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We study in the framework of Orlicz Sobolev spaces W1
0LM(Ω), the existence of

entropic solutions to the nonlinear elliptic problems: −diva(x,u,∇u) + divφ(u)
= f in Ω, for the case where the second member of the equation f ∈ L1(Ω), and
φ ∈ (C0(R))N .

1. Introduction

Let Ω be a bounded open subset of RN and let A(u) = −diva(x,u,∇u) be a
Leray-Lions operator defined on W

1,p
0 (Ω), 1 < p <∞.

We consider the nonlinear elliptic problem

−diva(x,u,∇u) = f −divφ(u) in Ω,

u = 0 on ∂Ω,
(1.1)

where

f ∈ L1(Ω), φ ∈ (C0(R)
)N

. (1.2)

Note that no growth hypothesis is assumed on the function φ, which implies
that the term divφ(u) may be meaningless, even as a distribution. The notion of
entropy solution, used in [8], allows us to give a meaning to a possible solution
of (1.1).

In fact Boccardo proved in [8], for p such that 2−1/N < p < N , the existence
and regularity of an entropy solution u of problem (1.1), that is,

u ∈W
1,q
0 (Ω), q < p̃ =

(p−1)N
N −1

,

Tk(u) ∈W
1,p
0 (Ω), ∀k > 0,
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Ω
a(x,u,∇u)∇Tk[u−ϕ]dx ≤

∫
Ω
f Tk[u−ϕ]dx+

∫
Ω
φ(u)∇Tk[u−ϕ]dx

∀ϕ ∈W
1,p
0 (Ω)∩L∞(Ω), (1.3)

where

Tk(s) = s if |s| ≤ k Tk(s) = k
s

|s| if |s| > k. (1.4)

For the case φ = 0 and f is a bounded measure, Bénilan et al. proved in [3] the
existence and uniqueness of entropy solutions.

We mention as a parallel development, the work of Lions and Murat [14]
who consider similar problems in the context of the renormalized solutions in-
troduced by Diperna and Lions [10] for the study of the Boltzmann equations.
They can prove existence and uniqueness of renormalized solution.

The functional setting in these works is that of the usual Sobolev space W1,p.
Accordingly, the function a is supposed to satisfy polynomial growth conditions
with respect to u and its derivatives ∇u. When trying to generalize the growth
condition on a, one is led to replace W1,p by a Sobolev space W1LM built from
an Orlicz space LM instead of Lp. Here the N-function M which defines LM is
related to the actual growth of the function a.

It is our purpose, in this paper, to prove the existence of entropy solution for
problem (1.1) in the setting of the Orlicz Sobolev space W1

0LM(Ω). Our result,
Theorem 3.5, generalizes [8, Theorem 2.1] and gives in particular a refinement
of his result (see Remark 3.6).

For some existence results for strongly nonlinear elliptic equations in Orlicz
spaces [4, 5, 6].

2. Preliminaries

2.1. Let M : R+ → R+ be an N-function, that is, M is continuous, convex, with
M(t) > 0 for t > 0, M(t)/t→ 0 as t→ 0 and M(t)/t→∞ as t→∞.

Equivalently, M admits the representation M(t) =
∫ t

0 a(τ)dτ, where a :
R+ → R+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0
and a(t) →∞ as t→∞.

In the following, we assume, for convenience, that all N-functions are twice
continuously differentiable, see Benkirane and Gossez [7].

The N-function M̄ conjugate to M is defined by M̄(t) =
∫ t

0 ā(τ)dτ, where
ā : R+ → R+ is given by ā(t) = sup{s : a(s) ≤ t}, see [1, 13].

The N-function M is said to satisfy the ∆2-condition (resp., near infinity) if
for some k and for every t ≥ 0,

M(2t) ≤ kM(t)
(
resp., for t ≥ some t0

)
. (2.1)
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Let M and P be two N-functions. The notation P 	 M means that P grows
essentially less rapidly than M, that is, for each ε > 0, P(t)/M(εt) → 0 as t →∞.
This is the case if and only if limt→∞M−1(t)/P−1(t) = 0. We will extend all N-
functions into even functions on all R.

2.2. Let Ω be an open subset of RN . The Orlicz class KM(Ω) (resp., the Orlicz
space LM(Ω)) is defined as the set of (equivalence classes of) real-valued mea-
surable functions u on Ω such that

∫
Ω
M
(
u(x)

)
dx <∞ (2.2)

(resp.,
∫
ΩM(u(x)/λ)dx <∞ for some λ > 0). The space LM(Ω) is a Banach space

under the norm

‖u‖M = inf
{
λ > 0 :

∫
Ω
M
(
u(x)
λ

)
dx ≤ 1

}
(2.3)

and KM(Ω) is a convex subset of LM(Ω). The closure in LM(Ω) of the set of
bounded measurable functions with compact support in Ω̄ is denoted by EM(Ω).

The equality EM(Ω) = LM(Ω) holds if and only if M satisfies the ∆2 condition,
for all t or for t large according to whether Ω has infinity measure or not.

The dual of EM(Ω) can be identified with LM̄(Ω) by means of the pairing∫
Ωu(x)v(x)dx, and the dual norm on LM̄(Ω) is equivalent to ‖ · ‖M̄ . We say that
un converges to u for the modular convergence in LM(Ω) if for some λ > 0

∫
Ω
M

(∣∣un−u∣∣
λ

)
dx −→ 0 as n −→∞. (2.4)

If M satisfies the ∆2-condition, then the modular convergence coincide with the
norm convergence.

2.3. The Orlicz Sobolev space W1LM(Ω) (resp., W1EM(Ω)) is the space of all
functions u such that u and its distributional derivatives up to order one lie in
LM(Ω) (resp., EM(Ω)). It is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

∥∥Dαu
∥∥
M. (2.5)

Thus, W1LM(Ω) and W1EM(Ω) can be identified with subspaces of the product
of N + 1 copies of LM(Ω). Denoting this product by

∏
LM , we will use the weak

topologies σ(
∏

LM,
∏

EM̄) and σ(
∏

LM,
∏

LM̄).
The space W1

0EM(Ω) is defined as the norm closure of �(Ω) in W1EM(Ω)
and the space W1

0LM(Ω) as the σ(
∏

LM,
∏

EM̄) closure of �(Ω) in W1LM(Ω).
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We say that un converges to u for the modular convergence in W1LM(Ω) if for
some λ > 0

∫
Ω
M
(∣∣Dαun−Dαu

∣∣
λ

)
dx −→ 0 ∀|α| ≤ 1. (2.6)

This implies the convergence σ(
∏

LM,
∏

LM̄).

2.4. Let W−1LM̄(Ω) (resp., W−1EM̄(Ω)) denote the space of distributions on Ω
which can be written as sums of derivatives of order ≤ 1 of functions in LM̄(Ω)
(resp., EM̄(Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space �(Ω) is dense
in W1

0LM(Ω) for the modular convergence and thus for the topology σ(
∏

LM,∏
LM̄). Consequently, the action of a distribution in W−1LM̄(Ω) on an element

of W1
0LM(Ω) is well defined.

2.5. We recall the following lemmas.

Lemma 2.1 (see [5]). Let Ω be an open subset of RN with finite measure. Let M, P,
and Q be N-functions such that Q	 P, and let f : Ω×R → RN be a Carathéodory
function such that

∣∣ f (x, s)
∣∣ ≤ c(x)+k1P

−1M
(
k2|s|
)

a.e. x ∈Ω, ∀s ∈ R, (2.7)

where k1,k2 ∈ R+, c(x) ∈ EQ(Ω). Let Nf be the Nemytskii operator defined from
P(EM(Ω),1/k2) = {u ∈ LM(Ω) : d(u,EM(Ω)) < 1/k2} to (EQ(Ω))N by Nf (u)(x) =
f (x,u(x)). Then Nf is strongly continuous.

Lemma 2.2 (see [5]). Let F : R → R be uniformly Lipschitzian, with F(0) = 0.
Let M be an N-function and let u ∈ W1

0LM(Ω) (resp., W1
0EM(Ω)). Then F(u) ∈

W1
0LM(Ω) (resp., W1

0EM(Ω)). Moreover, if the set D of discontinuity points of F ′ is
finite, then

∂

∂xi
F(u) =



F ′(u)

∂u

∂xi
a.e. in

{
x ∈Ω : u(x) �∈D

}
,

0 a.e. in
{
x ∈Ω : u(x) ∈D

}
.

(2.8)

Then F : W1
0LM(Ω) → W1

0LM(Ω) is sequentially continuous with respect to the
weak∗ topology σ(

∏
LM,
∏

EM̄).

Lemma 2.3 (see [11]). Let Ω have the segment property. Then for each v ∈
W1

0LM(Ω), there exists a sequence vn ∈ �(Ω) such that vn converges to v for the
modular convergence in W1

0LM(Ω). Furthermore, if v ∈W1
0LM(Ω)∩L∞(Ω) then

∥∥vn∥∥L∞(Ω) ≤ (N +1)‖v‖L∞(Ω). (2.9)
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2.6. We introduce the following notation, see [2, 15].

Definition 2.4. Let M be an N-function, and define the following set:

�M =
{
Q : Q is an N-function such that

Q
′′

Q′ ≤
M

′′

M ′ ,∫1

0
Q◦H−1

(
1

r1−1/N

)
dr <∞ where H(r) =

M(r)
r

}
.

(2.10)

Remark 2.5. Let M(t) = tp and Q(t) = tq, then the condition Q ∈ �M is equiva-
lent to the following conditions:

(i) 2−1/N < p < N
(ii) q < p̃ = (p−1)N/(N −1), see (1).

Remark 2.6. We can give some examples of N-functions M for which the set �M

is not empty. Here, the N-functions M are defined only at infinity.
(1) For M(t) = t2 log t and Q(t) = t log t, we have H(t) = t log t and H−1(t) =

t(log t)−1 at infinity, see [13]. Then the N-function Q belongs to �M .
(2) For M(t) = t2 log2 t at infinity and Q(t) = t log2 t, we have H(t) = t log2 t

and H−1(t) = t(log t)−2 at infinity, see [13]. Then the N-function Q belongs to
�M .

3. Definition and existence of entropy solutions

Let Ω be a bounded open subset of RN with the segment property. Let M,P be
two N-functions such that P 	M.

Let A : D(A) ⊂ W1
0LM(Ω) → W−1LM̄(Ω) be a mapping (not defined ev-

erywhere) given by A(u) = −diva(x,u,∇u) where a : Ω × R × RN → RN is a
Carathéodory function satisfying for a.e. x ∈Ω and all t ∈ R, ξ, ξ̄ with ξ �= ξ̄,

∣∣a(x, t, ξ)
∣∣ ≤ d(x)+k1P̄

−1M
(
k2|t|
)

+k3M̄
−1M

(
k4|ξ|

)
, (3.1)[

a(x, t, ξ)−a(x, t, ξ̄)][ξ − ξ̄] > 0, (3.2)

a(x, t, ξ)ξ ≥ αM
( |ξ|

λ

)
, (3.3)

where d(x) ∈ EM̄(Ω), d ≥ 0, α,λ ∈ R
∗
+, k1,k2,k3,k4 ∈ R+.

Consider the nonlinear elliptic problem (1.1) where

f ∈ L1(Ω) (3.4)

and φ = (φ1, . . . ,φN ) satisfies

φ ∈ (C0(R)
)N

. (3.5)

As in [8], we define the following notion of an entropy solution, which gives a
meaning to a possible solution of (1.1).



90 Entropy solutions in Orlicz spaces

Definition 3.1. Assume that (3.1), (3.2), (3.3), (3.4), and (3.5) hold true and
�M �= ∅. A function u is an entropy solution of problem (1.1) if

u ∈W1
0LQ(Ω) ∀Q ∈ �M,

Tk(u) ∈W1
0LM(Ω) ∀k > 0,∫

Ω
a(x,u,∇u)∇Tk[u−ϕ]dx ≤

∫
Ω
f Tk[u−ϕ]dx+

∫
Ω
φ(u)∇Tk[u−ϕ]dx

∀ϕ ∈W1
0LM(Ω)∩L∞(Ω).

(3.6)

We cannot use the solution u as a test function in (1.1), because u does not
belong to W1

0LM(Ω). An important role is played by Tk(u) and the test functions

Tk[u−ϕ], ϕ ∈W1
0LM(Ω)∩L∞(Ω) (3.7)

because both belong to W1
0LM(Ω).

In Theorem 3.5, we prove the existence of solution of problem (1.1), in the
framework of entropy solutions.

Lemma 3.2. Let Ω be a bounded open subset of RN with the segment property. If
u ∈ (W1

0LM(Ω))N then
∫
Ω divudx = 0.

Proof of Lemma 3.2. It is sufficient to use an approximation of u. �

We recall the following lemma (see [15, Lemma 2]).

Lemma 3.3. Let M be an N-function, u ∈W1LM(Ω) such that
∫
ΩM(|∇u|)dx <∞,

then

−µ′(t) ≥NC1/N
N µ1−1/N (t)

×C
( −1

NC1/N
N µ1−1/N (t)

d

dt

∫
{|u|>t}

M
(|∇u|)dx) ∀t > 0,

(3.8)

where C is the function defined as

C(t) =
1

sup
{
r ≥ 0,H(r) ≤ t

} , H(r) =
M(r)
r

. (3.9)

The function CN is the measure of the unit ball of RN , and µ(t) = meas{|u| > t}.

Lemma 3.4. Let (X,τ,µ) be a measurable set such that µ(X) <∞. Let γ be a mea-
surable function γ : X → [0,∞) such that

µ
({
x ∈ X : γ(x) = 0

})
= 0, (3.10)

then for each ε > 0, there exists δ > 0 such that
∫
A γ(x)dx < δ implies

µ(A) ≤ ε. (3.11)
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Theorem 3.5. Under assumptions (3.1), (3.2), (3.3), (3.4), and (3.5), with �M �=
∅, there exists an entropy solution u of problem (1.1) (in the sense of Definition 3.1).

Remark 3.6. In the caseM(t) = tp, Theorem 3.5 gives a refinement of the regular-
ity result (1) (i.e., u ∈W

1,q
0 (Ω), q < p̃ = ((p−1)N/N−1)). In fact, by Theorem 3.5,

we have u ∈ W1
0LQ(Ω) for each Q ∈ �M (for example for Q(t) = t p̃/ logα(e +

t),α > 1).

Proof of Theorem 3.5
Step 1. Define, for each n > 0, the approximations

φn(s) = φ
(
Tn(s)

)
, fn(s) = Tn

[
f (s)
]
. (3.12)

Consider the nonlinear elliptic problem

un ∈W1
0LM(Ω), −diva

(
x,un,∇un

)
= fn−divφn

(
un
)

in Ω. (3.13)

From Gossez and Mustonen [12, Proposition 1, Remark 2], problem (3.13) has
at least one solution.
Step 2. We will prove that (un) is bounded in W1

0LQ(Ω) for each Q ∈ �M . Let ϕ
be the truncation defined, for each t,h > 0, by

ϕ(ξ) =




0 if 0 ≤ ξ ≤ t,
1
h

(ξ − t) if t < ξ < t+h,

1 if ξ ≥ t+h,

−ϕ(−ξ) if ξ < 0.

(3.14)

Using the test function v = ϕ(un) in (3.13) (v ∈ W1
0LM(Ω) by Lemma 2.2), we

have∫
Ω
a
(
x,un,∇un

)
ϕ′(un)∇un dx =

∫
Ω
fnϕ
(
un
)
dx+

∫
Ω
φn
(
un
)∇ϕ(un)dx. (3.15)

We claim now that ∫
Ω
φn
(
un
)∇ϕ(un)dx = 0. (3.16)

Indeed,

∇ϕ(un) = ϕ′(un)∇un, (3.17)

where

ϕ′(ξ) =




1
h

if t < |ξ| < t+h,

0 otherwise,
(3.18)
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define θ(s) = φn(s)(1/h)χ{t<|s|<t+h}, and θ̃(s) =
∫ s

0 θ(τ)dτ, we have by Lemma 2.2,

θ̃(un) ∈ (W1
0LM(Ω))N , which implies∫

Ω
φn
(
un
)∇ϕ(un)dx =

∫
Ω
φn
(
un
)1
h
χ{t<|un|<t+h}∇un dx =

∫
Ω
θ
(
un
)∇un dx

=
∫
Ω

div
(
θ̃
(
un
))

dx = 0 (see Lemma 3.2).

(3.19)

This proves (3.16). By (3.3) and (3.15), we have (where we can suppose without
loss of generality that λ = 1, since one can take u′n = un/λ)

α

h

∫
t<|un|<t+h

M
(∣∣∇un∣∣)dx ≤ ‖ f ‖1,Ω. (3.20)

Let h→ 0, then

− d

dt

∫
{|un |>t}

M
(∣∣∇un∣∣)dx ≤ C with C =

‖ f ‖1,Ω

α
. (3.21)

We prove the following inequality, which allows us to obtain the boundedness
of (un) in W1

0LQ(Ω),

− d

dt

∫
|un|>t

Q
(∣∣∇un∣∣dx)

≤ −µ′n(t)Q◦H−1

(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
{|un|>t}

M
(∣∣∇un∣∣)dx

)
.

(3.22)

Indeed, let C(s) = 1/H−1(s), where H(r) = M(r)/r and H−1(s) = sup{r ≥ 0,
H(r) ≤ s}. Then

C(s) =
s

M ◦H−1(s)
. (3.23)

By Lemma 3.3 we have, with µn(t) = meas{|un| > t},

−µ′n(t) ≥NC1/N
N µn(t)1−1/N

×C

(
− 1

NC1/N
N

µn(t)1−1/N d

dt

∫
|un|>t

M
(∣∣∇un∣∣)dx

)
,

(3.24)

then

−µ′n(t) ·M ◦H−1

(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
|un|>t

M
(∣∣∇un∣∣)dx

)

≥NC1/N
N µn(t)1−1/N

(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
|un|>t

M
(∣∣∇un∣∣)dx

)
,

(3.25)
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and also

1
µ′n(t)

d

dt

∫
{|un|>t}

M
(∣∣∇un∣∣)dx

≤M ◦H−1

(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
{|un |>t}

M
(∣∣∇un∣∣)dx

) (3.26)

which gives

M−1
(

1
µ′n(t)

d

dt

∫
{|un|>t}

M
(∣∣∇un∣∣)dx

)

≤H−1
(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
{|un|>t}

M
(∣∣∇un∣∣)dx

)
.

(3.27)

Let Q ∈ �M and let D(s) = M(Q−1(s)), D is then convex, and the Jensen’s
inequality gives

D

(∫
{t<|un|<t+h}Q

(∣∣∇un∣∣)dx
−µn(t+h)+µn(t)

)
≤
∫
{t<|un|<t+h}M

(∣∣∇un∣∣)dx
−µn(t+h)+µn(t)

, (3.28)

then

Q−1

(
1

µ′n(t)
d

dt

∫
{|un |>t}

Q
(∣∣∇un∣∣)dx

)

≤M−1

(
1

µ′n(t)
d

dt

∫
{|un |>t}

M
(∣∣∇un∣∣)dx

)

≤H−1

(
− 1

NC1/N
N µn(t)1−1/N

d

dt

∫
{|un|>t}

M
(∣∣∇un∣∣)dx

)
(3.29)

which gives (3.22). By (3.21) and (3.22) and since the function

t −→
∫
{|un |>t}

Q
(∣∣∇un∣∣)dx (3.30)

is absolutely continuous (see [15]), we have

∫
Ω
Q
(∣∣∇un∣∣)dx =

∫∞

0

(
− d

dt

∫
{|un|>t}

Q
(∣∣∇un∣∣)

)
dt

≤
∫∞

0
−µ′n(t)Q◦H−1

(
C

NC1/N
N µn(t)1−1/N

)
dt

≤ 1
C′

∫C′ ·meas(Ω)

0
Q◦H−1

(
1

r1−1/N

)
dr <∞

(3.31)
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which implies that (∇un) is bounded in LQ(Ω) for each Q ∈ �M . Then un is
bounded in W1

0LQ(Ω) for each Q ∈ �M . Passing to a subsequence if necessary,
we can assume that

un ⇀ u weakly in W1
0LQ(Ω) for σ

(∏
LQ,
∏

EQ̄
)
, a.e. in Ω. (3.32)

Step 3. We prove that Tk(un) ⇀ Tk(u) weakly in W1
0LM(Ω) for all k > 0. Using

the test function Tk(un) in (3.13), we obtain∫
Ω
a
(
x,un,∇un

)∇Tk
(
un
)
dx =

∫
Ω
fnTk
(
un
)
dx+

∫
Ω
φn
(
un
)∇Tk

(
un
)
dx. (3.33)

We claim that ∫
Ω
φn
(
un
)∇Tk

(
un
)
dx = 0. (3.34)

Indeed, ∇Tk(un) = ∇unχ{|un|≤k}, define θ(t) = φn(t)χ{|t|≤k}, and θ̃(t) =
∫ t

0 θ(τ)dτ,

we have by Lemma 2.2, θ̃(un) ∈ (W1
0LM(Ω))N ,∫

Ω
φn
(
un
)∇Tk

(
un
)
dx =

∫
Ω
φn
(
un
)
χ{|un|≤k}∇un dx

=
∫
Ω
θ
(
un
)∇un dx

=
∫
Ω

div
(
θ̃
(
un
))

dx = 0 (by Lemma 3.2)

(3.35)

which proves the claim.
On the other hand, (3.33) can be written as∫

Ω
a
(
x,un,∇un

)∇Tk
(
un
)
dx =

∫
Ω
a
(
x,un,∇Tk

(
un
))∇Tk

(
un
)
dx

=
∫
Ω
fnTk
(
un
)
dx,

(3.36)

which implies, with (3.3), that ∇Tk(un) is bounded in (LM(Ω))N , and Tk(un) is
bounded in (W1

0LM(Ω))N . Since un → u a.e. in Ω then Tk(un) → Tk(u) a.e. in Ω.
Then

Tk
(
un
)
⇀ Tk(u) weakly in W1

0LM(Ω) for σ
(∏

LM,
∏

EM̄
)
. (3.37)

Step 4. We will prove that ∇un →∇u a.e. in Ω. Let λ > 0, ε > 0. For B > 1, k > 0,
we consider as in [9] for n,m ∈ N,

E1 =
{∣∣∇un∣∣ > B

}∪{∣∣∇um∣∣ > B
}∪{∣∣un∣∣ > B

}∪{∣∣um∣∣ > B
}
,

E2 =
{∣∣un−um∣∣ > k

}
,

E3 =
{∣∣un−um∣∣ ≤ k,

∣∣un∣∣ ≤ B,
∣∣um∣∣ ≤ B,

∣∣∇un∣∣ ≤ B,∣∣∇um∣∣ ≤ B,
∣∣∇un−∇um∣∣ ≥ λ

}
,

(3.38)

we have {|∇un−∇um| ≥ λ} ⊂ E1∪E2∪E3.
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Since (un) and (∇un) are bounded in L1(Ω) (since un is bounded in
W1

0LQ(Ω)), we have

2Bµ
(
E1
)
<

∫
E1

∣∣∇un∣∣+∣∣un∣∣dx <
∫
Ω

∣∣∇un∣∣+∣∣un∣∣dx < C. (3.39)

Then measE1 ≤ ε for B sufficiently large enough, independently of n,m. Thus
we fix B in order to have

measE1 ≤ ε. (3.40)

Now we claim that measE3 ≤ ε for n and m large. Let C1 be such that ‖un‖1 ≤
C1 and ‖∇un‖1 ≤ C1. As in [9], the assumption (3.2) gives the existence of a
measurable function γ(x) such that

meas
({
x ∈Ω : γ(x) = 0

})
= 0,[

a(x, t, ξ)−a(x, t, ξ̄)][ξ − ξ̄] ≥ γ(x) > 0,
(3.41)

for all t ∈ R, ξ, ξ̄ ∈ RN , |t|, |ξ|, |ξ̄| ≤ B, |ξ − ξ̄| ≥ λ a.e. in Ω. We have∫
E3

γ(x)dx ≤
∫
E3

[
a
(
x,un,∇un

)−a(x,un,∇um)][∇un−∇um]dx
≤
∫
E3

[
a
(
x,um,∇um

)−a(x,un,∇um)][∇un−∇um]dx
+
∫
E3

[
a
(
x,un,∇un

)−a(x,um,∇um)][∇un−∇um]dx.
(3.42)

Using the test function Tk(un−um) in (3.13) and integrating on E3, we obtain∫
E3

[
a
(
x,un,∇un

)−a(x,um,∇um)]∇Tk
(
un−um

)
dx

=
∫
E3

(
fn− fm

)
Tk
(
un−um

)
dx

+
∫
E3

[
φn
(
un
)−φm(um)]∇Tk

(
un−um

)
dx,

(3.43)

with ∫
E3

[
φn
(
un
)−φm(um)]∇Tk

(
un−um

)
dx

≤ 2B
∫
E3

∣∣φn(un)−φm(um)∣∣dx
≤ 2B

∫
E3

[∣∣φ(Tn
(
un
))−φ(un)∣∣+∣∣φ(un)−φ(um)∣∣

+
∣∣φ(um)−φ(Tm

(
um
))∣∣]dx.

(3.44)
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Let n0 ≥ B, then for n,m ≥ n0 we have Tn(un) = un and Tm(um) = um on E3,
which implies that the first and the third integral of the last inequality vanish.
The second integral of (3.42) is bounded for n,m ≥ n0 by

2k‖ f ‖1,Ω +2B
∫
E3

∣∣φ(un)−φ(um)∣∣dx. (3.45)

For a.e. x ∈ Ω and ε1 > 0 there exist η(x) ≥ 0 (meas{x ∈ Ω : η(x) = 0} = 0) such
that |s− s′| ≤ η(x), |s|, |s′|, |ξ| ≤ B implies∣∣a(x, s, ξ)−a(x, s′, ξ)∣∣ ≤ ε1. (3.46)

We use now the continuity of φ, to obtain for a.e. x ∈ Ω and ε2 > 0, η1(x) ≥
0 (meas{x ∈ Ω : η1(x) = 0} = 0) such that |s − s′| ≤ η1(x), |s|, |s′| ≤ B
implies ∣∣φ(s)−φ(s′)∣∣ ≤ ε2. (3.47)

Then∫
E3

γ(x)dx ≤
∫
E3∩{x∈Ω:η(x)<k}

[
a
(
x,um,∇um

)−a(x,un,∇um)]
×[∇un−∇um]dx

+
∫
E3∩{x∈Ω:η(x)≥k}

[
a
(
x,um,∇um

)−a(x,un,∇um)]
×[∇un−∇um]dx

+2k‖ f ‖1,Ω +2B
∫
E3∩{x∈Ω:η1(x)<k}

∣∣φ(un)−φ(um)∣∣dx
+
∫
E3∩{x∈Ω:η1(x)≥k}

∣∣φ(un)−φ(um)∣∣dx.

(3.48)

By using for the first integral the definition of E3 and condition (3.1), for the
second integral the definition of E3 and (3.46), for the fourth integral the defini-
tion of E3 and |φ(un)| ≤ C(B) (since |un| ≤ B and φ continuous), and for the last
integral the definition of E3 and (3.47), we obtain∫

E3

γ(x)dx ≤ C′(B)
∫
E3∩{x∈Ω:η(x)<k}

[
1+d(x)

]
dx+2C1(B)ε1

+2k‖ f ‖1,Ω +2C(B)meas
{
x ∈Ω : η1(x) < k

}
+C2ε2.

(3.49)

We have meas{x ∈ Ω : η(x) < k} → 0 when k → 0, and meas{x ∈ Ω : η1(x) <
k} → 0 when k→ 0. Let ε > 0 and let δ be the real, in Lemma 3.4, corresponding
to ε, we choose ε1, ε2 such that

2C1(B)ε1 ≤ δ

5
, C2ε2 ≤ δ

5
, (3.50)
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and k such that

C′(B)
∫
E3∩{x∈Ω:η(x)<k}

[
1+d(x)

]
dx <

δ

5
, 2k‖ f ‖1,Ω ≤ δ

5
,

2C(B)meas
{
x ∈Ω : η1(x) < k

}
<
δ

5
.

(3.51)

Then
∫
E3
γ(x)dx < δ and Lemma 3.4 implies that

measE3 < ε ∀n,m ≥ n0. (3.52)

This completes the proof of the claim.
Let the last k be fixed, un a Cauchy sequence in measure, we choose n1 such

that

measE2 ≤ ε ∀n,m ≥ n1. (3.53)

Then

meas
{
x ∈Ω :

∣∣∇un−∇um∣∣ ≥ λ
} ≤ ε ∀n,m ≥ max

(
n1,n0

)
(3.54)

and ∇un →∇u in measure, consequently

∇un −→∇u a.e. in Ω. (3.55)

Step 5. Let ϕ ∈ W1
0LM(Ω) ∩ L∞(Ω). From Lemma 2.3, there exists a sequence

(ϕj) ∈ �(Ω) such that ϕj converges to ϕ for the modular convergence in
W1

0LM(Ω) with ∥∥ϕj

∥∥
L∞(Ω) ≤ (N +1)‖ϕ‖L∞(Ω). (3.56)

Using Tk[un−ϕj] as a test function in (3.13) we obtain∫
Ω
a
(
x,un,∇un

)∇Tk
[
un−ϕj

]
dx

=
∫
Ω
fnTk
[
un−ϕj

]
dx+

∫
Ω
φn
(
un
)∇Tk

[
un−ϕj

]
dx

(3.57)

which gives, if n→∞,

liminf
n→∞

∫
Ω
a
(
x,un,∇un

)∇Tk
[
un−ϕj

]
dx

≥ liminf
n→∞

∫
Ω

[
a
(
x,un,∇un

)−a(x,un,∇ϕj
)]∇Tk

[
un−ϕj

]
dx

+ lim
n→∞

∫
Ω
a
(
x,Tk+‖ϕj‖L∞(Ω)

(
un
)
,∇ϕj

)∇Tk
[
un−ϕj

]
dx

≥
∫
Ω

[
a
(
x,u,∇u)−a(x,u,∇ϕj

)]∇Tk
[
u−ϕj

]
dx

+
∫
Ω
a
(
x,u,∇ϕj

)∇Tk
[
u−ϕj

]
dx,

(3.58)
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where we have used Fatou lemma for the first integral, and for the second the
convergences ∇Tk[un −ϕj] → ∇Tk[u−ϕj] by (3.37) in (LM(Ω))N for σ(

∏
LM,∏

EM̄) and a(x,Tk+‖ϕj‖L∞(Ω) (un),∇ϕj) → a(x,Tk+‖ϕj‖L∞(Ω) (u),∇ϕj) strongly in
(EM̄(Ω))N by (3.1), which implies that

liminf
n→∞

∫
Ω
a
(
x,un,∇un

)∇Tk
[
un−ϕj

]
dx ≥

∫
Ω
a
(
x,u,∇u)∇Tk

[
u−ϕj

]
dx. (3.59)

For n ≥ k+(N +1)‖ϕ‖L∞(Ω),∫
Ω
φn
(
un
)∇Tk

[
un−ϕj

]
dx =

∫
Ω
φ
(
Tk+(N+1)‖ϕ‖L∞(Ω)

(
un
))∇Tk

[
un−ϕj

]
dx

−→
n→∞

∫
Ω
φ
(
Tk+(N+1)‖ϕ‖L∞(Ω) (u)

)∇Tk
[
u−ϕj

]
dx,

(3.60)

we have used the convergences∇Tk[un−ϕj]⇀∇Tk[u−ϕj] by (3.37) in (LM(Ω))N

and φ(Tk+(N+1)‖ϕ‖L∞(Ω) (un)) → φ(Tk+(N+1)‖ϕ‖L∞(Ω) (u)) strongly in (EM̄(Ω))N since
φ is continuous. On the other hand, since fn → f strongly in L1(Ω) and Tk[un−
ϕj] ⇀ Tk[u−ϕj] weakly∗ in L∞(Ω), we have∫

Ω
fnTk
[
un−ϕj

]
dx −→

∫
Ω
f Tk
[
u−ϕj

]
dx. (3.61)

Then∫
Ω
a(x,u,∇u)∇Tk

[
u−ϕj

]
dx ≥

∫
Ω
φ
(
Tk+(N+1)‖ϕ‖L∞(Ω) (u)

)∇Tk
[
u−ϕj

]
dx

+
∫
Ω
f Tk
[
u−ϕj

]
dx.

(3.62)

Now, if j →∞ in (3.62), we get

liminf
j→∞

∫
Ω
a(x,u,∇u)∇Tk

[
u−ϕj

]
dx

≥ liminf
j→∞

∫
Ω

[
a(x,u,∇u)−a(x,u,∇ϕj

)]∇Tk
[
u−ϕj

]
dx

+ lim
j→∞

∫
Ω
a
(
x,u,∇ϕj

)∇Tk
[
u−ϕj

]
dx

≥
∫
Ω

[
a(x,u,∇u)−a(x,u,∇ϕ)

]∇Tk[u−ϕ]dx

+
∫
Ω
a(x,u,∇ϕ)∇Tk[u−ϕ]dx,

(3.63)

where we have used Fatou lemma for the first integral, and for the second the
convergences ∇Tk[u−ϕj] ⇀ ∇Tk[u−ϕ] in (LM(Ω))N for the modular conver-
gence and a(x,u,∇ϕj) → a(x,u,∇ϕ) in (LM̄(Ω))N for the modular convergence,
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which implies that

liminf
j→∞

∫
Ω
a(x,u,∇u)∇Tk

[
u−ϕj

]
dx ≥

∫
Ω
a(x,u,∇u)∇Tk[u−ϕ]dx. (3.64)

On the other hand, since ∇Tk[u−ϕj] → ∇Tk[u−ϕ] in (LM(Ω))N for the mod-
ular convergence, then weakly for σ(

∏
LM,
∏

LM̄) and φ(Tk+(N+1)‖ϕ‖L∞(Ω) (u)) ∈
(LM̄(Ω))N we have

∫
Ω
φ
(
Tk+(N+1)‖ϕ‖L∞(Ω) (u)

)∇Tk
[
u−ϕj

]
dx

−→
j→∞

∫
Ω
φ
(
Tk+(N+1)‖ϕ‖L∞(Ω) (u)

)∇Tk[u−ϕ]dx

=
∫
Ω
φ(u)∇Tk[u−ϕ]dx.

(3.65)

Since f ∈ L1(Ω) and Tk[u−ϕj] ⇀ Tk[u−ϕ] weakly∗ in L∞(Ω), we have

∫
Ω
f Tk
[
u−ϕj

]
dx −→

∫
Ω
f Tk[u−ϕ]dx. (3.66)

Then

∫
Ω
a(x,u,∇u)∇Tk[u−ϕ]dx ≥

∫
Ω
φ(u)∇Tk[u−ϕ]dx+

∫
Ω
f Tk[u−ϕ]dx (3.67)

and u is an entropy solution of problem (1.1). �

Theorem 3.7. Suppose, in Theorem 3.5, that the N-function M satisfies, further-
more, the ∆2-condition and f ≥ 0, then the entropy solution u of problem (1.1)
satisfies u ≥ 0.

Proof of Theorem 3.7. Using ϕ = Tl(u+) as test function in the definition of en-
tropy solution, we obtain

∫
Ω
a(x,u,∇u)∇Tk

[
u−Tl

(
u+)]dx

≤
∫
Ω
f Tk
[
u−Tl

(
u+)]dx+

∫
Ω
φ(u)∇Tk

[
u−Tl

(
u+)]dx. (3.68)

We have

∫
Ω
f Tk
[
u−Tl

(
u+)]dx ≤ ∫

{u≥l}
f Tk
[
u−Tl(u)

]
dx. (3.69)
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Indeed,

∫
Ω
f Tk
[
u−Tl

(
u+)]dx = ∫

u≥l
f Tk
[
u−Tl

(
u+)]dx

+
∫

0<u<l
f Tk
[
u−Tl

(
u+)]dx

+
∫
u≤0

f Tk
[
u−Tl

(
u+)]dx.

(3.70)

If 0 < u < l then u−Tl(u+) = 0 and
∫

0<u<l f Tk[u−Tl(u+)]dx = 0. If u ≤ 0 then
u−Tl(u+) = u and

∫
u≤0 f Tk[u−Tl(u+)]dx ≤ 0 since f is positive. If u ≥ l then

u+=u and
∫
u≥l f Tk[u−Tl(u+)]dx≤ ∫u≥l f Tk[u−Tl(u)]dx.

On the other hand, we claim that

∫
Ω
φ(u)∇Tk

[
u−Tl

(
u+)]dx = 0. (3.71)

Indeed, if 0 < u < l, then u − Tl(u+) = 0,
∫

0<u<l φ(u)∇Tk[u − Tl(u+)]dx = 0. If
u ≤ 0, then u−Tl(u+) = u,

∫
u≤0

φ(u)∇Tk
[
u−Tl

(
u+)]dx = ∫

−k≤u≤0
φ(u)∇udx

=
∫
Ω
φ(u)∇uχ{−k≤u≤0} dx.

(3.72)

We verify that the third integral of the last inequality vanishes. For this, de-
fine θ(t) = φ(t)χ{−k≤t≤0}, and θ̃(t) =

∫ t
0 θ(τ)dτ we have, by Lemma 2.2, θ̃(u) ∈

(W1
0LM(Ω))N which implies

∫
Ω
φ(u)∇uχ{−k≤u≤0} dx =

∫
Ω
θ(u)∇udx

=
∫
Ω

div
(
θ̃(u)

)
dx = 0 (by Lemma 3.2).

(3.73)

If u ≥ l then u+ = u and

∫
{u≥l}

φ(u)∇Tk
[
u−Tl

(
u+)]dx = ∫

l≤u≤l+k
φ(u)∇udx

=
∫
Ω
φ(u)∇uχ{l≤u≤l+k} dx.

(3.74)

Similarly, we verify that

∫
Ω
φ(u)∇uχ{l≤u≤l+k} dx = 0. (3.75)
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This completes the proof of the claim which implies that∫
Ω
a
(
x,u,∇u)∇Tk

[
u−Tl

(
u+)]dx ≤ ∫

u≥l
f Tk
[
u−Tl(u)

]
dx (3.76)

or ∫
Ω
a(x,u,∇u)∇Tk

[
u−Tl

(
u+)]dx

=
∫
l≤u≤l+k

a(x,u,∇u)∇udx+
∫
−k≤u≤0

a(x,u,∇u)∇udx

≥
∫
l≤u≤l+k

M

(
|∇u|
λ

)
dx+

∫
−k≤u≤0

M

(
|∇u|
λ

)
dx,

(3.77)

which gives

∫
l≤u≤l+k

M

(
|∇u|
λ

)
dx+

∫
−k≤u≤0

M

(
|∇u|
λ

)
dx ≤

∫
u≥l

f Tk
[
u−Tl(u)

]
dx. (3.78)

Letting l→∞ in (3.78) we have

∫
u≥l

f Tk
[
u−Tl(u)

]
dx −→ 0 since f Tk[2u] ∈ L1(Ω),

∫
l≤u≤l+k

M

(
|∇u|
λ

)
dx ≥

∫
l≤u≤k

M

(
|∇u|
λ

)
dx

=
∫
l≤u

M

(∣∣∇Tk(u)
∣∣

λ

)
dx

−→ 0, when l −→∞,

(3.79)

since M(|∇Tk(u)|/λ) ∈ L1(Ω) and M satisfies the ∆2-condition. Then

∫
−k≤u≤0

M

(
|∇u|
λ

)
dx = 0 ∀k, (3.80)

which implies that,

∫
u≤0

M

(
|∇u|
λ

)
dx =

∫
Ω
M

(∣∣∇u−∣∣
λ

)
dx = 0,

∇u− = 0, u− = c a.e. in Ω.

(3.81)

Or u− ∈W1
0LQ(Ω) then u− = 0 a.e. in Ω which proves that

u ≥ 0 a.e. in Ω. (3.82)
�
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