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We find a lower estimation for the projection constant of the projective tensor
product X®"Y and the injective tensor product X®"'Y, we apply this estimation
on some previous results, and we also introduce a new concept of the projection
constants of operators rather than that defined for Banach spaces.

1. Introduction

If Y is a closed subspace of a Banach space X, then the relative projection
constant of Y in X is defined by

AY,X) = inf{||P|| : P is a linear projection from X onto Y}. (1.1)
And the absolute projection constant of Y is defined by
A(Y) :=sup {A(Y, X) : X contains Y as a closed subspace}. (1.2)

It is well known that any Banach space Y can be isometrically embedded into
l5(I") for some index set I' (I" is usually taken to be Uy« where Y* denotes
the dual space of Y and Uy« denotes the set {f : f € Y*, || f|| < 1}) and
that if Y is complemented in /o (I"), then it is complemented in every Banach
space containing it as a closed subspace, that is, Y is injective. We also know
that for any such embedding the supremum in (1.2) is attained, that is, A(Y) =
MY, lo(I)) (see [1, 4]). For each finite-dimensional space Y, with dimY,, = n,
Kadets and Snobar [6] proved that A(Y,) < /n. Konig [7] showed that for
each prime number 7 the space l;? contains an n-dimensional subspace Y, with
projection constant

x(n):f-(%—%). (1.3)
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Konig and Lewis [9] verified the strict inequality A(Y,) < /7 in case n > 2.
Lewis [14] showed that

A(Yn) < ﬁ[l —n—ze)mu}. (1.4)

Konig and Tomczak-Jaegermann [11] also showed that there is a sequence
{Xu}nen of Banach spaces X, with dim X,, = n such that

A(X
lim (X»)

n—00 ﬁ

=1. (1.5)

In fact, it is shown in [9] that for each Banach space Y, with dimension n,
MYy,) < /n—c/+/n, where ¢ > 01is a numerical constant and the n-dimensional
spaces X, satisfy «/n—2/./n < A(X,). The improvement of these results was
given in [12], where an upper estimate for A (Y}, ) was found in the form

Jn— % +0 (n_3/4), in the real field,
MYn) < f (1.6)
Vn— m +0 (n_3/4), in the complex field.
The precise values of l,i, l,%, and l,’,’ , 1 < p < oo, p#2, have been calculated
by Griinbaum [4], Rutovitz [15], Gordon [3], and Garling and Gordon [2]. In

the case of 1 < p < 2, the improvement of these results was given by Konig,
Schiitt, and Tomczak-Jaegermann in [10], they showed that

[2
A(l,f) put in the real field,

lim = (L.7)
n—00 ﬁ \/E
2

in the complex field.

Some other results are mentioned in [2, 3, 13, 15].

For finite codimensional subspaces, Garling and Gordon [2] showed that if
Y is a finite codimensional subspace of the Banach space X with codimension
n, then for every € > 0O there exists a projection P from X onto Y with norm

1P <1+(14e)n. (1.8)

2. Notations and basic definitions

The sets X, Y, Z, and E denote Banach spaces, X* denotes the conjugate space
of X and Uy denotes the unit ball of the space X. Elements of X, Y, X*, and
Y* will be denoted by x, u, ..., y,v,..., f,h,...,and g, k, ..., respectively. The
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injective tensor product X ®" Y between the normed spaces X and Y is defined
as the completion of the smallest cross norm on the space X ® Y and the norm
on the space X ® Y is defined by

in@)yi Zf(xi)g(yi) ,
i=1 i=1

where the supremum is taken over all functionals f € Ux» and g € Uy=.

The projective tensor product X ®” Y between the normed spaces X and Y
is defined as the completion of the largest cross norm on the space X ® Y and
the norm on X ®Y is defined by

n
ZXi®yi
i=1

where the infimum is taken over all equivalent representations 27:1 ujQuj €
XQ®Y of Y!_, xi @i (see [5]).

If X is a Banach space on which every linear bounded operator from X into
any Banach space Y is nuclear (this is the case in all finite-dimensional Banach
spaces X), then for any Banach space Y the space X®"Y is isomorphically
isometric to X ®" Y (see [16]).

The set 2 ={(f,g): f € Ux*, g € Uyx} = Ux* x Uy=.

We start with the following two lemmas.

= sup 2.1

X®VY

m
=inf 3 > Juj|[os] ¢ - 2.2)
j=1

XY

LEmMMA 2.1. For Banach spaces X and Y there is a norm one projection from
Lo (Ux) @ 7 Ml (Uy+) onto loo ().

Proof. Since the space [, (€2) has the 1-extension property, it is sufficient to
show that /. (£2) can be isometrically embedded in the space loo (Ux*) @V orn)
loo(Uy~). In fact, every nonzero element 0 # § = {F((f, )} feUys, geUy=
in the space /5 (£2), (note that the norm in this Banach space is given by
15110 (2) = SUP fepyy s SUPger, |F((f, g))|) defines two scalar-valued functions
F €l(Ux~*) and G € [ (Uy+) by the following formulas:

F(f)= sup [3((f.)]. GC@= sup I5((f.9)]- @3

geUyx feUxx

Clearly the element S = (1/1I8li(2)) x (F ® G) is an element of the space
loo(Ux+) @Y TN [ (Uy+). Since both the injective and the projective ten-
sor products are cross norms, [, wye o My ye) = Iy (2)- The map-

ping J defined by the formula J(F) = § is the required isometric embedding.
O

LEMMA 2.2. Let X and Y be two Banach spaces. Then A(X®VY) = AM(X®VY,
oo (£2)).
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Proof. 1t is also sufficient to show that the space X®"Y can be isometrically
embedded in /(£2). In fact, every element F = >/, x; ® yi € XQ"Y de-
fines a scalar-valued bounded function S € loo(£2) by the formula §(( f,8) =
Y i—1 f(xi)g(yi). Using definition (2.1) for the injective tensor product, we
have |F|lv = [I§]l..()- The mapping i defined by the formula i (§) = § is the

required isometric embedding. ]
We have the following theorem.

THEOREM 2.3. (1) If Y| and Y5 are complemented subspaces of Banach spaces
X1 and X,, respectively, then the injective (resp., projective) tensor product
Y1 ®V Y, (resp., Y1 " Y2) of the spaces Y| and Y, is complemented in the
injective (resp., projective) tensor product X1 ®" X, (resp., X1 ®@" X») of the
spaces X1 and X, and

A(Yl RV Ny, X, @ N Xz) <AL XA Xo).  24)

(2) If X and Y are injective spaces, then the space X @ Y is injective.
Moreover,

MX®YY) < MX)A(Y). 2.5)

Proof. Let P and P, be any projections from X onto Y| and from X, onto
Y,, respectively. Then the operator P from the space X| ®" X» onto the space
Y1 ®Y Y, (resp., from the space X ®”" X, onto the space Y| ®” Y») defined
by

P(.XH:Xi(X)yi) =Xn:Pl(xi)®P2(yi) (2.6)

i=1

is a projection and its norm ||P|| is not exceeding | Pil|/||P2]|. In fact, let
Y ' xi ® y; be any element of the space X ®V o) X, Then, in the case
of projective tensor product we have

P(Xn:xi@yi) = Xn:PI(Xi)®P2()’i)

YIQ"\Y, i=1 YiQ"\Ys

= ZP] (u,')®P2(Ui) .7
j=1

Y192

IA

9

m
121 P2l D v
j=1
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for all equivalent representations 3 7_; u; ®v; of 3_i_; x; ® y;. So

n n
P(Zx,-@y,-) <[P r] > xi® (2.8)
i=1 1@ Y2 i=1 X18" X
And in the case of injective tensor product we have
n
P (sz'@)yi)
i=l Y1®VY,
n
= Zpl(xi)®1’2()’i)
i=1 N®vY,
n
= SUP{ Zf(Pl (xz'))g(Pz(yi))‘ 1 feUyy, g€ UYz*}
=1
l n
= SUPHf (Pl (Zg(Pz(yi))x,')>' 1 f €Uy, g€ UYz*}
= 2.9)

S e (Pa(s))x

i=1

| s {p{

<|n])P] sup{

< sup ||P] H :geUyz*

X1

Xn:f(xi)g(l’z(yi))| cfe UXT} , g€ UYZ*}

i=1

3 £ ()e ()

i=1

n
sz@yi
i=1

Thus in both cases, || P|| < || P1|||| P2||. Taking the infimum of each side with
respect to all such P; and P», we get inequality (2.4). To prove inequality (2.5),
we apply inequality (2.4) and get in particular

f € Uxs, gEUx;}

<[ 2l 2]

X1®VX>

MX®VY, oo (Ux*) ® loo (Uy+)) < AMX,loo(Ux*)) (Y, los (Uy+))

= MX)A(Y). (2.10)

Using Lemma 2.2 and definition (1.2), we get M(X®Y,l(R)) > AM(XQVY,
loo(Ux+) ®" loo(Uy+)). We claim that the sign > is an equal sign. In fact,
if P is any projection from /oo(Ux+) ®" loo(Uy*) onto X®VY and J is the
embedding given in Lemma 2.1, then P=PJisa projection from [, (€2) onto
X®VY with ||}; || < || P||. This is the sufficient condition for the two infimum
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AMX®VY,10(R2) and A(X®VY, loo(Ux+) ®" loo(Uy+)) to be equal. Therefore
MX®YY)=AX®"Y,lo(Ux+®" Uy+)). (2.11)

Using inequality (2.10), we get (2.5). |

Remark 2.4. Since A(I»(I")) = 1 for any index set I, we conclude that A (I, (T")
QW OrMNI (A), X®VOIrNY)=1 forevery X Dls(I") and ¥ D Iso(A).

We have the following two corollaries.

COROLLARY 2.5. For any finite sequence {X;}!_, of Banach spaces with com-
plemented subspaces {Y;}]_,, the relative projection constant of the injective
(resp., projective) tensor product Q);_, Y; of the spaces Y; in the space @Q;_, X
satisfies

A(én,éxi) 5]£[A(Y,-,X,-). (2.12)
i=1 i=1 i=1

COROLLARY 2.6. Let {Y;}!_, be a finite sequence of finite-dimensional Banach
spaces. Then the relation between the absolute projection constant of the pro-
jective (or injective) tensor product Q);_,Y; and the direct sum Y ;_, DY;
(with the supremum norm) is as follows:

A(§Y1> < <,\ (é@y» (2.13)

Proof. In fact, the proof is a combination of Corollary 2.5 and the results of [3,
Theorem 4]. ([l

3. Applications

In this section, using Theorem 2.3, we obtain new results.
(1) For finite-dimensional Banach spaces X and Y with dimensions »n and m,
respectively, we have

o — ~3/4
MXQY) < /nm M—I—O(nm )

1 1

(-5 (o) o

() o)
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in the real field and

MXQ®Y) < /nm—

1 —3/4
W +0 (nm )
1

e S I

(- 55) (o)

in the complex field. Compare this result with the result in (1.6).

(2) For any positive integer m (not necessarily prime) with a prime factoriza-
tion m = [[;_, ¢; where the numbers ¢; are distinct prime numbers, the space
R, l;’g’ contains a subspace Y of dimension m with

1
— = —C(m), 3.3)
T, 4 [T g

where C (m) is a positive number depending on m (in case of m = q1q2, C(m) =
[(1/Var1=1/a)(Va2=1//a2)+(1//q2=1/92) (/g1 —1//q1D)]). Comparing
this result with (1.3), we mention that the m?-dimension of the space ®"_, l;";
is not a square of a prime number, so it gives a new subspace Y with a new
projection constant.

(3) For numbers p, g with 1 < p,q <2, we have

[\

' WZ ®l:]n) = in the real field,

lim ——— < (3.4

n,m—0o0 /Nnm g
4

, in the complex field.

4. The projection constants of operators

Now we start with our basic definitions of the projection constants of operators.

Definition 4.1. (1) A linear bounded operator A from a Banach space X into
a Banach space Y is said to be left complemented with respect to a Banach
space Z (Z contains Y as a closed subspace) if and only if there exists a linear
bounded operator B from Z into X such that the composition A B is a projection
from Z onto Y. In this case Z is said to be a left complementation of A.

If Pz(A) denotes the convex set of all operators B from Z into X such that
the composition AB is a projection, then

(2) the left relative projection constant of the operator A with respect to the
space Z is defined as

M(A,Z) :=inf [|AB| : B € Pz(A)}. 4.1
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(3) And the left absolute projection constant of A is defined as

M (A) :=sup {AZ(A, Z) : Z is a left complementation of the operator A}.
4.2)
We define the same analogy from the right.

Remark 4.2. We notice the following.

(1) From the definition of A;(A, Z), the infimum in (4.1) is taken only with
respect to the projections that are factored (through X) into two operators one of
them is A and the other is an operator from Z into X,s0 1 < A(Y, Z) < X;(A, Z)
for every left complementation Z of A.

(2) If A is a projection from X onto Y, then A is left complemented with
respect to Y. In fact AJ is a projection for any embedding J from Y into X.

(3) If Iy is the identity operator on Y and X contains Y as a complemented
subspace, then Iy P = P for every projection P from X onto Y and hence Iy
is left complemented with respect to X. Moreover, A;(Iy, X) = A(Y, X), that
is, the relative projection constant of the identity operator on the space Y with
respect to the space X is the relative projection constant of the space Y in the
space X.

(4) If Z is a left complementation of the linear bounded operator A: X — Y,
then Y is complemented in Z and the operator A is onto.

(5) If Z is a separable or reflexive Banach space and X is a Banach space,
then for any index set I the space Z is not a right complementation of any linear
bounded operator from I, (I") into X. In particular, if X is a Banach space, then
for any index set I', the space [ (I") is not a left complementation of any linear
bounded operator from X into the space cg.

The following lemma is parallel to that lemma mentioned in [8] for Banach
spaces and we omit the proof since the proof is nearly similar.

LEMMA 4.3. Let I' be an index set such that Y is isometrically embedded into
loo () and let A be a linear bounded operator from X onto Y such that I (")
is one of its left complementation. Then for a given B € P r)(A),

(1) For all Banach spaces E,Z,E C Z and every linear bounded operator
T from E into Y there is an operator T from Z into Y extending the operator T
with ||f"|| < ||AB|||IT|, that is, the space Y has ||AB||-extension property, and
in particular, if Z 2 X, the operator A has a linear extension A from Z into Y
with ||A|| < |AB||||A|l. That is, the extension constant c(A) of the operator A
defined by (c(A) := supXCZinf{HAH . A is an extension of A and A:Z—> Y})
satisfies c(A) < ||[AB]|||A]l.

(2) For every Banach space Z D Y, there exists a projection P from Z onto
Y such that || P| < ||AB]|.

The following theorem is also parallel to that given in (1.3) for Banach spaces.



Entisarat El-Shobaky et al. 307

THEOREM 4.4. Let Y be isometrically embedded in I~ (") and let A be a linear
bounded operator from X onto Y such that I (') is a left complementation
of A. Then A is left complemented with respect to any other Banach space Z
containing Y as a closed subspace. Moreover,

M(A,Z) < M(A, lo(D)) 4.3)

for every Banach space Z containing Y as a closed subspace, that is, 1j(A)
attains its supremum at loo(I"). Therefore,

M(A) = (A o), c(A) < [AIM(A). (4.4)
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