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A delayed discrete equation ∆u(k + n) = −p(k)u(k) with positive coefficient p is con-
sidered. Sufficient conditions with respect to p are formulated in order to guarantee the
existence of positive solutions if k→∞. As a tool of the proof of corresponding result, the
method described in the author’s previous papers is used. Except for the fact of the exis-
tence of positive solutions, their upper estimation is given. The analysis shows that every
positive solution of the indicated family of positive solutions tends to zero (if k→∞) with
the speed not smaller than the speed characterized by the function

√
k · (n/(n+ 1))k. A

comparison with the known results is given and some open questions are discussed.

1. Introduction and motivation

In this contribution, the delayed scalar linear discrete equation

∆u(k+n)=−p(k)u(k) (1.1)

with fixed n ∈ N \ {0}, N := {0,1, . . .}, and variable k ∈ N(a), N(a) := {a,a+ 1, . . .}, a ∈
N, is considered. The function p : N(a)→R is supposed to be positive. We are interested
in the existence of positive solutions of (1.1). As a tool of the proof, the method described
in [2, 5] is used.

Equation (1.1) can be considered as a discrete analogue of the delayed linear differen-
tial equation of the form

ẋ(t)=−c(t)x(t− τ) (1.2)

with positive coefficient c on I = [t0,∞), t0 ∈R, which was considered in many works. We
mention at least the books by Győri and Ladas [14] and by Erbe et al. [12] and the papers
by Domshlak and Stavroulakis [9], by Elbert and Stavroulakis [11], by Győri and Pituk
[16], and by Jaroš and Stavroulakis [18]. Note that close problems were investigated, for
example, by Castillo [3], Čermák [4], Kalas and Baráková [19], and Slyusarchuk [22].
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In [6], it was investigated that if (1.2) admits a positive solution x̃ on an interval I ,
then it admits on I two positive solutions x1 and x2, satisfying

lim
t→∞

x2(t)
x1(t)

= 0. (1.3)

Moreover, every solution x of (1.2) on I is represented by the formula

x(t)= Kx1(t) +O
(
x2(t)

)
, (1.4)

where K ∈R depends on x and O is the Landau order symbol. In this formula, the solu-
tions x1, x2 can be changed to any couple of positive on I solutions x̃1, x̃2 of (1.2) satisfying
the property

lim
t→∞

x̃2(t)
x̃1(t)

= 0 (1.5)

(see [6, pages 638-639]). This invariance property led to the following terminology: if
(x1,x2) is a fixed couple of positive solutions (having the above-indicated properties) of
(1.2), then the solution x1 is called a dominant solution and the solution x2 is called a
subdominant solution. Subdominant solutions can serve as an analogy to “small solutions”
as they are used, for example, in the book by Hale and Verduyn Lunel [17], and dominant
solutions express an analogy to the notion of “special solution” which is used in many
investigations (see, e.g., Rjabov [20]).

In the present contribution, we will give sufficient conditions for the existence of pos-
itive solutions of (1.1). We will discuss known sufficient conditions too, and we will show
that our conditions have a more general character than the previous ones. Otherwise
the method of the proof of corresponding result permits to express an estimation of
the considered positive solution. Taking into account the fact that this solution tends
to zero (if k →∞) with speed not smaller than the speed characterized by the function√
k · (n/(n+ 1))k, we can conclude that this solution is an analogy to the notion of sub-

dominant solution introduced above, in the case of scalar delayed linear differential equa-
tions. Moreover, the supporting motivation for the terminology used is the fact that our
result does not hold for nondelayed equations of type (1.1), that is, it does not hold if
n = 0. This is in full accordance with differential equations again, since obviously the
subdominant solution does not appear if τ = 0, in (1.2), that is, it does not appear in the
case of ordinary differential equations.

2. Preliminary

We consider the scalar discrete equation

∆u(k+ ñ)= f
(
k,u(k),u(k+ 1), . . . ,u(k+ ñ)

)
, (2.1)

where f (k,u0,u1, . . . ,uñ) is defined on N(a)×Rñ+1, with values in R, a∈N, and ñ∈N.
Together with the discrete equation (2.1), we consider an initial problem. It is posed

as follows: for a given s ∈ N, we are seeking the solution of (2.1) satisfying ñ+ 1 initial
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conditions

u(a+ s+m)= us+m ∈R, m= 0,1, . . . , ñ, (2.2)

with prescribed constants us+m.
We recall that the solution of the initial problem (2.1), (2.2) is defined as an infinite

sequence of numbers

{
u(a+ s)= us, u(a+ s+ 1)= us+1, . . . ,

u(a+ s+ ñ)= us+ñ,u(a+ s+ ñ+ 1),u(a+ s+ ñ+ 2), . . .
} (2.3)

such that, for any k ∈N(a+ s), equality (2.1) holds.
The existence and uniqueness of the solution of the initial problem (2.1), (2.2) are

obvious for every k ∈ N(a + s). If the function f satisfies the Lipschitz condition with
respect to u-arguments, then the initial problem (2.1), (2.2) depends continuously on
the initial data [1].

We define, for every k ∈N(a), a set ω(k) as

ω(k) := {u∈R : b(k) < u < c(k)
}

, (2.4)

where b(k), c(k), b(k) < c(k) are real functions defined on N(a).
The following theorem is taken from the investigation in [2].

Theorem 2.1. Suppose that f (k,u0,u1, . . . ,uñ) is defined on N(a)×Rñ+1 with values in R

and for all (k,u0,u1, . . . ,uñ),(k,v0,v1, . . . ,vñ)∈N(a)×Rñ+1:

∣∣ f (k,u0,u1, . . . ,uñ
)− f

(
k,v0,v1, . . . ,vñ

)∣∣≤ λ(k)
ñ∑
i=0

∣∣ui− vi
∣∣, (2.5)

where λ(k) is a nonnegative function defined on N(a). If, moreover, the inequalities

f
(
k,u0,u1, . . . ,uñ−1,b(k+ ñ)

)− b(k+ ñ+ 1) + b(k+ ñ) < 0, (2.6)

f
(
k,u0,u1, . . . ,uñ−1,c(k+ ñ)

)− c(k+ ñ+ 1) + c(k+ ñ) > 0 (2.7)

hold for every k ∈N(a), every u0 ∈ ω(k), and u1 ∈ ω(k + 1), . . . ,uñ−1 ∈ ω(k + ñ− 1), then
there exists an initial problem

u∗(a+m)= u∗m ∈R, m= 0,1, . . . , ñ, (2.8)

with

u∗0 ∈ ω(a),u∗1 ∈ ω(a+ 1), . . . ,u∗n ∈ ω(a+ ñ) (2.9)

such that the corresponding solution u= u∗(k) of (2.1) satisfies the inequalities

b(k) < u∗(k) < c(k), (2.10)

for every k ∈N(a).
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3. Existence of subdominant positive solutions

In this section, we prove the existence of a positive solution of (1.1). In the proof of the
corresponding theorem (see Theorem 3.2 below), the following elementary lemma con-
cerning asymptotic expansion of the indicated function is necessary. The proof is omitted
since it can be done easily with the aid of binomial formula.

Lemma 3.1. For k→∞ and fixed σ ,d ∈R, the following asymptotic representation holds:

(
1 +

d

k

)σ
= 1 +

σd

k
+
σ(σ − 1)d2

2k2
+
σ(σ − 1)(σ − 2)d3

6k3
+O

(
1
k4

)
. (3.1)

Theorem 3.2 (subdominant positive solution). Let a∈N and n∈N \ {0} be fixed. Sup-
pose that there exists a constant θ ∈ [0,1) such that the function p : N(a)→ R satisfies the
inequalities

0 < p(k)≤
(

n

n+ 1

)n
·
(

1
n+ 1

+
θn

8k2

)
, (3.2)

for every k ∈ N(a). Then there exist a positive integer a1 ≥ a and a solution u = u(k), k ∈
N(a1), of (1.1) such that the inequalities

0 < u(k) <
√
k ·
(

n

n+ 1

)k

(3.3)

hold for every k ∈N(a1).

Proof. In the proof, Theorem 2.1 with ñ= n is used. We define

f
(
k,u(k),u(k+ 1), . . . ,u(k+n)

)
:=−p(k)u(k),

b(k) := 0, c(k) :=
√
k ·
(

n

n+ 1

)k
,

(3.4)

for every k ∈N(a). In this case (see (2.4)),

ω(k) := {u∈R : b(k) < u < c(k)
}≡

{
u∈R : 0 < u <

√
k ·
(

n

n+ 1

)k}
. (3.5)

Due to the linearity of equation (1.1), the Lipschitz-type condition (2.5) is obviously
satisfied with λ(k) ≡ p(k). We verify that the inequality of type (2.6) holds. It is easy to
see that, for every k ∈N(a), ñ= n,

f
(
k,u0,u1, . . . ,un−1,b(k+n)

)− b(k+n+ 1) + b(k+n)=−p(k)u0 < 0 (3.6)

since the function p is, by (3.2), positive and u0 is a positive term too since u0 ∈ ω(k).
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We start the verification of inequality (2.7). We get, for sufficiently large k ∈N(a) and
for ñ= n,

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n)

=−p(k)u0−
√
k+n+ 1 ·

(
n

n+ 1

)k+n+1

+
√
k+n ·

(
n

n+ 1

)k+n

.
(3.7)

Since u0 ∈ ω(k), that is,

−u0 >−
√
k ·nk/(n+ 1)k, k ∈N(a), (3.8)

we get

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n)

>−p(k)
√
k ·
(

n

n+ 1

)k
−
(

n

n+ 1

)k
·
(

n

n+ 1

)n+1√
k+n+ 1

+
(

n

n+ 1

)k
·
(

n

n+ 1

)n√
k+n=�1

(3.9)

with

�1 :=
(

n

n+ 1

)k√
k ·
[
− p(k)−

(
n

n+ 1

)n+1

·
√

1 +
n+ 1
k

+
(

n

n+ 1

)n
·
√

1 +
n

k

]
.

(3.10)

Now applying formula (3.1) twice, with σ = 1/2, d = n+ 1, to the expression

√
1 +

n+ 1
k

(3.11)

and, with σ = 1/2, d = n, to the expression

√
1 +

n

k
, (3.12)

we obtain

�1 =
(

n

n+ 1

)k√
k

×
[
− p(k)−

(
n

n+ 1

)n+1

·
(

1 +
n+ 1

2k
− (n+ 1)2

8k2
+

(n+ 1)3

16k3
+O

(
1
k4

))

+
(

n

n+ 1

)n
·
(

1 +
n

2k
− n2

8k2
+

n3

16k3
+O

(
1
k4

))]
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=
(

n

n+ 1

)k√
k ·
[
− p(k)−

(
n

n+ 1

)n+1

+
(

n

n+ 1

)n

+
1
k

( −nn+1

2(n+ 1)n
+

nn+1

2(n+ 1)n

)
+

1
k2

(
nn+1

8(n+ 1)n−1
− nn+2

8(n+ 1)n

)

+
1
k3

( −nn+1

16(n+ 1)n−2
+

nn+3

16(n+ 1)n

)
+O

(
1
k4

)]

=
(

n

n+ 1

)k√
k ·
[
− p(k) +

(
n

n+ 1

)n−n+n+ 1
n+ 1

+
1
k2

nn+1(n+ 1)−nn+2

8(n+ 1)n

+
1
k3

−nn+1(n+ 1)2 +nn+3

16(n+ 1)n
+O

(
1
k4

)]
=�2

(3.13)

with

�2 :=
(

n

n+ 1

)k√
k ·
[
− p(k) +

(
n

n+ 1

)n 1
n+ 1

+
1

8k2

(
n

n+ 1

)n
·n

+
1

16k3

−2nn+2−nn+1

(n+ 1)n
+O

(
1
k4

)]
.

(3.14)

Due to inequality (3.2), we obtain that

�2 ≥
(

n

n+ 1

)k√
k

·
[
−
(

n

n+ 1

)n
·
(

1
n+ 1

+
θn

8k2

)
+
(

n

n+ 1

)n 1
n+ 1

+
1

8k2

(
n

n+ 1

)n
·n+

1
16k3

−2nn+2−nn+1

(n+ 1)n
+O

(
1
k4

)]

=
(

n

n+ 1

)k√
k ·�3

(3.15)

with

�3 := 1− θ

8k2

(
n

n+ 1

)n
·n− 1

16k3

nn+1(1 + 2n)
(n+ 1)n

+O
(

1
k4

)
. (3.16)

Now, it is obvious that there exists an integer a1 ≥ a such that the inequality �3 > 0 holds
for every k ∈N(a1). Consequently,

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n) > 0, (3.17)
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that is, inequality (2.7) holds for every k ∈N(a1). So, all the suppositions of Theorem 2.1
are met with a := a1, ñ= n. Then, following its affirmation, there exists an initial problem

u∗
(
a1 +m

)= u∗m ∈R, m= 0,1, . . . ,n, (3.18)

with

u∗0 ∈ ω
(
a1
)
,u∗1 ∈ ω

(
a1 + 1

)
, . . . ,u∗n ∈ ω

(
a1 +n

)
(3.19)

such that the corresponding solution u= u∗(k) of (1.1) satisfies the inequalities

b(k)= 0 < u∗(k) < c(k)=
√
k ·
(

n

n+ 1

)k
, (3.20)

for every k ∈N(a1), that is, (3.3) holds. The theorem is proved. �

4. Comparisons and concluding remarks

We remark that analogous (in a sense) problems are discussed, for example, in [10, 13,
14, 15, 21]. The following known result (see [14, page 192]) will be formulated with a
notation adapted with respect to our notation.

Theorem 4.1. Assume n∈N \ {0}, p(k) > 0 for k ≥ 0, and

p(k)≤ nn

(n+ 1)n+1
. (4.1)

Then the difference equation (1.1), where k = 0,1,2, . . . , has a positive solution

{
u(0),u(1),u(2), . . .

}
. (4.2)

Comparing this result with the result given by Theorem 3.2, we conclude that inequal-
ity (3.2) is a substantial improvement over (4.1) since the choice θ = 0 in (3.2) gives
inequality (4.1). Moreover, inequality (3.2), unlike inequality (4.1), involves the variable
k on the right-hand side. As noted in [14, page 179], for p(k) ≡ p = const, inequality
(4.1) is sharp in a sense, since in this case the necessary and sufficient condition for the
oscillation of all solutions of (1.1) is the inequality

p >
nn

(n+ 1)n+1
. (4.3)

Inequality (3.2) can be considered as a discrete analogy of the inequality

c(t)≤ 1
e

+
1

8et2
(4.4)

(t is supposed to be sufficiently large) used in [11, Theorem 3], in order to give a guarantee
of the existence of a positive solution of (1.2).
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5. Open questions

We indicate problems, still unsolved , whose solution will lead to progress in the consid-
ered theory.

Open Question 5.1. Does the affirmation of Theorem 2.1 remain valid if θ = 1? In other
words, can inequality (3.2) be replaced by a weaker one

0 < p(k)≤
(

n

n+ 1

)n
·
(

1
n+ 1

+
n

8k2

)
? (5.1)

Open Question 5.2. As a motivation for the following problem, we state this known fact:
equation (1.1) with “limiting” value of coefficient (corresponding to θ = 0), that is, the
equation

∆u(k+n)=− nn

(n+ 1)n+1
·u(k), (5.2)

admits two positive and asymptotically noncomparable solutions: a dominant one (we
use a similar terminology as involved in Section 1)

u1(k)= k ·
(

n

n+ 1

)k
(5.3)

and a subdominant one

u2(k)=
(

n

n+ 1

)k
, (5.4)

since

lim
k→∞

u2(k)
u1(k)

= lim
k→∞

1
k
= 0. (5.5)

In this connection, the next problem arises: is it possible to prove (under the same con-
ditions as indicated in Theorem 3.2) the existence of the second solution u�(k) of the
equation

lim
k→∞

u(k)
u�(k)

= 0? (5.6)

In other words, is the couple of solutions u�(k) and u(k) a couple of dominant and sub-
dominant solutions?

Open Question 5.3. Together with the investigation of linear discrete problems, the de-
velopment of methods for the investigation of nonlinear discrete problems is a very im-
portant problem too. Is it, for example, possible (based on the similarity of continuous
and discrete methods) to obtain analogies of the results of the investigation of singular
problems for ordinary differential equations performed in [7, 8] in the discrete case?



J. Baštinec and J. Diblı́k 469

Acknowledgment

This work was supported by Grant 201/01/0079 of Czech Grant Agency and by the Project
ME423/2001 of the Ministry of Education, Youth, and Sports of the Czech Republic.

References

[1] R. P. Agarwal, Difference equations and inequalities. Theory, methods, and applications, 2nd ed.,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker,
New York, 2000.
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[7] J. Diblı́k and M. Růžičková, Existence of positive solutions of a singular initial problem for non-
linear system of differential equations, to appear in Rocky Mountain J. Math.

[8] , Existence of positive solutions of n-dimensional system of nonlinear differential equations
entering into a singular point, Arch. Math. (Brno) 36 (2000), no. suppl., 435–446.

[9] Y. Domshlak and I. P. Stavroulakis, Oscillations of first-order delay differential equations in a
critical state, Appl. Anal. 61 (1996), no. 3-4, 359–371.

[10] S. N. Elaydi, An Introduction to Difference Equations, 2nd ed., Undergraduate Texts in Mathe-
matics, Springer-Verlag, New York, 1999.
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[18] J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29
(1999), no. 1, 197–207.
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