ1 ≤ ψ(A) and S0 ≤ S( f : A). Now the result is due to Lemma 3.2. �

Remarks 3.3. (a) Under (3.2) with µ= 0, fk(0)= 0 so that {0} is a solution of (1.1). Under
condition S( f ,A) < 1, Theorem 3.1 asserts that the trivial solution is stable, and that any
initial vector x0 ∈ Br , satisfying the condition

∥∥x0
∥∥≤ (

1− S( f ,A)
)
r

M0
, (3.22)

belongs to the region of attraction.
(b) If ν≡ 0, then every solution of (1.1) with the initial vector x0 satisfying∥∥x0

∥∥M0 +µψ(A)≤ (1− ξ)r (3.23)

is bounded.

4. Applications

In this section, we will illustrate our main results by considering a partial difference equa-
tion. We consider a simple three-level discrete reaction-diffusion equation of the form

u
( j+1)
i = aju( j)

i−1 + bju
( j)
i + cju

( j)
i+1 + g

( j)
i + f j

(
u

( j)
i

)
, (4.1)

defined on Ω= {(i, j) : i= 0,1, . . . ,n+ 1; j = 0,1, . . .}, where {aj}, {bj}, and {cj} are real

sequences, g = {g( j)
i } is a complex function defined on Ω, and f j : C→C ( j = 0,1, . . .) are

given functions. Assume that the side conditions

u
( j)
0 = δj ∈C, j = 0,1, . . . , (4.2)

u
( j)
n+1 = γj ∈C, j = 0,1, . . . , (4.3)

u(0)
i = τj ∈C, i= 1,2, . . . ,n, (4.4)
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are imposed, where τ = (τ1,τ2, . . . ,τn)∈Cn. A solution of problem (4.1), (4.2), (4.3), and

(4.4) is a discrete function u= {u( j)
i }(i, j)∈Ω which satisfies relations (4.1), (4.2), (4.3), and

(4.4). The existence and uniqueness of solutions to that problem is obvious, provided that
f j is one-one valued. With the notation

u( j) =
(
u

( j)
1 ,u

( j)
2 , . . . ,u

( j)
n

)
, (4.5)

the sequence {u( j)}∞j=0 satisfies the vector equation

u( j+1) = Aju
( j) +Gj +Fj

(
u( j)

)
, j = 0,1, . . . , (4.6)

and the initial condition

u(0) = τ, (4.7)

where

Aj =



bj c j 0 ··· ··· 0
aj bj c j 0 ··· 0
0 aj bj c j ··· 0
...

...
...

...
...

...
0 ··· ··· 0 aj bj

 , j = 0,1,2, . . . ,

Gj =
(
g

( j)
1 , . . . ,g

( j)
n

)
+
(
ajδj ,0, . . . ,0,cjγj

)
,

Fj(x)= ( f j(x1
)
, . . . , f j

(
xn
))

, x = (x1,x2, . . . ,xn
)
.

(4.8)

Thus, we can write problem (4.1), (4.2), (4.3), and (4.4) as (1.1) with

f j(x)= Fj(x) +Gj. (4.9)

Assume that there are nonnegative constants µ1 and ν such that∥∥Fj(x)
∥∥≤ ν‖x‖+µ1 (x ∈ Br ; j = 1,2, . . .). (4.10)

In addition,

µ2 ≡
∞∑
j=0

∥∥Gj

∥∥ <∞. (4.11)

So condition (3.2) holds with µ0 = µ1 + µ2. As a direct consequence of Theorem 3.1, we
get the following theorem.

Theorem 4.1. Let conditions (1.4), (4.2), (4.10), and (4.11) hold with µ = µ1 + µ2 and

x0 = τ. Then, the unique solution xj = {u( j)
i }(i, j)∈Ω of problem (4.1), (4.2), (4.3), and (4.4)

satisfies inequality (3.5).
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Remarks 4.2. Comparing Theorem 4.1 with [10, Theorems 1 and 2], we point out that
the hypotheses of Theorem 4.1 can be checked more easily. In this paper, we have used
a different approach. Our results do not overlap with those from [9, 10]. Other related
works can be found in [1, pages 237–245].
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