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The paper is devoted to the calculation of the index of a zero and the asymptotic index of
a linear completely continuous nonnegative operator. Also the case of a nonlinear com-
pletely continuous operator A whose domain and image are situated in a closed convex
set Q of a Banach space is considered. For this case, we formulate the rules for calculat-
ing the index of an arbitrary fixed point and the asymptotic index under the assumption
that the corresponding linearizations exist and the operators of derivative do not have
eigenvectors with eigenvalue 1 in some wedges.

Copyright © 2006 A. V. Guminskaya and P. P. Zabreiko. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Let Q be a closed convex set in a Banach space and let A : Q→Q be a completely contin-
uous operator. In [4] the calculation problem of a fixed point index of a vector field I −A
was formulated. In the simplest case, when Q is a cone, this problem was investigated in
the articles by Isaenko [3], Mukhamadiev and Sabirov [5], and Pokornyi [6] (see also ref-
erences in [8]). Later, in [1, 2] Dancer presented the general formula for the fixed point
index of a completely continuous operator A with its domain and image in an arbitrary
closed convex set. However, the case of an asymptotic index was not considered. Note
that for the case of a cone this problem was earlier considered in the articles by Pokornyi
[6] and Pokornyi and Astaf ’eva [7]. The present paper concerns the cases of a wedge and
an arbitrary closed convex set. In the latter case, the calculation of a fixed point index is
reduced to the index calculation with respect to a specially constructed wedge. We also
show that for the infinity singular point one needs to take the wedge

W∞ =
{
h∈ X : x+ th∈Q

(
x ∈Q, 0≤ t <∞)}. (1.1)
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2. Index of a linear operator

Let X be a Banach space, W a wedge in X (this means that W is a closed subset of X
such that W +W ⊆W and λW ⊂W for λ ≥ 0), and A a linear completely continuous
operator such that

AW ⊆W. (2.1)

Let L=W ∩ (−W). Then L is the maximal subspace which is contained in W . From
(2.1) and the linearity of A it follows that the inclusion

A(L)⊆ L (2.2)

holds.
Consider a quotient space X/L and a quotient mapping [·] : X → X/L. It is easy to

check that the image Ŵ of W under the quotient mapping [·] is a cone in X/L.
From (2.2) it follows that the operator A induces a linear mapping Â of the quotient

space X/L into itself such that Â[x] = [Ax]. And by (2.1) we have that the cone Ŵ is
invariant under the operator Â, that is, Â is nonnegative in the quotient space X/L.

Theorem 2.1. Let A be a linear completely continuous operator, acting in a Banach space
X , and let W be a wedge that is invariant under the operator A. Suppose that Ax 
= x for
x ∈W , x 
= 0. Then ρ(Â) 
= 1 and

ind(0,I −A;W)= ind(∞,I −A;W)=
⎧
⎨

⎩
(−1)β(A|L) if ρ

(
Â
)
< 1,

0 if ρ
(
Â
)
> 1,

(2.3)

where A|L is the restriction of the operator A to the space L, β(A|L) is the sum of multiplicities
of eigenvalues of A|L, greater than 1, and ρ(Â) is the positive spectral radius of the operator
Â.

Proof. If Ax 
= x for x ∈W , x 
= 0, then zero and infinity singular points of the vector field
Φ = I −A are isolated in W . Hence the relative indices ind(0,I −A;W) and ind(∞,I −
A;W) are well posed. In this case, by the definition of index at infinity (see, e.g., [4]),
since the operator A has no more fixed points in W , it follows that ind(∞,I −A;W) =
ind(0,I −A;W).

To calculate the index ind(0,Φ;W) we will consider two possible cases: when the spec-
tral radius ρ(Â) of the operator Â is less than 1 and when it is greater than 1. The case
ρ(Â)= 1 is impossible. Indeed, if this is not true, then there exists an element [x]∗ 
= 0 of
the quotient space X/L such that Â[x]∗ = [x]∗. In other words, there exist u∈W , u 
∈ L,
and y ∈ L such that the equality u−Au = y holds. Let us explore the solvability in L of
(I −A)w = y. If it had a solution w ∈ L, then the vector u−w would be an eigenvector
of the operator A, corresponding to the eigenvalue 1 and would be in W , which would
contradict our assumptions. If we supposed that the equation had no solutions in L, then
the operator I −A would be invertible in L, which is impossible.

In the case ρ(Â) < 1, let us show that the vector field Φx = x−Ax is linearly relatively
homotopic on SW = {x ∈W : ‖x‖ = 1} to the field Φ1x = x−AQ(x), where Q : X → L is
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a projection (in general, nonlinear) of X on L (see [4, Theorem 18.1]). To prove this fact
assume the converse, that is, that

x = (1− λ)Ax+ λAQx (2.4)

has a solution for some x ∈ SW and λ ∈ [0,1]. Now if we rewrite this equation for the
operator Â and recall (2.2), we get

[x]= (1− λ)Â[x]
(
[x]∈ ŜW , λ∈ [0,1]

)
, (2.5)

where ŜW = {[x]∈ Ŵ : ‖[x]‖ = 1}.
Under our assumption on the spectral radius of the operator Â this yields [x]= 0. In

this case, we obtain x =Qx and then (2.4) implies x = Ax for x ∈ SW , which contradicts
the assumption of our theorem.

Thus the relative index ind(0,I −A;W) is equal to the relative index ind(0,I −AQ;W),
which actually is the Leray-Schauder zero fixed point index of the restriction A|L of the
operator A to the subspace L and we can calculate it by the well-known formula (see, e.g.,
[4, Theorem 21.1])

ind(0,I −AQ;W)= (−1)β(A|L), (2.6)

where β(A|L) is the sum of multiplicities of eigenvalues of A|L, greater than 1.
Now assume that ρ(Â) > 1. In this case, there exists an element [x]∗ in the cone Ŵ such

that Â[x]∗ = ρ[x]∗(ρ > 1). In other words, there exist an element x∗ 
∈ L of the wedge W
(we assume that ‖x∗‖ = 1) and an element z of the subspace L such that Ax∗ = ρx∗ + z.

Show that the vector field Φx = x−Ax is linearly relatively homotopic on SW to the
field Φ2x = x− cx∗, where the constant c will be defined later. Let us show that

x = (1− λ)Ax+ λcx∗ (2.7)

has no solutions for x ∈ SW , λ∈ [0,1].
For λ= 0, (2.7) coincides with x =Ax. The latter equation has no solutions for x ∈ SW .

For 0 < λ≤ 1 from (2.7), it follows that there exists a real t > 0 such that

x ≥ tx∗. (2.8)

We claim that there exists the maximal of such reals: ξ =maxx∈SW ,x≥tx∗ t. We argue by
contradiction. The inequality x∗ ≤ x/t implies that if t tends to infinity, then x∗ ≤ 0. On
the other hand, x∗ is an element of the wedge W , thus x∗ ≥ 0. Hence we get that x∗ ∈ L,
which contradicts its choice.

Further, (2.7) and (2.8) imply

x ≥ (1− λ)ξρx∗ + λcx∗ = ((1− λ)ξρ+ λc
)
x∗. (2.9)

Choose c > ξ and observe that for this c the inequality (1− λ)ξρ + λc > ξ holds. Indeed,
for λ = 0 this follows from ρ > 1. For λ = 1 this follows from our assumption for c. For
other λ∈ (0,1) the inequality holds as the result of two previous cases.
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Therefore for the chosen c, the real ξ is not maximal among t such that x ≥ tx∗. This
contradiction proves the nondegeneracy of the linear homotopy connecting vector fields
Φ and Φ2. Consequently, ind(0,Φ;W)= ind(0,Φ2;W).

To calculate ind(0,Φ2;W) we will use the corollary of the Hahn-Banach theorem. Ac-
cording to it there exists a functional l ∈ X∗ such that l(W) ≥ 0 and l(x∗) = 1 (then
‖l‖ ≥ 1). Since (2.8), we obtain ξ ≤ l(x)≤ ‖l‖ for x ∈ SW . And our assumption of c yields
c > ‖l‖ ≥ 1. Now we can show that the vector field Φ2x = x− cx∗ is nondegnerate on
clBW = {x ∈W : ‖x‖ ≤ 1}. Indeed,

∥
∥x− cx∗

∥
∥≥ ∥∥cx∗∥∥− 1= c− 1 > 0. (2.10)

Hence, by the relative rotation property, ind(0,Φ2;W) = 0. This completes the proof.
�

In applications there usually exist a complement X1 of the linear hull L(W)=W −W
of the wedge W to X and a complement X2 of a maximal subspace X3 =W ∩ (−W) in
W to L(W). Then X can be presented as the direct sum of subspaces (see Figure 2.1)

X = X1 �X2 �X3. (2.11)

From (2.1) and the linearity of the operator A it follows that the inclusions

A
(
X2 �X3

)⊆ X2 �X3, A
(
X3
)⊆ X3 (2.12)

hold.
Assume that an intersection W ∩X2 is not empty. Then it is easy to prove that this

set is a cone K in X2. It generates the order relation in X2 by the following rule: x ≤ y if
y− x ∈ K . The cone K can be set as K = {x ∈ X2 : x ≥ 0}.
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It can be proved that under such decomposition of the space X , the wedge W is in-
variant under a linear operator A if and only if A is determined by the matrix

A=
⎛

⎜
⎝

a11 0 0
a21 a22 0
a31 a32 a33

⎞

⎟
⎠ , (2.13)

where a22 ≥ 0. Furthermore, one can show that zero and infinity singular points of such
operator A are isolated in W if and only if 1 is not an eigenvalue of the operators a22 and
a33. In this case, Theorem 2.1 can be formulated in the following way.

Theorem 2.2. Let A be a linear completely continuous operator, acting in a Banach space
X , and let W be a wedge that is invariant under the operator A. Then A can be defined by
matrix (2.13). If 1 is not an eigenvalue of the operators a22 and a33, then zero and infinity
singular points of the operator A are isolated in W and

ind(0,I −A;W)= ind(∞,I −A;W)=
⎧
⎨

⎩
(−1)β(a33) if ρ

(
a22
)
< 1,

0 if ρ
(
a22
)
> 1,

(2.14)

where ρ(a22) is the spectral radius of the operator a22 and β(a33) is the sum of multiplicities
of eigenvalues of the operator a33, greater than 1.

3. Index of a nonlinear operator

Let A be a nonlinear operator and let Q be a closed convex set of a Banach space X that
is invariant under the operator A. In this part, we discuss the relative fixed point index
calculations of A under the assumption that A has a Fréchet derivative at its fixed point.
Recall that an operator A is called differentiable at the point x0 with respect to Q, if

lim
x∈Q,
x→x0

∥
∥Ax−Ax0−A′

(
x0
)
x
∥
∥

‖x‖ = 0, (3.1)

and differentiable at infinity with respect to Q, if

lim
x∈Q,
x→∞

∥
∥Ax−A′(∞)x

∥
∥

‖x‖ = 0, (3.2)

where A′(x0) and A′(∞) are linear operators.
Let Q be an arbitrary closed convex set of a Banach space X . Assume that Q is invariant

under a completely continuous operator A. Let x0 be a fixed point of the operator A and
let A have a Fréchet derivative at the point x0 with respect to Q.

The following lemmas show that in the case when the fixed point x0 is not the infinity
singular point some wedge Wx0 comprising the set Q is invariant under the mapping of
the derivative A′(x0), whereas in the case of the infinity singular point some wedge W∞
lying in the set Q is invariant under the mapping of derivative A′(∞).
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Lemma 3.1. Let A be a completely continuous operator, acting in a Banach space X , and let
Q ⊆ X be a closed convex set that is invariant under A. Let x0 ∈ Q be a fixed point of the
operator A and let A have Fréchet derivative at x0 with respect to Q. Then the wedge

Wx0 = cl
{
h= t

(
x− x0

)
: t ≥ 0, x ∈Q

}
(3.3)

is invariant under the mapping of the derivative A′(x0).

Proof. To prove that Wx0 is actually a wedge it is sufficient to show that Wx0 is closed
under addition of its elements and their multiplication by nonnegative reals. If h1,h2 ∈
Wx0 , then h1 = t1(x1− x0), h2 = t2(x2− x0), where x1,x2 ∈Q and 0≤ t1, t2 <∞. Thus for
any α and β for which 0≤ α, β <∞, and αt1 +βt2 > 0, we have

αh1 +βh2 = αt1
(
x1− x0

)
+βt2

(
x2− x0

)

= (αt1 +βt2
)
(

αt1
αt1 +βt2

(
x1− x0

)
+

βt2
αt1 +βt2

(
x2− x0

)
)

= (αt1 +βt2
)
(

αt1
αt1 +βt2

x1 +
βt2

αt1 +βt2
x2− x0

)
.

(3.4)

An element

αt1
αt1 +βt2

x1 +
βt2

αt1 +βt2
x2 (3.5)

is a convex combination of elements x1,x2 ∈Q and therefore it is in Q. Thus (3.4) implies
αh1 +βh2 ∈Wx0 . If αt1 +βt2 = 0, then αh1 +βh2 = 0 and thus αh1 +βh2 ∈Wx0 .

Let h be an arbitrary nonzero element of Wx0 . Then there exist x ∈ Q and t > 0 such
that h = t(x− x0). From the differentiability of the operator A at x0 and the linearity of
the operator A′(x0) it follows that

t
(
Ax− x0

)= A′
(
x0
)
h+ tω

(
h

t

)
. (3.6)

Since A(Q) ⊆ Q, the element in the left-hand side of this equality is in Wx0 . Taking the
limit as t→∞, by the closedness of Wx0 , we get A′(x0)h∈Wx0 . This completes the proof.

�

Lemma 3.2. Let A be a completely continuous operator, acting in a Banach space X , and
let Q ⊆ X be a closed convex unbounded set that is invariant under A. Let A have Fréchet
derivative at infinity with respect to Q. Then the wedge

W∞ =
{
h∈ X : x+ th∈Q

(
x ∈Q,0≤ t <∞)} (3.7)

is invariant under the mapping of the derivative A′(∞).

Proof. To prove that W∞ is invariant under the operator A′(∞), it suffices to show that
there exists an element x∗ ∈Q such that x∗ + tA′(∞)h∈Q for any h∈W∞ and 0≤ t <∞.
Let x∗ ∈Q, then for any λ > 0, t ≥ 0, h∈W∞ we have x∗ + λth∈Q. Since Q is invariant
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under the operator A, we get A′(∞)x∗ + λtA′(∞)h+w(x∗ + λth)∈Q for any λ≥ 0, t ≥ 0,
h∈W∞. Then, by the convexity of Q, for any λ≥ 0 we have

(
1− 1

λ

)
x∗ +

1
λ
A′(∞)x∗ + tA′(∞)h+

1
λ
w
(
x∗ + λth

)∈Q. (3.8)

Taking the limit as λ→∞, by the closedness of Q, we get x∗ + tA′(∞)h∈Q for any t ≥ 0,
h∈W∞. This completes the proof. �

The following theorem specifies the main result of Dancer [2, Theorem 1].

Theorem 3.3. Let A be a completely continuous operator, acting in a Banach space X , and
let Q ⊆ X be a closed convex set that is invariant under A. Let x0 ∈ ∂Q be a fixed point of the
operator A and let A have Fréchet derivative at x0 with respect to Q. Then the wedge

Wx0 = cl
{
h= t

(
x− x0

)
: t ≥ 0, x ∈Q

}
(3.9)

is invariant under the mapping of the derivative A′(x0).
If A′(x0)x 
= x for x ∈Wx0 , x 
= 0, then the fixed point x0 of the vector field Φ= I −A is

isolated in Q and

ind
(
x0,I −A;Q

)= ind
(
0,I −A′

(
x0
)
;Wx0

)
. (3.10)

Proof. Without loss of generality it can be assumed that x0 = 0 (in the opposite case, the
whole argument needs to be made for the operator A(x0 + x)− x0).

From the differentiability of the operator A at the point 0 it follows that there exists a
linear operator B = A′(0) such that

Ax = Bx+w(x), (3.11)

where the operator w meets the condition

lim
x∈Q,
x→0

∥
∥w(x)

∥
∥

‖x‖ = 0. (3.12)

If Bx 
= x for x ∈W0, x 
= 0, there exists a positive real c > 0 such that for any x ∈W0 the
inequality

‖x−Bx‖ ≥ c‖x‖ (3.13)

holds.
Choose a real r > 0 such that inequalities

‖Ax−Bx‖ ≤ c

2
‖x‖,

cr
(
c+ 2‖B‖)ρr − 1 > 0 (3.14)

hold for x ∈ Q, ‖x‖ ≤ r, where ρr = supx∈W0, ‖x‖=r ρ(x,Q) and ρ(x,Q) denotes the dis-
tance from the point x to the set Q.
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Show that on the intersection of the sphere Sr = {x ∈ X : ‖x‖ = r} of radius r with
the set W0 the vector field Φ′ = I −B is linearly homotopic to the field Φαx = x−APαx
where α meets the condition

0 < α <
cr

(
c+ 2‖B‖)ρr − 1, (3.15)

and Pα is a projection (in general, nonlinear) on Q that has the following property:

∥
∥x−Pαx

∥
∥≤ (1 +α)ρ(x,Q) (x ∈ X) (3.16)

(the existence of such projection follows from [4, Theorem 18.1]).
To prove this, consider the linear deformation

Φ(λ,x)= x− (1− λ)Bx− λAPαx
(
x ∈ Sr ∩W0, λ∈ [0,1]

)
(3.17)

that connects vector fields Φ′ and Φα. From the convexity of W0 and the invariance of
the sets W0 and Q ⊆W0 under operators B and A, respectively, it follows that the element
(1− λ)Bx+ λAPαx is in W0 for any x ∈ Sr ∩W0 and λ∈ [0,1].

The nondegeneracy of the deformation Φ(λ,x) for x ∈ Sr ∩W0, λ∈ [0,1] follows from
the inequalities

∥
∥x− (1− λ)Bx− λAPαx

∥
∥

≥ ‖x−Bx‖− λ
∥
∥APαx−Bx

∥
∥

≥ ‖x−Bx‖−∥∥APαx−BPαx
∥
∥−∥∥Bx−BPαx

∥
∥

≥ cr− c

2

(
r + (1 +α)ρr

)−‖B‖(1 +α)ρr = cr

2
−
(
c

2
+‖B‖

)
(1 +α)ρr > 0.

(3.18)

Hence the vector fields Φ′ and Φα are homotopic on Sr ∩W0. Thus, by the first prop-
erty of the relative rotation,

ind
(
0,I −B;W0

)= ind
(
0,I −APα;W0

)
. (3.19)

By definition, the relative index ind(0,I −APα;W0) is equal to the relative rotation γ(I −
APα,Br ∩W0;W0) of the vector field I −APα on the boundary of an open set Br ∩W0,
where Br = {x ∈ X : ‖x‖ < r}. By the additivity property of rotation,

γ
(
I −APα,Br ∩W0;W0

)= γ
(
I −APα,Br ∩Q;W0

)
+ γ
(
I −APα,Br ∩

(
W0 \Q

)
;W0

)
.

(3.20)

From the fact that APα has no fixed points beyond Q, it follows that γ(I −APα,Br ∩
(W0 \Q);W0)= 0. On the other hand, the relative rotation γ(I −APα,Br ∩Q;W0) can
be considered as the rotation γ(I −A,Br ∩Q;Q) of the vector field I −A on the boundary
of the open set Br ∩Q with respect to Q. By the definition of relative index, this rotation
coincides with ind(0,I −A;Q). This completes the proof. �

As it appears, the analogous statement is true for the case of asymptotic index.
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Theorem 3.4. Let A be a completely continuous operator, acting in a Banach space X , and
let Q ⊆ X be a closed convex unbounded set that is invariant under A. Let A have Fréchet
derivative at infinity with respect to Q. Then the wedge

W∞ =
{
h∈ X : x+ th∈Q(x ∈Q, 0≤ t <∞)

}
(3.21)

is invariant under the mapping of the derivative A′(∞).
If A′(∞)x 
= x for x ∈W∞, x 
= 0, then the infinity singular point of the vector field Φ=

I −A is isolated in Q and

ind(∞,I −A;Q)= ind
(
0,I −A′(∞);W∞

)
. (3.22)

Proof. From the differentiability of the operator A at infinity it follows that there exists
linear operator B = A′(∞) such that

Ax = Bx+w(x), (3.23)

where the operator w meets the condition

lim
x∈Q,
x→∞

∥
∥w(x)

∥
∥

‖x‖ = 0. (3.24)

If Bx 
= x for x ∈W∞, x 
= 0, then there exists a positive real c > 0 such that for all x ∈W∞
the inequality

‖x−Bx‖ ≥ c‖x‖ (3.25)

holds.
Choose a real R > 0 such that inequalities

‖Ax−Bx‖ ≤ c

2
‖x‖,

cR

2
(
1 + c+‖B‖)ρR − 1 > 0 (3.26)

hold for all x ∈Q, ‖x‖ ≥ R, where ρR = supx∈Q, ‖x‖=R ρ(x,W∞) and ρ(x,W∞) denotes the
distance from the point x to the set W∞.

Show that on the intersection of the sphere SR = {x ∈ X : ‖x‖ = R} of radius R with the
set Q the vector field Φ= I −A is linearly homotopic to the field Φαx = x−BPα, where a
real α meets the condition

0 < α <
cR

2
(
1 + c+‖B‖)ρR − 1, (3.27)

and Pα is a projection (in general, nonlinear) on W∞ that has the following property:

∥
∥x−Pαx

∥
∥≤ (1 +α)ρ

(
x,W∞

)
(x ∈ X). (3.28)

Consider the linear deformation

Φ(λ,x)= x− (1− λ)BPαx− λAx
(
x ∈ SR∩Q, λ∈ [0,1]

)
(3.29)
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that connects vector fields Φ and Φα. Since the convexity of Q and the invariance of the
sets W∞ ⊆Q and Q under the operators B and A, respectively, it follows that the element
(1− λ)BPαx+ λAx is in Q for any x ∈ SR∩Q and λ∈ [0,1].

The nondegeneracy of Φ(λ,x) for x ∈ SR∩Q, λ∈ [0,1] follows from the inequalities

∥
∥x− (1− λ

)
BPαx− λAx

∥
∥

≥ ∥∥x−BPαx
∥
∥− λ

∥
∥Ax−BPαx

∥
∥

≥ ∥∥Pαx−BPαx
∥
∥−∥∥x−Pαx

∥
∥−‖Ax−Bx‖−∥∥Bx−BPαx

∥
∥

≥ c
(
R− (1 +α)ρR

)− (1 +α)ρR− cR

2
−‖B‖(1 +α)ρR

= cR

2
− (1 + c+‖B‖)(1 +α)ρR > 0.

(3.30)

Hence the vector fields Φ and Φα are homotopic on SR∩Q. Thus, by the first property of
the relative rotation,

ind(∞,I −A;Q)= ind
(∞,I −BPα;Q

)
. (3.31)

By definition, the relative index ind(∞,I −BPα;Q) is equal to the relative rotation γ(I −
BPα,BR∩Q;Q) of the vector field I −BPα on the boundary of an open set BR∩Q, where
BR = {x ∈ X : ‖x‖ < R}. By the additivity property of rotation,

γ
(
I −BPα,BR∩Q;Q

)= γ
(
I −BPα,BR∩W∞;Q

)
+ γ
(
I −BPα,BR∩

(
Q \W∞

)
;Q
)
.

(3.32)

From the fact that the operator BPα has no fixed points beyond W∞, it follows that the
relative rotation γ(I −BPα,BR∩ (Q \W∞);Q) is equal to zero. Finally, the relative rotation
γ(I −BPα,BR ∩W∞;Q) can be considered as the rotation γ(I −B,BR ∩W∞;W∞) of the
vector field I − B on the boundary of open set BR ∩W∞ with respect to W∞. By the
definition of relative index and since the operator B has no nonzero fixed points in W∞,
the latter rotation coincides with ind(0, I −B;W∞). This completes the proof. �
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