EXISTENCE OF ENTROPY SOLUTIONS FOR SOME
NONLINEAR PROBLEMS IN ORLICZ SPACES

A. BENKIRANE AND J. BENNOUNA

Received 20 October 2001

We study in the framework of Orlicz Sobolev spaces W& Ly (Q), the existence of
entropic solutions to the nonlinear elliptic problems: —diva(x, u, Vu) +div ¢(u)
= f in Q, for the case where the second member of the equation f € L'(Q), and
¢ e (CAR)V.

1. Introduction

Let Q be a bounded open subset of RN and let A(u) = —diva(x,u, Vu) be a
Leray-Lions operator defined on W(}’P (Q), 1< p<on.
We consider the nonlinear elliptic problem
—diva(x, u, Vu) = f —dive(u) in Q,

(1.1)
u=0 on 0Q),

where
fel'(Q),  ¢e(CR)". (1.2)

Note that no growth hypothesis is assumed on the function ¢, which implies
that the term div ¢(u) may be meaningless, even as a distribution. The notion of
entropy solution, used in [8], allows us to give a meaning to a possible solution
of (1.1).
In fact Boccardo proved in [8], for p such that 2—1/N < p < N, the existence
and regularity of an entropy solution u of problem (1.1), that is,
(p-DN

ue W, (Q), 4<p= "1

Ti(u) e WP (Q), Vk>0,
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f a(x,u,Vu)VTk[u—go]dxsf ka[u—¢]dx+I d(u)VTi[u-gldx
Q Q Q

Vo e WP (Q)NLP(Q), (1.3)
where
Te(s)=s if|s| <k Tk(s)=k|—z| i |s| > k. (1.4)

For the case ¢ = 0 and f is a bounded measure, Bénilan et al. proved in [3] the
existence and uniqueness of entropy solutions.

We mention as a parallel development, the work of Lions and Murat [14]
who consider similar problems in the context of the renormalized solutions in-
troduced by Diperna and Lions [10] for the study of the Boltzmann equations.
They can prove existence and uniqueness of renormalized solution.

The functional setting in these works is that of the usual Sobolev space W?.
Accordingly, the function a is supposed to satisfy polynomial growth conditions
with respect to u and its derivatives Vu. When trying to generalize the growth
condition on a, one is led to replace W'? by a Sobolev space WLy built from
an Orlicz space Ly instead of L. Here the N-function M which defines Ly is
related to the actual growth of the function a.

It is our purpose, in this paper, to prove the existence of entropy solution for
problem (1.1) in the setting of the Orlicz Sobolev space W&LM(Q). Our result,
Theorem 3.5, generalizes [8, Theorem 2.1] and gives in particular a refinement
of his result (see Remark 3.6).

For some existence results for strongly nonlinear elliptic equations in Orlicz
spaces [4, 5, 6].

2. Preliminaries

2.1. Let M : Rt — R* be an N-function, that is, M is continuous, convex, with
M(t) >0 fort >0, M(t)/t—0ast— 0and M(t)/t — oo ast— co.

Equivalently, M admits the representation M(t) = jé a(t)dt, where a :
R* — R" is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0
and a(t) — oo as t — oo.

In the following, we assume, for convenience, that all N-functions are twice
continuously differentiable, see Benkirane and Gossez [7].

The N-function M conjugate to M is defined by M(t) = féﬁ(‘[) dt, where
a:R* — R* is given by a(t) = sup{s: a(s) <t}, see [1, 13].

The N-function M is said to satisfy the A,-condition (resp., near infinity) if
for some k and for every ¢ > 0,

M(2t) <kM(t) (resp., for t >some ty). (2.1)
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Let M and P be two N-functions. The notation P <« M means that P grows
essentially less rapidly than M, that is, for each € > 0, P(¢)/M(et) — 0 as t — co.
This is the case if and only if lim;_.,, M~ (t)/P~!(t) = 0. We will extend all N-
functions into even functions on all R.

2.2. Let Q be an open subset of RY. The Orlicz class Ky () (resp., the Orlicz
space Ly(Q)) is defined as the set of (equivalence classes of) real-valued mea-
surable functions u on  such that

f M (u(x)) dx < oo (2.2)
Q

(resp., jQM(u(x)//\) dx < oo for some A > 0). The space Ly(Q) is a Banach space
under the norm

||u||M:inf{)L >0:J‘

Q

M(@)dxg 1} (2.3)

and Kj(Q) is a convex subset of Ly(€Q). The closure in Ly;(Q) of the set of
bounded measurable functions with compact support in Q) is denoted by Ej;(Q).
The equality Ep (Q) = Ly (Q) holds if and only if M satisfies the A, condition,
for all ¢ or for ¢ large according to whether Q) has infinity measure or not.
The dual of Ej(Q) can be identified with L;;(Q) by means of the pairing
jQ u(x)v(x) dx, and the dual norm on L;(Q) is equivalent to || - || ;. We say that
u, converges to u for the modular convergence in Ly(Q) if for some A > 0

j M<|un_u|>dx—>0 as n — co. (2.4)
Q A

If M satisfies the A,-condition, then the modular convergence coincide with the
norm convergence.

2.3. The Orlicz Sobolev space W'Ly(Q) (resp., W'Ex(Q)) is the space of all
functions u such that u and its distributional derivatives up to order one lie in
L (Q) (resp., Ep(Q)). It is a Banach space under the norm

e = 3% [ID%ull,y (2.5)

o<1

Thus, WLy (Q) and W!Ep(Q) can be identified with subspaces of the product
of N +1 copies of Ly(Q)). Denoting this product by [ Ly, we will use the weak
topologies o ([T La, [TEy) and o(TTLas, TTLyr)-

The space W Ey(Q) is defined as the norm closure of 9(Q) in W'Ey(Q)
and the space W(}LM(Q) as the o(TT La, [1 Eyy) closure of B(Q) in WLy (Q).
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We say that u,, converges to u for the modular convergence in WLy (Q) if for
some A >0

D*u, - D*
IM(#)M—N Via| < 1. (2.6)
Q

This implies the convergence o([T Ly, [TLyp)-

2.4. Let W'L;(Q) (resp., WE;;(Q)) denote the space of distributions on
which can be written as sums of derivatives of order < 1 of functions in Ly (Q)
(resp., Ej;(Q))). It is a Banach space under the usual quotient norm.

If the open set Q) has the segment property, then the space @(Q) is dense
in WLy () for the modular convergence and thus for the topology (T Ly,
[1Ly). Consequently, the action of a distribution in W'Ly;(Q) on an element
of WLy (Q) is well defined.

2.5. We recall the following lemmas.

Lemma 2.1 (see [5]). Let Q be an open subset of RN with finite measure. Let M, P,
and Q be N-functions such that Q < P, and let f : QxR — RY be a Carathéodory
function such that

|f(xs)| <c(x)+kiP'M(kyls|]) a.e x€Q, VseR, (2.7)

where ki, ky € Ry, c(x) € Eq(Q). Let Ny be the Nemytskii operator defined from
P(Ey(Q),1/ky) = {u € Ly (Q) = d(u, Ep(Q)) < 1/k2} t0 (Eq(Q)N by Ny (u)(x) =
f(x,u(x)). Then Ny is strongly continuous.

LemMA 2.2 (see [5]). Let F : R — R be uniformly Lipschitzian, with F(0) = 0.
Let M be an N-function and let u € WLy (Q) (resp., Wy Ey(Q)). Then F(u) €
Wy Lu(Q) (resp., Wy Ey(Q)). Moreover, if the set D of discontinuity points of F' is
finite, then

., ou . .
aip(u) _JFgs aein{xeQ:u() ¢D), (2.8)
Xi 0 a.e in {x€Q:u(x)€D}.

Then F : W(}LM(Q) — W(}LM(Q) is sequentially continuous with respect to the
weak* topology o ([T Lum [1Ew)-

LemMMA 2.3 (see [11]). Let Q have the segment property. Then for each v €
W(} Ly (Q), there exists a sequence v, € D(Q) such that v, converges to v for the
modular convergence in W(}LM(Q). Furthermore, if v € W(}LM(Q)DL“’(Q) then

”Vn”Leo(Q) S(N+ 1)||V||L°°(Q)' (2.9)
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2.6. We introduce the following notation, see 2, 15].

Definition 2.4. Let M be an N-function, and define the following set:

" "

Ap {Q Q is an N-function such that Q <— M ,
Q- M
(2.10)

IQOH < 111/N>dr<oowhereH(r)=

Remark 2.5. Let M(t) = t? and Q(¢) = t1, then the condition Q € #{;, is equiva-
lent to the following conditions:

(i) 2-1/N<p<N

(i) g< p=(p—-1)N/(N-1), see (1).

Remark 2.6. We can give some examples of N-functions M for which the set s,
is not empty. Here, the N-functions M are defined only at infinity.

(1) For M(t) = t*logt and Q(¢) = tlogt, we have H(t) = tlogt and H™!(t) =
t(logt)~! at infinity, see [13]. Then the N-function Q belongs to ;.

(2) For M(t) = t? logzt at infinity and Q(¢) = l‘log2 t, we have H(t) = tlogzt
and H7'(t) = t(logt)~? at infinity, see [13]. Then the N-function Q belongs to
A

3. Definition and existence of entropy solutions

Let Q be a bounded open subset of RN with the segment property. Let M, P be
two N-functions such that P <« M.

Let A : D(A) C W(}LM(Q) — WLy (Q) be a mapping (not defined ev-
erywhere) given by A(u) = —diva(x,u, Vu) where a : QxR xRN — RN is a
Carathéodory function satisfying for a.e. x e Qand all t e R, EEwith & £E,

|a(x,1,8)| < d(x) + kB~ M (kat]) + ks M~ M (ks €]), (3.1)
[a(x.t,&)-a(x t,E)][E-E] >0, (3.2)
alot, E)E>(xM<|E'|> (3.3)

where d(x) € Ej;(Q),d >0, ,, A e R%, ky, ky, ks, kg € R,
Consider the nonlinear elliptic problem (1.1) where

fel'(Q) (3.4)
and ¢ = (¢y,..., dn) satisfies
¢ (COR))HY. (3.5)

As in [8], we define the following notion of an entropy solution, which gives a
meaning to a possible solution of (1.1).
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Definition 3.1. Assume that (3.1), (3.2), (3.3), (3.4), and (3.5) hold true and
Apn # 0. A function u is an entropy solution of problem (1.1) if

ue WyLo(Q) VQe sy,
Ti(u) € WoLy(Q) Vk >0,

f a(x,u,Vu)VTk[u—(p]dxsf ka[u—go]dx+J d(u)VT[u-gpldx
Q Q Q
Vo € WaLy(Q)NL*(Q).

(3.6)

We cannot use the solution u as a test function in (1.1), because u does not
belong to W Ly(Q). An important role is played by Ty (1) and the test functions

Telu-¢l, @€ W Ly(Q)NL*(Q) (3.7)

because both belong to W Ly ().
In Theorem 3.5, we prove the existence of solution of problem (1.1), in the
framework of entropy solutions.

LEMMA 3.2. Let Q be a bounded open subset of RN with the segment property. If
ue (WyLy(Q)N then [, divudx =0.

Proof of Lemma 3.2. 1t is sufficient to use an approximation of u. O
We recall the following lemma (see [15, Lemma 2]).

LeEmMA 3.3. Let M be an N-function, u € W' Ly (Q) such that jQM(|Vu|) dx < oo,
then

—‘l/l/(t) > NCII\]/N#I_I/N(t)

-1 d (3.8)
Cl ————— M(|Vu|)d > vVt >0,
(NCi,/NM“/N(t) dt I[|u|>r} (17l
where C is the function defined as
1 M(r)
C(t) = , H(r)=——. 3.9
® sup {r>0,H(r) <t} r) r (3.9)

The function Cy is the measure of the unit ball of RN, and u(t) = meas{|u| > t}.

LEmMA 3.4. Let (X, 7, ) be a measurable set such that u(X) < co. Let y be a mea-
surable function y : X — [0, o) such that

p({xeX:yx)=0}) =0, (3.10)
then for each € > 0, there exists § > 0 such that [, y(x) dx < & implies

u(A) <e. (3.11)
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THEOREM 3.5. Under assumptions (3.1), (3.2), (3.3), (3.4), and (3.5), with sy #
0, there exists an entropy solution u of problem (1.1) (in the sense of Definition 3.1).

Remark 3.6. In the case M(t) = t?, Theorem 3.5 gives a refinement of the regular-
ity result (1) (i.e, u € Wol’q(Q), q< p=((p-1)N/N-1)).In fact, by Theorem 3.5,
we have u € WjLqo(Q) for each Q € 54y (for example for Q(t) = tP/log*(e +
t),a>1).

Proof of Theorem 3.5
Step 1. Define, for each n > 0, the approximations

$n() = ¢(Tu(s)),  fuls) =Tu[f(5)]. (3.12)
Consider the nonlinear elliptic problem
Uy € WoLm(Q),  —diva(x, un, Vuy) = fu—divg,(u,) in Q. (3.13)

From Gossez and Mustonen [12, Proposition 1, Remark 2], problem (3.13) has
at least one solution.

Step 2. 'We will prove that (u,) is bounded in W(; Lo(Q) for each Q € Ayy. Let ¢
be the truncation defined, for each ¢,k > 0, by

0 ifo<é<t,
1 .
o() = E(f—t) ift<&<t+h, (3.14)
1 iféE>t+h,
-p(=§) if&<0.

Using the test function v = ¢(u,) in (3.13) (v € W(}LM(Q) by Lemma 2.2), we
have

an(x, s Vi) @ (1) Vit it = fﬂ Fup(un) dx+ f () Vo) ds. (319
We claim now that
J‘Q ¢n(un) Vo (u,)dx=0. (3.16)
Indeed,

Vo (un) =¢ (tn) Vidy, (3.17)

where

1 .
<P'(f)={ﬁ ift<|&|<t+h, (3.18)
0

otherwise,
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define 0(s) = ¢, (s)(1/h) X{¢<|s|<t+n)»> and 0(s) = fé 0(7) dt, we have by Lemma 2.2,
O(u,) € (WELy(Q))N, which implies

1
[ ) Vot dr= [ o) rctuscon Vund = | 0(u,) Tu,d
Q Q Q

= j div (6(un))dx=0 (see Lemma 3.2).
! (3.19)

This proves (3.16). By (3.3) and (3.15), we have (where we can suppose without
loss of generality that A = 1, since one can take u), = u,/\)

- M(|Vua|)dx <[ flho (3.20)

h t<un|<t+h
Let h — 0, then

d

——f M(|Vu,|)dx<C with ¢ = I/ lha, (3.21)
At J (ju,)>1) o

We prove the following inequality, which allows us to obtain the boundedness
of (u,) in Wy Lq(Q),

df
-— Q(|Vuy,|dx
%), euvulan

| p (3.22)

<—u () QoH™ ———f M(|Vu,|)dx ).
L0Q <NC%NW)I_M M) >

Indeed, let C(s) = 1/H"'(s), where H(r) = M(r)/r and H™'(s) = sup{r > 0,
H(r) <s}. Then

N

C(S) = m (3.23)

By Lemma 3.3 we have, with y,(¢) = meas{|u,| > t},

—,(£) 2 NCYNp, (1)1 7N

R e d (3.24)
><C< —NC}\{NW(” pr |uyl‘>tM(|Vun|)clx ,

then

1 d
_— M(|Vu,|)dx
NCYNu, ()1-UN dt )y, 10 ([vu]) >

I SR
NCYN p, ()N dt )y, 1ot

—u,(t)-MoH™ <-

(3.25)
> NCVN‘IJ (t)lfl/N <_
e N n

M(|Vun|)dx>,
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and also

Un
. p (3.26)
<MoH™! —N——f M(|Vu,|)dx
NCN pn ()N At ) 4,151
which gives
M < ! df (|Vun|)dx>
Au (t) t {lun|>t} (3 27)

d
<H M(|Vu, dx>.
CI/N‘u (t)1-IN dt _[ (al o) (l |)

Let Q € sy and let D(s) = M(Q7(s)), D is then convex, and the Jensen’s
inequality gives

D<f{z<|un<z+h} Q(|Vunl) dx) < .[[t<\u,,|<t+h] M(|Vuy|)dx

—pn(t+h) +pn(t) —un(t+h) +u,(t) (3.28)

then

<M <."‘;1(t) 4 f”u >t]M(|Vun|)dx> (3.29)

1 d
<H! ———I M(|Vu,|)d
( NCYN ()N dt )y, 150) Vel x>

which gives (3.22). By (3.21) and (3.22) and since the function
tﬁJ‘ Q(|Vuy|) dx (3.30)
[un|>t

is absolutely continuous (see [15]), we have

[ aqvupax- <‘%f{m.>t,Q<'V“"'>>dt

%) , ~ C
sfo —u,(HQoH 1<W>dt (3.31)

1 C'-meas(Q) 1
-1
Sa . QOH (rl—l/N>dr<oo
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which implies that (Vu,) is bounded in Ly(Q) for each Q € sdy. Then u, is
bounded in WSLQ(Q) for each Q € 5. Passing to a subsequence if necessary,
we can assume that

u, —u  weakly in W Lq(Q) for 0(HLQ, HEQ>, a.e.in Q. (3.32)

Step 3. We prove that T (u,) — Ti(u) weakly in WLy (Q) for all k > 0. Using
the test function Ty (u,) in (3.13), we obtain

J’ a(x,un,Vun)VTk(un)dx:j FuTe(un) dc+ f 6 (1) VT (1) dx. (3.33)
Q Q Q
We claim that

f () Ti (1) dx = 0. (3.34)
Q

Indeed, VTi(uy) = Vidn)ju,<k)> define 0(t) = ¢, (£)x(je<k)> and ot jo (1)dr,
we have by Lemma 2.2, 8(u,) € e(W, LM(Q))N,

[ 80 VT dx= [ 80ttt T
Q Q
=I 0 (ut4n)Vu,dx (3.35)
Q
= j div (é(un)) dx=0 (by Lemma 3.2)
Q

which proves the claim.
On the other hand, (3.33) can be written as

f a(x, ty, Vi) VT (uy) dx = j a(x, ty, VT (1)) V Tic () dx
@ - (3.36)

= j fnTk<un) dx,
Q

which implies, with (3.3), that V Ty (u,) is bounded in (Ly(Q))N, and Ti(u,,) is
bounded in (W&LM(Q))N. Since u, — u a.e. in Q then Ty (u,) — Tx(u) a.e. in Q.
Then

T (un) = Te(w)  weaklyin WoLu(Q) for o([TLu [ TExr).  (337)

Step 4. We will prove that Vu, — Vu a.e.in Q. Let A >0,e >0. For B> 1, k >0,
we consider as in [9] for n,m € N,

={|Vun| > B}u{|Vum| >B}u{|u,| > B}u{|um| >B},
E> = {|un—tm| >k},
st =10n| (3.38)
B2~ (I <5,

| Vit SB,|Vun—Vum| 2/\ 1

we have {|Vu,—Vu,|>A} CE;UE,UE;.
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Since (u,) and (Vu,) are bounded in L'(Q) (since u, is bounded in
W3 Lo(Q)), we have

2Bu(Er) <f |Vun|+|u,,|dx<f |Vtn| + |14 dx < C. (3.39)
E; Q

Then measE,; < e for B sufficiently large enough, independently of #, m. Thus
we fix B in order to have

measE; <e. (3.40)

Now we claim that measE; < € for n and m large. Let C; be such that ||u,]|; <
C, and ||Vu,|; € C;. As in [9], the assumption (3.2) gives the existence of a
measurable function y(x) such that

meas ({x€Q:y(x)=0}) =0,
[a(x: £, f)_a(-x) £, g)] [f_g] 2 )/(x) >0,

forall teR, &, E € RN, |t], €], |E| < B, |E -] > A a.e. in Q. We have

(3.41)

J‘ y(x)dx < J‘ [a (%, 1, Vi) —a(x, iy, Vi) | [V — V| dx
E; Es
< J’ [a (%, thms Vi) = a (6, tin, Vi) | [Vt — Vit dx (3.42)
E;
+J‘ [a(x, ttn, Vig) —a(x, iy, Vidg) | [Viin — V] dx.
E;

Using the test function Tk (u, —u,,) in (3.13) and integrating on Es, we obtain
J‘E [a(x, ttn, Viig) —a(X, iy, Vid ) |V T (thy =ty ) dx
= | (o o) Tittn=tm) dx (3.43)
[ 100 =0 )] VTt ) i,
with
[ 190 0) = )] VT 1)

<2b LS |0 (t4n) = G (14 ) | dx (3.44)

<28 [ 1197 (1)) =00+ )9 )|
+ 1 () = (Ton (1) ) |] dx.
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Let ng > B, then for n,m > ng we have T,(u,) = u, and T,,(u4,,) = u,, on Ej3,
which implies that the first and the third integral of the last inequality vanish.
The second integral of (3.42) is bounded for n, m > ny by

2k flla+2B L | (1) = ¢ (1) | dx. (3.45)

For a.e. x € Q and €; > 0 there exist 77(x) > 0 (meas{x € Q : y(x) =0} = 0) such
that [s—s'| <#(x), |s],]5'], |€] < B implies

la(x,s,&)—a(x,s,&)| <ei. (3.46)

We use now the continuity of ¢, to obtain for a.e. x € Q and ¢; > 0, 7;(x) >
0 (meas{x € Q : m(x) = 0} = 0) such that |s —s'| < #1(x), |s|,|s| < B
implies

[p(s)=(s)| < e (3.47)
Then

y(x)dxgj [a (2, thm> Vi) — a6, tin, Vi) |

E; Esn{xeQun(x)<k}

x [V, —Vu,| dx

[a(x, thm> Vi) —a(x, ti, Vi)

f
E3n{xeQ:n(x)>k) (3.48)

x [V — Vi, dx

+2K| fll0+2B j 160 =9 (un)

Esn{xeQ:n (x)<k

N j |6 (i) = ¢ (i) | dx.
Esn{xeQun; (x)>k}

By using for the first integral the definition of E; and condition (3.1), for the
second integral the definition of E5 and (3.46), for the fourth integral the defini-
tion of E5 and |¢(u,)| < C(B) (since |u,| < B and ¢ continuous), and for the last
integral the definition of E5 and (3.47), we obtain

j y(x)dx < C'(B)J‘ [1+d(x)] dx+2C(B)e;
E; E3n{xeQun(x)<k} (349)

+2k| fll1,0 +2C(B) meas {x € Q : 111 (x) < k} + Cyes.

We have meas{x € Q : #(x) < k} — 0 when k — 0, and meas{x € Q : #;(x) <
k} — 0 when k — 0. Let € > 0 and let § be the real, in Lemma 3.4, corresponding
to €, we choose €1, €, such that

é

2C(B)er £ -, Cer < g, (3.50)

w
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and k such that

é é
C'(B) [1+d(x)] dx < 3 2kl flho < 3
Esn{xeQin(x)<k} (3.51)
2C(B)meas {x € Q: 11 (x) <k} < g
Then -[Es y(x)dx < § and Lemma 3.4 implies that
measE; <e Vn,m> ny. (3.52)

This completes the proof of the claim.
Let the last k be fixed, u, a Cauchy sequence in measure, we choose n; such
that

measE, <e Vn,m>nj. (3.53)
Then
meas {x € Q: |Vu,—Vuy,| >A} <e Vn,m>max(n,n) (3.54)
and Vu, — Vu in measure, consequently
Vu, — Vu a..in Q. (3.55)

Step 5. Let ¢ € W(}LM(Q) NL*(Q). From Lemma 2.3, there exists a sequence
(¢pj) € D(Q) such that ¢; converges to ¢ for the modular convergence in
W(}LM(Q) with

19ill 0y € N+ Dl @ll=(0)- (3.56)

Using Ty [u,—¢;] as a test function in (3.13) we obtain

j a(%, tn, Vit) VT [tin — 9] dx
Q

(3.57)
:jﬂfnTk[un—q)j] dx+jﬂ¢n(un)VTk[un—goj] dx
which gives, if n — oo,
hi‘iﬂﬂlf Qa(x, tn, Vity )V Ty [un— @] dx
> li{giorolf . [a(x, tn, Vi) —a(x, un, Vo) | Vi [tn— @] dx
+Jim ) (6 Testg e (tn), V95) VT [t = 5] dx (3.58)

ZL) [a( u Vit) —a(x 1, V)| VT [u—g;] dx

+I a(x%,u, Vo) VT [u-¢;] dx,
Q
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where we have used Fatou lemma for the first integral, and for the second the
convergences VTi[u, —¢;] — VTi[u-¢;] by (3.37) in (Ly(Q))N for o(TT Las,
[TEw) and a(x, Thrjg e (4n), V@;) = a(x, Trs(jg; 000 (W), V@j) strongly in
(Ejz(Q))N by (3.1), which implies that

liminf | a(x, up, Vi) VT [up—@;j] dx > j a(x,u, Vu) VT [u—¢;j] dx. (3.59)
Q Q

n—oo

For n>k+(N+1lgli=(q),
,[Q n (un) V T [t — ;] dx = JQ S(Tir v+ Dllphiznoy () ) V T [t = 5] dx

— J;) S (Tirv+1lglion @ () V T [ = 9] dx,
(3.60)

we have used the convergences V Tk [u,—¢;] — VT [u—¢;] by (3.37) in (L ()N

and ¢(Tie (N+)llplei) (Un) = G(Thr(v41) gl o= 0 (1)) strongly in (Ey (Q))" since

¢ is continuous. On the other hand, since f, — f strongly in L'(Q) and Ty[u, -
¢j] = Ty[u—¢;] weakly* in L*(2), we have

I ST [tn—9;] dxﬁJ‘ fTe[u-g;] dx. (3.61)
Q Q
Then

I a(x,u, Vu)V T [u—¢j] deJ’ O(Tre(N+D)ligplo (4) V Tk [u—¢;] dx
Q Q

(3.62)
+foTk[u—¢j] dx.
Now, if j — oo in (3.62), we get
hﬁ-‘lﬂf}f Qa(x,u,Vu)VTk[u—goj] dx
Zli?lglf Q[a(x,u,Vu)—a(x,u,V(p]-)]VTk[u—q)j] dx
+1lim | a(xu,Ve;)VTi[u-g¢;]dx (3.63)

J7e )0

> J [a(x, u, Vu)—a(x,u, V)| VTr[u—g¢ldx
Q

+I a(x,u, Vo)V Ti[u-¢ldx,
Q

where we have used Fatou lemma for the first integral, and for the second the
convergences VTy[u—¢;] — VTi[u—-¢] in (Ly(Q)N for the modular conver-
gence and a(x, u, Vo;) — a(x,u, Vo) in (L 31(Q))N for the modular convergence,
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which implies that

liminf | a(x,u, Vu)V Ty [u—¢;] dx > f a(x,u, Vu)VTelu—-¢ldx.  (3.64)
Q Q

J—®

On the other hand, since VT[u—-¢;] — VTi[u-¢]in (L (Q)N for the mod-
ular convergence, then weakly for o ([TLa, [TLy) and ¢(Tir(n+1))1gllpoo (o) (#)) €
(Liz(2))N we have

L G (Ther N+ Dl 0 (W) VT [u = ;] dx

— | O(Thr i) gl () V Tk [ — @] dx (3.65)
Q

j—oe

= fofp(u)VTk[u—go] dx.

Since f € L'(Q)) and Ti[u—¢@;] — Ti[u—-¢] weakly* in L*(}), we have

Ika[u—¢j]dx—>f fTilu-g¢]dx. (3.66)

Q Q

Then

j a(x,u,Vu)VTk[u—(p]dxzf ¢(u)VTk[u—(p]dx+f fTilu—g@ldx (3.67)
Q Q Q

and u is an entropy solution of problem (1.1). O

THEOREM 3.7. Suppose, in Theorem 3.5, that the N-function M satisfies, further-
more, the Ay-condition and f > 0, then the entropy solution u of problem (1.1)
satisfies u > 0.

Proof of Theorem 3.7. Using ¢ = T;(u") as test function in the definition of en-
tropy solution, we obtain

J‘ a(x, u, Vu)V Ty [u—Ti(u")] dx
o (3.68)
gf ka[u—Tl(u+)]dx+f () VT [u—Ti (u")] dx.

Q Q

We have

foTk[u_T,(w)]dxgj

fTi[u-Ti(u)] dx. (3.69)
>1}

{u
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Indeed,

Lka 4= Ti(u")] dx = qulka [u=Ti(u*)] dx

+ fTe[u—-Ti(u")] dx (3.70)

O<u<l

+fu<0ka [u=Ti(u")] dx.

If0<u<lthen u—Ti(u") =0 and fo<u<lka[u— Ti(u*)]dx = 0. If u <0 then
u—T(u*) = uand fu<0ka[u— Ti(u")]dx < 0 since f is positive. If u > [ then
ut=yand fu>lka[u:Tl(u*)] dx<[ ., fTilu—Ti(u)]dx.

On the other hand, we claim that

f ¢(w)VT[u-Ti(u")] dx=0. (3.71)
Q

Indeed, if 0 < u < [, then u— T;(u*) =0, f0<u<l¢(u)VTk[u— Ti(ut)]dx = 0. If
u<0,thenu-Ti(u") =u,

j d(u)V Ty [u—Tl(qu)]dx:J’ ¢(u)Vudx
uso —k<u<0 (3.72)

= J‘ (1) Vuy —k<u<o) dx.
Q
We verify that the third integral of the last inequality vanishes. For this, de-

fine 0(t) = ¢(t)x|-k<t<0}> and 0(t) = jé 0(t)dr we have, by Lemma 2.2, O(u) €
(W, Ly ()N which implies

f ¢(M)VMX[7kgugo}dx=J‘ O(u)Vudx
¢ - (3.73)
= f div(6(u))dx=0 (by Lemma 3.2).

Q

Ifu>Ilthenu™ =uand

J‘ ¢(u)V Ty [u—T;(u")] dx:f ¢(u)Vudx
{u>1} I<u<l+k (3.74)
= fo (1) Vuyicusivky dx.

Similarly, we verify that

I &(u)Vuyicu<isk) dx = 0. (3.75)
Q
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This completes the proof of the claim which implies that

j a(x,u, Vu) VT [u—T;(u")] deJ’ STk [u-Ti(u)] dx (3.76)
Q u>l
or

I a(x, u, Vu)V Ty [u—Ti(u")] dx
Q

=f a(x, u,Vu)Vudx+J‘ a(x,u, Vu) Vudx (3.77)
I<u<l+k k<u<o )

V| J‘ [Vl
> dx+ M| — )dx,
IISuSHk < A > k<u<0 A
which gives
f M<|V”|>d +I M<|Vu|>dx<f FTe[u-Ty(w)] dx. (3.78)
I<u<l+k A k<u<0 A

Letting [ — oo in (3.78) we have

J fTe[u—Ti(u)] dx — 0 since fTi[2u] € L'(Q),
u>l

j (T aes [ a0 g
I<usl+k A I<u<k A (3.79)
I<u A

— 0, when!— oo,

since M(|V Tx(u)|/A) € L' (Q)) and M satisfies the A,-condition. Then

f M(lV”|>d x=0 Vk (3.80)
—k<u<0 A
which implies that,

V| |Vu|
dx = — )dx=0,
L<o < A ) fo < A > * (3.81)

Vu =0, u =c¢ a.e. inQ.
Or u™ € W)Lo(Q) then u~ = 0 a.e. in Q which proves that

u>0 a.e. inQ. (3.82)
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