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We find a lower estimation for the projection constant of the projective tensor
product X⊗∧Y and the injective tensor product X⊗∨Y , we apply this estimation
on some previous results, and we also introduce a new concept of the projection
constants of operators rather than that defined for Banach spaces.

1. Introduction

If Y is a closed subspace of a Banach space X, then the relative projection
constant of Y in X is defined by

λ(Y,X) := inf
{‖P ‖ : P is a linear projection from X onto Y

}
. (1.1)

And the absolute projection constant of Y is defined by

λ(Y ) := sup
{
λ(Y,X) : X contains Y as a closed subspace

}
. (1.2)

It is well known that any Banach space Y can be isometrically embedded into
l∞(�) for some index set � (� is usually taken to be UY ∗ where Y ∗ denotes
the dual space of Y and UY ∗ denotes the set {f : f ∈ Y ∗, ‖f ‖ ≤ 1}) and
that if Y is complemented in l∞(�), then it is complemented in every Banach
space containing it as a closed subspace, that is, Y is injective. We also know
that for any such embedding the supremum in (1.2) is attained, that is, λ(Y ) =
λ(Y, l∞(�)) (see [1, 4]). For each finite-dimensional space Yn with dimYn = n,
Kadets and Snobar [6] proved that λ(Yn) ≤ √

n. König [7] showed that for
each prime number n the space l∞

n2 contains an n-dimensional subspace Yn with
projection constant

λ
(
Yn

)= √
n−

(
1√
n

− 1

n

)
. (1.3)

Copyright © 2001 Hindawi Publishing Corporation
Abstract and Applied Analysis 6:5 (2001) 299–308
2000 Mathematics Subject Classification: 47B20, 46B10
URL: http://aaa.hindawi.com/volume-6/S1085337501000598.html

http://aaa.hindawi.com/volume-6/S1085337501000598.html


300 On the projection constants of some topological spaces

König and Lewis [9] verified the strict inequality λ(Yn) <
√

n in case n ≥ 2.
Lewis [14] showed that

λ
(
Yn

)≤ √
n

[
1−n−2

(
1

5

)2n+11]
. (1.4)

König and Tomczak-Jaegermann [11] also showed that there is a sequence
{Xn}n∈N of Banach spaces Xn with dimXn = n such that

lim
n→∞

λ
(
Xn

)
√

n
= 1. (1.5)

In fact, it is shown in [9] that for each Banach space Yn with dimension n,
λ(Yn) ≤ √

n−c/
√

n, where c > 0 is a numerical constant and the n-dimensional
spaces Xn satisfy

√
n−2/

√
n ≤ λ(Xn). The improvement of these results was

given in [12], where an upper estimate for λ(Yn) was found in the form

λ
(
Yn

)≤




√
n− 1√

n
+O

(
n−3/4), in the real field,

√
n− 1

2
√

n
+O

(
n−3/4), in the complex field.

(1.6)

The precise values of l1
n, l2

n, and l
p
n , 1 < p < ∞, p �= 2, have been calculated

by Grünbaum [4], Rutovitz [15], Gordon [3], and Garling and Gordon [2]. In
the case of 1 < p < 2, the improvement of these results was given by König,
Schütt, and Tomczak-Jaegermann in [10], they showed that

lim
n→∞

λ
(
l
p
n

)
√

n
=




√
2

π
, in the real field,

√
π

2
, in the complex field.

(1.7)

Some other results are mentioned in [2, 3, 13, 15].
For finite codimensional subspaces, Garling and Gordon [2] showed that if

Y is a finite codimensional subspace of the Banach space X with codimension
n, then for every ε > 0 there exists a projection P from X onto Y with norm

‖P ‖ ≤ 1+(1+ε)
√

n. (1.8)

2. Notations and basic definitions

The sets X, Y , Z, and E denote Banach spaces, X∗ denotes the conjugate space
of X and UX denotes the unit ball of the space X. Elements of X, Y , X∗, and
Y ∗ will be denoted by x,u, . . . , y,v, . . . , f,h, . . . , and g,k, . . . , respectively. The
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injective tensor product X⊗∨Y between the normed spaces X and Y is defined
as the completion of the smallest cross norm on the space X⊗Y and the norm
on the space X⊗Y is defined by∥∥∥∥∥

n∑
i=1

xi ⊗yi

∥∥∥∥∥
X⊗∨Y

= sup

∣∣∣∣∣
n∑

i=1

f
(
xi

)
g
(
yi

)∣∣∣∣∣ , (2.1)

where the supremum is taken over all functionals f ∈ UX∗ and g ∈ UY ∗ .
The projective tensor product X⊗∧ Y between the normed spaces X and Y

is defined as the completion of the largest cross norm on the space X⊗Y and
the norm on X⊗Y is defined by∥∥∥∥∥

n∑
i=1

xi ⊗yi

∥∥∥∥∥
X⊗∧Y

= inf




m∑
j=1

∥∥uj

∥∥∥∥vj

∥∥

 , (2.2)

where the infimum is taken over all equivalent representations
∑m

j=1 uj ⊗vj ∈
X⊗Y of

∑n
i=1 xi ⊗yi (see [5]).

If X is a Banach space on which every linear bounded operator from X into
any Banach space Y is nuclear (this is the case in all finite-dimensional Banach
spaces X), then for any Banach space Y the space X⊗∨Y is isomorphically
isometric to X⊗∧ Y (see [16]).

The set � = {(f,g) : f ∈ UX∗ , g ∈ UY ∗} = UX∗ ×UY ∗ .
We start with the following two lemmas.

Lemma 2.1. For Banach spaces X and Y there is a norm one projection from
l∞(UX∗)⊗(∨ or ∧) l∞(UY ∗) onto l∞(�).

Proof. Since the space l∞(�) has the 1-extension property, it is sufficient to
show that l∞(�) can be isometrically embedded in the space l∞(UX∗)⊗(∨ or ∧)

l∞(UY ∗). In fact, every nonzero element 0 �= F = {F((f,g))}f ∈UX∗ ,g∈UY∗
in the space l∞(�), (note that the norm in this Banach space is given by
‖F‖l∞(�) = supf ∈UX∗ supg∈UY∗ |F((f,g))|) defines two scalar-valued functions
F ∈ l∞(UX∗) and G ∈ l∞(UY ∗) by the following formulas:

F(f ) = sup
g∈UY∗

∣∣F((f,g)
)∣∣, G(g) = sup

f ∈UX∗

∣∣F((f,g)
)∣∣. (2.3)

Clearly the element F́ = (1/‖F‖l∞(�)) × (F ⊗ G) is an element of the space
l∞(UX∗) ⊗(∨ or ∧) l∞(UY ∗). Since both the injective and the projective ten-
sor products are cross norms, ‖F́‖l∞(UX∗ )⊗(∨ or ∧)l∞(UY∗ ) = ‖F‖l∞(�). The map-

ping J defined by the formula J (F) = F́ is the required isometric embedding.
�

Lemma 2.2. Let X and Y be two Banach spaces. Then λ(X⊗∨Y ) = λ(X⊗∨Y,

l∞(�)).
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Proof. It is also sufficient to show that the space X⊗∨Y can be isometrically
embedded in l∞(�). In fact, every element F = ∑n

i=1 xi ⊗ yi ∈ X⊗∨Y de-
fines a scalar-valued bounded function F́ ∈ l∞(�) by the formula F́((f,g)) =∑

i=1 f (xi)g(yi). Using definition (2.1) for the injective tensor product, we
have ‖F‖∨ = ‖F́‖l∞(�). The mapping i defined by the formula i(F) = F́ is the
required isometric embedding. �

We have the following theorem.

Theorem 2.3. (1) If Y1 and Y2 are complemented subspaces of Banach spaces
X1 and X2, respectively, then the injective (resp., projective) tensor product
Y1 ⊗∨ Y2 (resp., Y1 ⊗∧ Y2) of the spaces Y1 and Y2 is complemented in the
injective (resp., projective) tensor product X1 ⊗∨ X2 (resp., X1 ⊗∧ X2) of the
spaces X1 and X2 and

λ
(
Y1 ⊗(∨ or ∧) Y2,X1 ⊗(∨ or ∧) X2

)
≤ λ

(
Y1,X1

)
λ
(
Y2,X2

)
. (2.4)

(2) If X and Y are injective spaces, then the space X ⊗∨ Y is injective.
Moreover,

λ
(
X⊗∨ Y

)≤ λ(X)λ(Y ). (2.5)

Proof. Let P1 and P2 be any projections from X1 onto Y1 and from X2 onto
Y2, respectively. Then the operator P from the space X1 ⊗∨ X2 onto the space
Y1 ⊗∨ Y2 (resp., from the space X1 ⊗∧ X2 onto the space Y1 ⊗∧ Y2) defined
by

P

(
n∑

i=1

xi ⊗yi

)
=

n∑
i=1

P1
(
xi

)⊗P2
(
yi

)
(2.6)

is a projection and its norm ‖P ‖ is not exceeding ‖P1‖‖P2‖. In fact, let∑n
i=1 xi ⊗ yi be any element of the space X1 ⊗(∨ or ∧) X2. Then, in the case

of projective tensor product we have

∥∥∥∥∥P
(

n∑
i=1

xi ⊗yi

)∥∥∥∥∥
Y1⊗∧Y2

=
∥∥∥∥∥

n∑
i=1

P1
(
xi

)⊗P2
(
yi

)∥∥∥∥∥
Y1⊗∧Y2

=
∥∥∥∥∥∥

m∑
j=1

P1
(
ui

)⊗P2
(
vi

)∥∥∥∥∥∥
Y1⊗∧Y2

≤ ∥∥P1
∥∥∥∥P2

∥∥ m∑
j=1

∥∥uj

∥∥∥∥vj

∥∥,

(2.7)
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for all equivalent representations
∑m

j=1 uj ⊗vj of
∑n

i=1 xi ⊗yi . So

∥∥∥∥∥P
(

n∑
i=1

xi ⊗yi

)∥∥∥∥∥
Y1⊗∧Y2

≤ ∥∥P1
∥∥∥∥P2

∥∥
∥∥∥∥∥

n∑
i=1

xi ⊗yi

∥∥∥∥∥
X1⊗∧X2

. (2.8)

And in the case of injective tensor product we have∥∥∥∥∥P
(

n∑
i=1

xi ⊗yi

)∥∥∥∥∥
Y1⊗∨Y2

=
∥∥∥∥∥

n∑
i=1

P1
(
xi

)⊗P2
(
yi

)∥∥∥∥∥
Y1⊗∨Y2

= sup

{∣∣∣∣∣
n∑

i=1

f
(
P1
(
xi

))
g
(
P2
(
yi

))∣∣∣∣∣ : f ∈ UY ∗
1
, g ∈ UY ∗

2

}

= sup

{∣∣∣∣∣f
(

P1

(
n∑

i=1

g
(
P2
(
yi

))
xi

))∣∣∣∣∣ : f ∈ UY ∗
1
, g ∈ UY ∗

2

}

≤ sup


∥∥P1

∥∥∥∥∥∥∥
n∑

i=1

g
(
P2
(
yi

))
xi

∥∥∥∥∥
X1

: g ∈ UY ∗
2




= ∥∥P1
∥∥sup

{
sup

{∣∣∣∣∣
n∑

i=1

f
(
xi

)
g
(
P2
(
yi

))∣∣∣∣∣ : f ∈ UX∗
1

}
, g ∈ UY ∗

2

}

≤ ∥∥P1
∥∥∥∥P2

∥∥sup

{∣∣∣∣∣
n∑

i=1

f
(
xi

)
g
(
yi

)∣∣∣∣∣ : f ∈ UX∗
1
, g ∈ UX∗

2

}

≤ ∥∥P1
∥∥∥∥P2

∥∥∥∥∥∥∥
n∑

i=1

xi ⊗yi

∥∥∥∥∥
X1⊗∨X2

.

(2.9)

Thus in both cases, ‖P ‖ ≤ ‖P1‖‖P2‖. Taking the infimum of each side with
respect to all such P1 and P2, we get inequality (2.4). To prove inequality (2.5),
we apply inequality (2.4) and get in particular

λ
(
X⊗∨Y, l∞

(
UX∗

)⊗∨ l∞
(
UY ∗

))≤ λ
(
X,l∞

(
UX∗

))
λ
(
Y, l∞

(
UY ∗

))
= λ(X)λ(Y ).

(2.10)

Using Lemma 2.2 and definition (1.2), we get λ(X⊗∨Y, l∞(�)) ≥ λ(X⊗∨Y,

l∞(UX∗) ⊗∨ l∞(UY ∗)). We claim that the sign ≥ is an equal sign. In fact,
if P is any projection from l∞(UX∗) ⊗∨ l∞(UY ∗) onto X⊗∨Y and J is the
embedding given in Lemma 2.1, then Ṕ = PJ is a projection from l∞(�) onto
X⊗∨Y with ‖Ṕ ‖ ≤ ‖P ‖. This is the sufficient condition for the two infimum
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λ(X⊗∨Y, l∞(�)) and λ(X⊗∨Y, l∞(UX∗)⊗∨ l∞(UY ∗)) to be equal. Therefore

λ
(
X⊗∨ Y

)= λ
(
X⊗∨ Y, l∞

(
UX∗ ⊗∨ UY ∗

))
. (2.11)

Using inequality (2.10), we get (2.5). �

Remark 2.4. Since λ(l∞(�)) = 1 for any index set �, we conclude that λ(l∞(�)

⊗(∨ or ∧) l∞(�),X⊗(∨ or ∧) Y ) = 1 for every X ⊃ l∞(�) and Y ⊃ l∞(�).

We have the following two corollaries.

Corollary 2.5. For any finite sequence {Xi}ni=1 of Banach spaces with com-
plemented subspaces {Yi}ni=1, the relative projection constant of the injective
(resp., projective) tensor product

⊗n
i=1 Yi of the spaces Yi in the space

⊗n
i=1 Xi

satisfies

λ

(
n⊗

i=1

Yi,

n⊗
i=1

Xi

)
≤

n∏
i=1

λ
(
Yi,Xi

)
. (2.12)

Corollary 2.6. Let {Yi}ni=1 be a finite sequence of finite-dimensional Banach
spaces. Then the relation between the absolute projection constant of the pro-
jective (or injective) tensor product

⊗n
i=1 Yi and the direct sum

∑n
i=1

⊕
Yi

(with the supremum norm) is as follows:

λ

(
n⊗

i=1

Yi

)
≤
(

λ

(
n∑

i=1

⊕
Yi

))n

. (2.13)

Proof. In fact, the proof is a combination of Corollary 2.5 and the results of [3,
Theorem 4]. �

3. Applications

In this section, using Theorem 2.3, we obtain new results.
(1) For finite-dimensional Banach spaces X and Y with dimensions n and m,

respectively, we have

λ(X⊗Y ) ≤ √
nm− 1√

nm
+O

(
nm−3/4)

−
{(√

m− 1√
m

)(
1√
n

−O
(
n−3/4))

+
(√

n− 1√
n

)(
1√
m

−O
(
m−3/4))} ,

(3.1)
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in the real field and

λ(X⊗Y ) ≤ √
nm− 1

2
√

nm
+O

(
nm−3/4)

−
{(√

m− 1

2
√

m

)(
1

2
√

n
−O

(
n−3/4))

+
(√

n− 1

2
√

n

)(
1

2
√

m
−O

(
m−3/4))} ,

(3.2)

in the complex field. Compare this result with the result in (1.6).
(2) For any positive integer m (not necessarily prime) with a prime factoriza-

tion m = ∏n
i=1 qi where the numbers qi are distinct prime numbers, the space⊗n

i=1 l∞
q2
i

contains a subspace Y of dimension m with

λ(Y ) ≤
√√√√ n∏

i=1

qi −

 1√∏n

i=1 qi

− 1∏n
i=1 qi


−C(m), (3.3)

where C(m) is a positive number depending on m (in case of m = q1q2, C(m) =
[(1/

√
q1−1/q1)(

√
q2−1/

√
q2)+(1/

√
q2−1/q2)(

√
q1−1/

√
q1)]). Comparing

this result with (1.3), we mention that the m2-dimension of the space
⊗n

i=1 l∞
q2
i

is not a square of a prime number, so it gives a new subspace Y with a new
projection constant.

(3) For numbers p,q with 1 ≤ p,q ≤ 2, we have

lim
n,m→∞

λ
(
lnp ⊗ lmq

)
√

nm
≤




2

π
, in the real field,

π

4
, in the complex field.

(3.4)

4. The projection constants of operators

Now we start with our basic definitions of the projection constants of operators.

Definition 4.1. (1) A linear bounded operator A from a Banach space X into
a Banach space Y is said to be left complemented with respect to a Banach
space Z (Z contains Y as a closed subspace) if and only if there exists a linear
bounded operator B from Z into X such that the composition AB is a projection
from Z onto Y . In this case Z is said to be a left complementation of A.

If PZ(A) denotes the convex set of all operators B from Z into X such that
the composition AB is a projection, then

(2) the left relative projection constant of the operator A with respect to the
space Z is defined as

λl(A,Z) := inf
{‖AB‖ : B ∈ PZ(A)

}
. (4.1)
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(3) And the left absolute projection constant of A is defined as

λl(A) := sup
{
λl(A,Z) : Z is a left complementation of the operator A

}
.

(4.2)
We define the same analogy from the right.

Remark 4.2. We notice the following.
(1) From the definition of λl(A,Z), the infimum in (4.1) is taken only with

respect to the projections that are factored (through X) into two operators one of
them is A and the other is an operator from Z into X, so 1 ≤ λ(Y,Z) ≤ λl(A,Z)

for every left complementation Z of A.
(2) If A is a projection from X onto Y , then A is left complemented with

respect to Y . In fact AJ is a projection for any embedding J from Y into X.
(3) If IY is the identity operator on Y and X contains Y as a complemented

subspace, then IY P = P for every projection P from X onto Y and hence IY

is left complemented with respect to X. Moreover, λl(IY ,X) = λ(Y,X), that
is, the relative projection constant of the identity operator on the space Y with
respect to the space X is the relative projection constant of the space Y in the
space X.

(4) If Z is a left complementation of the linear bounded operator A : X → Y ,
then Y is complemented in Z and the operator A is onto.

(5) If Z is a separable or reflexive Banach space and X is a Banach space,
then for any index set � the space Z is not a right complementation of any linear
bounded operator from l∞(�) into X. In particular, if X is a Banach space, then
for any index set �, the space l∞(�) is not a left complementation of any linear
bounded operator from X into the space c0.

The following lemma is parallel to that lemma mentioned in [8] for Banach
spaces and we omit the proof since the proof is nearly similar.

Lemma 4.3. Let � be an index set such that Y is isometrically embedded into
l∞(�) and let A be a linear bounded operator from X onto Y such that l∞(�)

is one of its left complementation. Then for a given B ∈ Pl∞(�)(A),
(1) For all Banach spaces E,Z,E ⊆ Z and every linear bounded operator

T from E into Y there is an operator T̂ from Z into Y extending the operator T

with ‖T̂ ‖ ≤ ‖AB‖‖T ‖, that is, the space Y has ‖AB‖-extension property, and
in particular, if Z ⊇ X, the operator A has a linear extension Â from Z into Y

with ‖Â‖ ≤ ‖AB‖‖A‖. That is, the extension constant c(A) of the operator A

defined by (c(A) := supX⊂Z inf{‖Â‖ : Â is an extension of A and Â : Z → Y })
satisfies c(A) ≤ ‖AB‖‖A‖.

(2) For every Banach space Z ⊇ Y , there exists a projection P from Z onto
Y such that ‖P ‖ ≤ ‖AB‖.

The following theorem is also parallel to that given in (1.3) for Banach spaces.
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Theorem 4.4. Let Y be isometrically embedded in l∞(�) and let A be a linear
bounded operator from X onto Y such that l∞(�) is a left complementation
of A. Then A is left complemented with respect to any other Banach space Z

containing Y as a closed subspace. Moreover,

λl(A,Z) ≤ λl

(
A,l∞(�)

)
(4.3)

for every Banach space Z containing Y as a closed subspace, that is, λl(A)

attains its supremum at l∞(�). Therefore,

λl(A) = λl

(
A,l∞(�)

)
, c(A) ≤ ‖A‖λl(A). (4.4)
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