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We present basic methods of oscillation theory of symplectic difference systems (SDSs).
A particular attention is devoted to the variational principle and to the transformation
method. Hyperbolic Prüfer transformation for SDSs is established.

1. Introduction

In this paper, we deal with oscillatory properties and transformations of symplectic dif-
ference systems (SDSs)

zk+1 =�kzk, zk =
(
xk
uk

)
, �k =

(
�k �k

�k �k

)
, (1.1)

where x,u∈Rn, �,�,�,�∈Rn×n, and the matrix � is supposed to be symplectic, that
is,

�T
k ��k =�, �=

(
0 I
−I 0

)
. (1.2)

The last identity translates in terms of the block entries �, �, �, and � as

�T�=�T�, �T�=�T�, �T�−�T�= I. (1.3)

If Z = (XU ), Z̃ = ( X̃Ũ ) are 2n× n matrix solutions of (1.1) and � = (Z Z̃) = (X X̃
U Ũ

)
, then

using (1.2), we have

∆
(
�T

k ��k
)=�T

k+1��k+1−�T
k ��k =�T

k

[
�T

k ��k −�
]
�k = 0 (1.4)

which means that �k are symplectic whenever this property is satisfied at one index, say
k = 0. Consequently, (1.1) defines the discrete symplectic flow and this fact, together with
(1.2), is the justification for the terminology symplectic difference system.
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SDSs cover, as particular cases, a large variety of difference equations and systems,
among them the Sturm-Liouville second-order difference equation

∆
(
rk∆xk

)
+ pkxk+1 = 0, rk �= 0, ∆xk = xk+1− xk, (1.5)

the higher-order selfadjoint difference equation

n∑
ν=0

(−1)ν∆ν
(
r[ν]
k ∆νyk+n−ν

)
= 0, r[n]

k �= 0, ∆ν = ∆
(
∆ν−1), (1.6)

and the linear Hamiltonian difference system

∆xk =Akxk+1 +Bkuk, ∆uk = Ckxk+1−AT
k uk, (1.7)

with A,B,C ∈Rn×n, B and C symmetric (i.e., B = BT , C = CT), and I −A invertible.
Our paper is organized as follows. In the remaining part of this section we recall, for

the sake of later comparison, basic oscillatory properties of the Sturm-Liouville equation
(1.5). Section 2 contains the so-called Roundabout theorem for (1.1) which forms the
basis for the investigation of oscillatory properties of these systems. We also mention
some results concerning transformations of (1.1). Section 3 is devoted to the illustration
of the methods of oscillation theory of (1.1) and Section 4 contains a new result, the so-
called discrete hyperbolic Prüfer transformation. We also formulate some open problems
associated with this type of transformation.

Now, we recall basic facts of the oscillation theory of (1.5) as can be found, for example,
in [1, 2, 11, 14]. We substitute u = r∆x in (1.5). Then this equation can be written as a
2× 2 Hamiltonian system (1.7)

∆

(
xk
uk

)
=

 0

1
rk

−pk 0



(
xk+1

uk

)
(1.8)

and expanding the forward differences as a 2× 2 symplectic system

(
xk+1

uk+1

)
=




1
1
rk

− pk
rk

1− pk
rk



(
xk
uk

)
. (1.9)

We say that an interval (m,m + 1] contains a focal point (an alternative terminology is
generalized zero, see [13]) of a solution x of (1.5) if xm �= 0 and rmxmxm+1 ≤ 0. Equation
(1.5) is said to be disconjugate in the discrete interval [0,N] if the solution x̃ given by the
initial condition x̃0 = 0, x̃1 = 1/r0 has no focal point in (0,N + 1]. This equation is said to
be nonoscillatory if there exists n ∈ N such that (1.5) is disconjugate on [n,m] for every
m> n, and it is said to be oscillatory in the opposite case.

The next statement, usually referred to as the Roundabout theorem, shows that the
discrete quadratic functional and the discrete Riccati equation play the same role in the
oscillation theory of (1.5) as their continuous counterparts in the oscillation theory of
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the Sturm-Liouville differential equation

(
r(t)x′

)′
+ p(t)x = 0. (1.10)

Proposition 1.1. The following statements are equivalent:

(i) equation (1.5) is disconjugate on the interval [0,N],
(ii) there exists a solution x of (1.5) having no focal point in [0,N + 1],

(iii) there exists a solution w of the Riccati equation (related to (1.5) by the substitution
w = r∆x/x)

∆wk + pk +
w2
k

wk + rk
= 0 (1.11)

which is defined for k ∈ [0,N + 1] and satisfies rk +wk > 0 for k ∈ [0,N],
(iv) the quadratic functional

N∑
k=0

{
rk
(
∆yk

)2− pk y
2
k+1

}
> 0 (1.12)

for every nontrivial y = {yk}N+1
k=0 with y0 = 0= yN+1.

Note that the previous proposition actually shows that the Sturmian separation and
comparison theory extend verbatim to (1.5), using the same argument as in the case of
the differential equation (1.10).

2. Oscillation theory of SDSs

First, we turn our attention to Hamiltonian difference systems (1.7). Oscillation theory of
these systems attracted considerable attention in late eighties and early nineties of the last
century (see [8, 12] and the references given therein). Note that in both of these papers,
it is assumed that the matrix B is positive definite and hence nonsingular. However, such
Hamiltonian systems do not cover several important equations, for example, (1.6), in

which case the matrix B = diag{0, . . . ,0,1/r[n]
n } in the Hamiltonian system corresponding

to this equation. This difficulty was removed in the pioneering paper of Bohner [3], where
the concept of the focal point of a matrix solution of (1.7) with B possibly singular was
introduced. Later, this concept was extended to system (1.1) in [5] and reads as follows.
We say that a conjoined basis Z = (XU ) of (1.1) (i.e., a 2n× n matrix solution such that
XTU is symmetric and rank

(
X
U

)≡ n) has a focal point in an interval (m,m+ 1], m∈ Z,
if KerXm+1 �⊆ KerXm or “⊆ ” holds, but Pm := XmX

†
m+1�m �≥ 0, here Ker, †, and ≥ mean

the kernel, the generalized inverse, and nonnegative definiteness of a symmetric matrix,
respectively. Note that if the inclusion “⊆ ” holds, then the matrix Pm is really symmetric
(see [5]). System (1.1) is said to be disconjugate on [0,N] if the solution Z = (XU ) given
by the initial condition X0 = 0 , U0 = I has no focal point in (0,N + 1]. Oscillation and
nonoscillation of (1.1) are defined via disconjugacy in the same way as for (1.5).

The following statement shows that, similar to the scalar case, certain discrete qua-
dratic functional and Riccati-type difference equation play a crucial role in the oscillation
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theory of (1.1). This statement is proved in [5] and we present it here in a slightly modi-
fied form.

Proposition 2.1. The following statements are equivalent:

(i) system (1.1) is disconjugate in the interval [0,N],
(ii) there exists a conjoined basis Z = (XU ) without any focal point in [0,N + 1] and with

Xk nonsingular in this interval,
(iii) there exists a symmetric solution Q of the Riccati matrix difference equation

Qk+1 =
(
�k + �kQk

)(
�k + �kQk

)−1
(2.1)

which is defined for k ∈ [0,N + 1] and the matrix Pk :=�T
k (�k −Qk+1�k) is non

negative definite for k ∈ [0,N],

(iv) let �=
(

0 0
I 0

)
. The quadratic functional corresponding to (1.1)

	(z)=
N∑
k=0

zTk
{

�T
k �−�

}
zk

=
N∑
k=0

{
xTk �T

k �kxk + 2xTk �T
k �kuk +uTk �T

k �kuk
} (2.2)

is positive for every z = {zk}N+1
k=0 satisfying �zk+1 =��kzk, �z0 = 0 =�zN+1, and

�z �≡ 0, that is, if we write z = ( xu), then 	(x,u) > 0 for every x,u satisfying xk+1 =
�kxk + �kuk, x0 = 0= xN+1, x �≡ 0.

It is not difficult to verify that if (1.1) is the rewritten equation (1.5), that is, �= 1, �=
1/r, � = −p, and � = 1− p/r, then the objects appearing in the previous proposition
reduce to their scalar counterparts mentioned in Proposition 1.1.

We finish this section with a short description of the transformation theory of (1.1).
Let 
k be symplectic matrices and consider the transformation of (1.1)

zk =
kz̃k. (2.3)

This transformation transforms (1.1) into the system

z̃k+1 = �̃kz̃k, �̃k =
−1
k+1�k
k, (2.4)

which is again a symplectic system as can be verified by a direct computation. The case
when 
 is of the form


k =
(
Hk 0
Gk HT−1

k

)
(2.5)

is of particular importance in oscillation theory of (1.1). In this case, transformation
(2.3) preserves the oscillatory nature of transformed systems (see [5]) and if we write
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�̃=
(

�̃ �̃
�̃ �̃

)
, then we have

�̃k =H−1
k+1

(
�kHk + �kGk

)
, �̃k =H−1

k+1�kH
T−1
k ,

�̃k =HT
k+1

(
�kHk + �kGk

)−GT
k+1

(
�kHk + �kGk

)
,

�̃k =HT
k+1�kH

T−1
k −GT

k+1�kH
T−1
k .

(2.6)

Consequently, transformation (2.3), with 
 of the form (2.5), is a useful tool in the oscil-
lation theory of (1.1); this system is transformed into an “easier” system and the results
obtained for this “easier” system are then transformed back to the original system. For
some oscillation results obtained in this way, we refer to [6, 9].

3. Oscillation theory of SDSs

In addition to the transformation method mentioned in Section 2, the Roundabout the-
orem (Proposition 2.1) suggests two other methods of the oscillation theory of these sys-
tems. The first one, the so-called Riccati technique, consists in the equivalence (i)⇐⇒(iii).
The oscillation results for (1.7) with B positive definite, mentioned at the beginning of
Section 2, were proved just using this method. However, as we have already mentioned,
this method does not extend directly to a Hamiltonian system with B singular or to gen-
eral SDSs. It is an open problem (which is the subject of the present investigation) how
to modify this method in order to be applicable also in the more general situation.

The second principal method of the oscillation theory of (1.1), the so-called varia-
tional principle, is based on the equivalence of disconjugacy and positivity of quadratic
functional (2.2), which is the equivalence (i)⇔(iv) in Proposition 2.1. Unlike the Riccati
technique, this method extends to general SDSs almost without problems and the illus-
tration of this extension is the main part of this section.

The discrete version of the classical Leighton-Wintner criterion for the Sturm-Liouville
differential equation (1.10) states that the Sturm-Liouville difference equation (1.5) with
rk > 0 is oscillatory provided

∞∑ 1
rk
=∞,

∞∑
pk =∞. (3.1)

In this criterion, equation (1.5) is essentially viewed as a perturbation of the one-term
(nonoscillatory) equation

∆
(
rk∆xk

)= 0. (3.2)

According to the equivalence of oscillation of (1.5) and the existence of a sequence (with
zero boundary values) for which the associated quadratic functional (1.12) is nonposi-
tive, for the oscillation of the “perturbed” equation (1.5), the sequence pk must be, in
a certain sense, sufficiently positive. The second condition in (3.1) is just a quantitative
characterization of the “sufficient positivity” of pk.
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Now, we show how this criterion extends to (1.1). Let �̃k be a sequence of symmetric
nonpositive definite n×n matrices and consider the system

zk+1 =
(
�k + �̃k

)
zk, �̃k =

(
0 0

�̃k�k �̃k�k

)
, (3.3)

as a perturbation of (1.1). The quadratic functional corresponding to (3.3) has the same
class of admissible pairs x, u, as the functional corresponding to (1.1), and takes the form

	̃k(x,u)=
N∑
k=0

{
xTk
(
�k + �̃k�k

)T
�kxk + 2xTk

(
�k + �̃k�k

)T
�kuk

+uTk
(
�k + �̃k�k

)T
k �kuk

}

=
N∑
k=0

{
xTk �T

k �kxk + 2xTk �T
k �kuk +uTk �T

k �kuk
}

+
N∑
k=0

xTk+1�̃kxk+1.

(3.4)

In our extension of the Leighton-Wintner-type criterion to (1.1), we will need two
additional concepts of the oscillation theory of these systems. System (1.1) is said to be
eventually controllable if there exists N ∈N such that the trivial solution z = ( xu)≡ (0

0

)
is

the only solution for which xk = 0 for k ≥N . A conjoined basis Z̃ =
(
X̃
Ũ

)
is said to be the

recessive solution of (1.1) at∞ if there exists N ∈N such that X̃k is nonsingular for k ≥N
and

lim
k→∞

( k∑
j=N

X̃−1
j+1� j X̃

T−1
j

)−1

= 0. (3.5)

Note that the principal solution at ∞ exists and it is unique (up to the right multiplica-
tion by a nonsingular constant matrix) whenever (1.1) is nonoscillatory and eventually
controllable (see [5]).

Theorem 3.1. Suppose that (1.1) is nonoscillatory, eventually controllable and let Z̃ =
(
X̃
Ũ

)
be the principal solution at∞ of this system. If there exists a vector v ∈Rn such that

∞∑
vTX̃T

k+1�̃kX̃k+1v =−∞, (3.6)

then (3.3) is oscillatory.

We skip the proof of this statement which is based on a rather complicated construc-
tion of an admissible pair x, u for which 	̃(x,u) < 0 (for details, see [4]). We concen-
trate our attention on showing that the previous theorem is really an extension of the
Leighton-Wintner criterion (3.1). Equation (3.2) can be written as the 2× 2 symplectic
system

(
x

u

)
k+1

=

1

1
rk

0 1



(
x

u

)
k

(3.7)
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which plays the role of system (1.1). The perturbation quantity is �̃ = −p, that is, �̃ =( 0 0
−p −p/r

)
, and hence the symplectic system (1.9) (which is the rewritten equation (1.5))

plays the role of (3.3). Now, the first condition in (3.1) is

∞∑ 1
rk
=∞⇐⇒ lim

k→∞

( k∑ 1
r j

)−1

= 0 (3.8)

which means that x̃k ≡ 1 is the principal solution at∞ of (3.2). Since �̃=−p, clearly (3.6)
with v = 1, n = 1, and X̃ = x̃ = 1 is equivalent to the second condition in (3.1). Hence,
the Leighton-Wintner oscillation criterion (3.1) is really a consequence of Theorem 3.1.

4. Hyperbolic Prüfer transformation

The classical Prüfer transformation (established by Prüfer in [15]) is a useful tool in the
qualitative theory of the second-order Sturm-Liouville differential equation

(
r(t)x′

)′
+ p(t)x = 0, (4.1)

where r and p are continuous functions with r(t) > 0. By this transformation, any non
trivial solution x of (4.1) and its quasiderivative rx′ can be expressed in the form

x(t)= ρ(t)sinϕ(t), r(t)x′(t)= ρ(t)cosϕ(t), (4.2)

where ρ and ϕ satisfy the first-order system

ϕ′ = p(t)sin2ϕ+
1

r(t)
cos2ϕ, ρ′ = 1

2
sin2ϕ(t)

(
1

r(t)
− p(t)

)
ρ. (4.3)

Since 1926, when the original paper of Prüfer appeared, the Prüfer transformation has
been extended in various directions (see [7] and the references given therein). Here, we
present another extension: the so-called hyperbolic discrete Prüfer transformation which
is based on the following idea. If the Sturm-Liouville equation (4.1) possesses a solution
x such that (r(t)x′(t))2 − x2(t) > 0 in some interval I ⊂ R, then the solution x and its
quasiderivative rx′ can be expressed via the hyperbolic sine and cosine functions in the
form

x(t)= ρ(t)sinhϕ(t), r(t)x′(t)= ρ(t)coshϕ(t) (4.4)

in this interval, where the functions ρ and ϕ satisfy a first-order system similar to (4.3).
The crucial role in our extension of this transformation is played by the so-called hyper-
bolic symplectic system, which is the SDS of the form

xk+1 =�kxk + �kuk, uk+1 =�kxk + �kuk, (4.5)

that is, the n×n matrices � and � satisfy

�T�−�T� = I , �T�−�T�= 0. (4.6)



292 Symplectic difference systems

Note that the terminology hyperbolic symplectic system is motivated by the fact that in the
scalar case n= 1, solutions of (4.5) are, in case �k > 0, of the form

xk = sinh

(k−1∑
ϕj

)
, uk = cosh

(k−1∑
ϕj

)
, (4.7)

where ϕk is a sequence given by coshϕk =�k, sinhϕk = �k. For basic properties of solu-
tions of hyperbolic symplectic systems, we refer to [10].

Theorem 4.1. Suppose that (1.1) possesses a conjoined basis
(
X
U

)
such that UT

k Uk −XT
k Xk is

positive definite for k in some discrete interval [m,n], m,n∈N. Then there exist nonsingular
n×n matrices Hk and n×n matrices �k, �k satisfying (4.6), k ∈ [m,n], such that

Xk = STk Hk, Uk = CT
k Hk, (4.8)

where
(
S
C

)
is a conjoined basis of (4.5) satisfying CTC− STS = I (or, equivalently, CCT −

SST = I , SCT = CST). The matrices � and � are given by the formulas

�k =HT−1
k+1

{(
�kXk + �kUk

)T
Uk −

(
�kXk + �kUk

)T
Xk

}
H−1

k ,

�k =HT−1
k+1

{(
�kXk + �kUk

)T
Uk −

(
�kXk + �kUk

)T
Xk

}
H−1

k .
(4.9)

Proof. Let H be any matrix satisfying HTH = UTU −XTX , that is, H = GD, where D is
the (unique) symmetric positive definite matrix satisfying D2 =UTU −XTX and G is any
orthogonal matrix. Denote �= (U +X)H−1, �̃= (U −X)H−1. Then the fact that

(
X
U

)
is

a conjoined basis implies that

�k+1 =
(
Uk+1 +Xk+1

)
H−1

k+1

=�kHk
(
Uk +Xk

)−1(
UT

k −XT
k

)−1(
UT

k −XT
k

)(
Uk+1 +Xk+1

)
H−1

k+1

=�kH
T−1
k

(
UT

k −XT
k

)(
Uk+1 +Xk+1

)
H−1

k+1

=�k
(
�T

k + �T
k

)
.

(4.10)

By the same computation, we get

�̃k+1 = �̃k
(
�T

k −�T
k

)
. (4.11)

Set

Sk = 1
2

(
�T

k − �̃T
k

)
, Ck = 1

2

(
�T

k + �̃T
k

)
. (4.12)

Then we have

Sk+1 = 1
2

(
�T

k+1− �̃T
k+1

)= 1
2

[(
�k + �k

)
�T

k −
(
�k −�k

)
�̃T

k

]
=�kSk + �kCk,

Ck+1 = 1
2

(
�T

k+1 + �̃T
k+1

)= 1
2

[(
�k + �k

)
�T

k +
(
�k −�k

)
�̃T

k

]
= �kSk + �kCk.

(4.13)
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Further,

CkC
T
k − SkS

T
k =

1
4

(
�T

k + �̃T
k

)(
�k + �̃k

)− 1
4

(
�T

k − �̃T
k

)(
�k − �̃k

)
= 1

2

(
�T

k �̃k + �̃T
k �k

)
= 1

2
HT−1

k

[(
UT

k −XT
k

)(
Uk +Xk

)
+
(
UT

k +XT
k

)(
Uk −Xk

)]
H−1

k

= 1
2
HT−1

k

(
2UT

k Uk − 2XT
k Xk

)
H−1

k = I ,

(4.14)

and similarly CkS
T
k − SkC

T
k = 0. The last two identities imply that the matrix

(
C S
S C

)
is

symplectic. Hence, its transpose has the same property, which means that
(
S
C

)
is a con-

joined basis and CTC− STS= I holds. Finally, from the hyperbolic system (4.5) and the
identities for its solution

(
S
C

)
, we have

�k = Ck+1C
T
k − Sk+1S

T
k , �k = Sk+1C

T
k −Ck+1S

T
k , (4.15)

and by a direct computation, we get ��T −��T = I and ��T = ��T , which, by the
same argument as above, implies that also �T�−�T� = I and �T�−�T� = 0. This
completes the proof. �

Remark 4.2. Hyperbolic Prüfer transformation suggests an open problem in the trans-
formation theory of (1.1), which can be explained as follows. In the hyperbolic Prüfer
transformation, a conjoined basis

(
X
U

)
is expressed in the form (4.8), where

(
S
C

)
is a con-

joined basis of the hyperbolic system (4.5). By the classical Prüfer transformation for (1.1)
(established in [7]), a conjoined basis of (1.1) is expressed by (4.8), but

(
S
C

)
is a conjoined

basis of the trigonometric SDS

Sk+1 =�kSk + �kCk, Ck+1 =−�kSk + �kCk (4.16)

(similarly, as in the “hyperbolic” case, the terminology trigonometric system is justified
by the fact that in the scalar case n = 1, solutions of (4.16) can be expressed via classi-
cal trigonometric sine and cosine functions). Observe that hyperbolic and trigonometric
systems are SDSs whose matrices satisfy (in addition to (1.2))

�T

(
I 0
0 I

)
�=

(
I 0
0 I

)
, (4.17)

respectively,

�T

(
I 0
0 −I

)
�=

(
I 0
0 −I

)
. (4.18)

Now, let 
 be any 2n× 2n matrix and denote by �
 the subgroup of 2n× 2n symplectic
matrices satisfying

�T
�=
. (4.19)
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The open problem is under what conditions on (1.1) any conjoined basis of this system
can be expressed in the form (4.8) where

(
S
C

)
is a conjoined basis of the SDS (1.1) whose

matrix �∈�
.
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[15] H. Prüfer, Neue herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger funktionen,
Math. Ann. 95 (1926), 499–518 (German).
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