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The aim of this paper is twofold. First, several basic mathematical concepts involved in the
construction and study of Bregman type iterative algorithms are presented from a unified
analytic perspective. Also, some gaps in the current knowledge about those concepts are
filled in. Second, we employ existing results on total convexity, sequential consistency,
uniform convexity and relative projections in order to define and study the convergence
of a new Bregman type iterative method of solving operator equations.
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1. Introduction

Let X be a Banach space and f : X → (−∞,+∞] be a proper convex function. For any
x ∈ dom f and z ∈ X we denote by f ◦(x,z) the right-hand side derivative of f at x in the
direction z, that is,

f ◦(x,z)= lim
t↘0

f (x+ tz)− f (x)
t

. (1.1)

The function Df : dom f ×dom f → [0,+∞] given by

Df (y,x) := f (y)− f (x)− f ◦(x, y− x) (1.2)

is called the Bregman distance with respect to f . Lev Bregman [20] has discovered an el-
egant and effective technique for the use of the function Df in the process of designing
and analyzing feasibility and optimization algorithms. This opened a growing area of re-
search in which Bregman’s technique is applied in various ways in order to design and
analyze iterative algorithms for solving not only feasibility and optimization problems,
but also algorithms for solving variational inequalities, for approximating equilibria, for
computing fixed points of nonlinear mappings and more (see [3, 6, 12, 16, 20, 23, 24, 26–
29, 33, 36, 40, 48, 49, 51, 60, 65], and the references therein). Although called a “distance”
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2 Bregman distances, total convexity, operator equations

by Censor and Lent [35], the function Df is not a distance in the usual sense of the term:
it is not always symmetric and may not satisfy the triangular inequality.

The main aim of this paper is to give an analytic perspective over the basic tools com-
monly used in the implementations of Bregman’s technique and to show how these tools
can be employed for building an algorithm of solving operator equations. An intrinsic
feature of Bregman’s technique of designing iterative algorithms consists of ensuring that
the sequences {xk}k∈N these algorithms generate are contained in the domain of a convex
function f and have the property that limk→∞Df (xk,x)= 0 for points x ∈ dom f which
are necessarily solutions of the problem the algorithm is supposed to solve. If the function
f is chosen such that, for any sequence {xk}k∈N ⊂ dom f and any vector x ∈ dom f , one
has

lim
k→∞

Df
(
xk,x

)= 0=⇒ lim
k→∞

∥
∥xk − x∥∥= 0, (1.3)

then the convergence of the algorithm to a solution of the problem is guaranteed. That
brings up the question of whether, and under which conditions, a convex function f
satisfies (1.3). Butnariu et al. [25] were the first to point out that totally convex functions,
introduced in their paper under a different name, have that property. The function f is
called totally convex at a point x ∈ dom f if its modulus of total convexity at x, that is, the
function ν f (x,·) : [0,+∞)→ [0,+∞] defined by

ν f (x, t)= inf
{
Df (y,x) : y ∈ dom f , ‖y− x‖ = t} (1.4)

is positive on (0,∞). Resmerita [62] made clear that the totally convex functions are the
only convex functions satisfying (1.3). The importance of the notion of total convexity in
applications stems primarily from its equivalence to condition (1.3). In the process of us-
ing totally convex functions in the convergence analysis of various algorithms, additional
useful properties of those functions were discovered and some questions concerning the
connections of totally convex functions with other classes of functions and with the ge-
ometry of the underlying space were raised. The results in these respects are scattered in
literature, are placed in the specific restrictive contexts of the algorithmic procedures they
were supposed to serve and are presented in various terminologies. One of the aims of this
paper is to present, in a unified approach and in full generality, the properties of totally
convex functions which proved to be of interest in the theory of various algorithms and,
at the same time, to fill in several gaps in the existing knowledge about those functions
(see Section 2).

In finite dimensional Banach spaces there is not much difference between totally con-
vex and strictly convex functions. Any strictly convex function with closed domain which
is continuous on dom f is totally convex. However, in infinite dimensional spaces, totally
convex functions constitute a very special class of strictly convex functions and identify-
ing totally convex functions with specific features required in applications is quite com-
plicated. In an infinite dimensional setting, for reasons related to effective computability,
the functions ‖ · ‖p with p > 1 are among the most likely candidates to be used in the
build up of Bregman type algorithms. Therefore, it is interesting to know which are the
Banach spaces in which the functions ‖ · ‖p with p > 1 are totally convex. Those spaces
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were termed locally totally convex spaces in [62]. The locally uniformly convex spaces are
among the locally totally convex spaces. In Section 3 we give geometric characterizations
of locally totally convex spaces. These characterizations lead us to the conjecture that
there exist Banach spaces which are locally totally convex without being locally uniformly
convex. However, we do not have any example to support this claim.

A notion strongly related to that of total convexity is that of projection onto a closed
convex set relative to a totally convex function (see Section 4). This notion is a straight-
forward generalization of the concept of “generalized projection” due to Alber [2, 3]. The
projection relative to f onto a closed convex set K is a monotone operator from X to its
dual X∗. In some circumstances, projection operators relative to the totally convex func-
tion f can be seen as extensions of Bregman projection operators to larger sets. Bregman
projections are the corner stones of a plethora of algorithms (see [28, 36] and the ref-
erences therein). Relative projections were successfully used for designing and analyzing
various algorithms by Alber et al. [4, 6–9]. The algorithm for solving equations in Banach
spaces presented in Section 5, illustrates the way in which projections relative to totally
convex functions can be used for that purpose. It is a procedure for finding solutions of
the problem

Ax = 0, x ∈Ω, (1.5)

where A : X → X∗ is a given operator and Ω is a closed convex subset of X . This algo-
rithm is a refinement of a procedure originating in Landweber’s [52] method of finding
minimum norm solutions of linear equations and in Polyak’s [58] method of finding ze-
ros for subgradients of convex functions. That procedure was subsequently extended by
Bruck [21, 22], Reich [59] and by Alber [4] to a method of solving operatorial equations
and variational inequalities in Banach spaces. The general iterative formula on which the
algorithm is based is

yk+1 = P f
Ω

[
f ′
(
yk
)−αAyk], (1.6)

where α∈ (0,∞), f ′ stands for the Gâteaux derivative of f and P
f
Ω stands for the projec-

tion operator onto Ω relative to f . We are proving convergence of this algorithm when
applied to classes of operators A satisfying certain monotonicity type properties we call
inverse-monotonicity and strong-inverse- monotonicity relative to a totally convex func-

tion f . These properties require that the operator A
f
αx = f ∗′[ f ′(x)− αAx], where f ∗

is the Fenchel conjugate of f , should satisfy some nonexpansivity type properties con-
ditioned by the function f . In Hilbert spaces, such requirements are commonly satis-
fied by the operators A whose (set valued) inverses are strongly monotone because they

are inverse (strongly) monotone relative to f = (1/2)‖ · ‖2. In this particular case P
f
Ω

is exactly the metric projection operator PΩ and the algorithmic procedure is yk+1 =
PΩ(yk −αAyk). In non-Hilbertian spaces, inverse-strong-monotonicity of A is less useful
in order to ensure convergence of the algorithm yk+1 = PΩ(yk −αAyk) mostly due to the
lack of nonexpansivity of PΩ. In this situation we take advantage of the nonexpansivity

like properties of P
f
Ω when f is totally convex, and of the presumed inverse-monotonicity

of A relative to f , in order to ensure convergence of our algorithm.
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The new results proven in this paper are as follows. Theorems 2.10 and 2.14 elucidate
the connections between total convexity and uniform convexity in infinite and, respec-
tively, in finite dimensional spaces. Theorem 3.3 is a geometric characterization of the
Banach spaces in which the function ‖ · ‖2 is totally convex at any point. If X is reflexive,
then this result can be interpreted as another characterization of the E-spaces introduced
by Fan and Glicksberg [44]. Theorem 4.5 establishes continuity of the projections relative
to a totally convex functions with respect to the Mosco convergence. Theorem 4.7 shows
a way of computing relative projections on hyperplanes and half-spaces. Theorems 5.4
and 5.7 are convergence results for the algorithm described above.

2. Totally convex functions

2.1. We start our presentation of the totally convex functions by summarizing some basic
properties of the modulus of total convexity. They were stated in [28, 48] under the ad-
ditional assumption that x is a point in the algebraic interior of dom f . A careful analysis
of the proofs given there shows that this assumption is superfluous.

Proposition 2.1. Let X be a Banach space and f : X → (−∞,+∞] be a convex function
such that int(dom f ) �= ∅. If x ∈ dom f , then

(i) the domain of ν f (x,·) is an interval [0,τ f (x)) or [0,τ f (x)] with τ f (x)∈ (0,+∞], if
∂ f (x) �= ∅, and it is {0}, otherwise;

(ii) if c ≥ 1 and t ≥ 0, then ν f (x,ct)≥ cν f (x, t);
(iii) the function ν f (x,·) is superadditive, that is, for any s, t ∈ [0,+∞), one has ν f (x,s+

t)≥ ν f (x,s) + ν f (x, t);
(iv) the function ν f (x,·) is nondecreasing; it is strictly increasing on its domain if and

only if f is totally convex at x;
(v) the following equality holds

ν f (x, t)= inf
{
Df (y,x) : y ∈ dom f , ‖y− x‖ ≥ t}. (2.1)

Proof. As mentioned at the beginning of this section, the statements (i)–(iv) are more
general than the ones in [28, page 18], but the proofs are the same. We now show that (v)
also holds. To this end, denote by ν#

f (x, t) the right-hand side of (2.1). Clearly,

ν#
f (x, t)≤ ν f (x, t), (2.2)

for all t ≥ 0 and the equality holds for t = 0. Suppose that t > 0. We show that for any
y ∈ dom f having ‖y− x‖ ≥ t there exists y′ ∈ dom f such that ‖y′ − x‖ = t and

Df (y,x)≥Df (y′,x). (2.3)

Since f is convex, the function Df (·,x) is also convex. Then,

Df
(
αy + (1−α)x,x

)≤ αDf (y,x) + (1−α)Df (x,x)= αDf (y,x). (2.4)

Now, take α= t/‖y− x‖ in (2.4). This gives exactly (2.3) for y′ = yα and, clearly, one
has ‖yα− x‖ = t. The proof is complete. �
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2.2. Total convexity is a strong form of strict convexity, as shown by the following result.

Proposition 2.2 (cf. [28, page 34]). (i) If f is totally convex at any x ∈ dom f , then it is
strictly convex on this set.

(ii) If dimX < +∞, dom f is closed and the function f restricted to dom f is continuous
and strictly convex, then f is totally convex at any x ∈ dom f .

2.3. The following features of the moduli of total convexity give rules for generating
totally convex functions by aggregating other totally convex functions.

Proposition 2.3 (cf. [28, page 28]). (i) Let f1, . . . , fm : X → (−∞,+∞] be totally convex
functions with domains D1, . . . ,Dm, respectively, such that D = ∩m

i=1Di �= ∅. Then, for any
m nonnegative real numbers c1, . . . ,cm with

∑m
i=1 ci > 0, the function h=∑m

i=1 ci fi is totally
convex and, for any x ∈D and for all t ∈ [0,+∞),

νh(x, t)≥
m∑

i=1

ciν fi(x, t); (2.5)

(ii) If f is totally convex and lower semicontinuous with open domain D and φ is a real
convex function, differentiable and strictly increasing on an open interval which contains
f (D), then the function g : X → (−∞,+∞] defined by g = φ ◦ f (with g(x)= +∞ for x /∈D)
is totally convex and

νg(x, t)≥ φ′( f (x)
) · ν f (x, t) (2.6)

for any x ∈D and for all t ≥ 0.

2.4. Here are other total convexity criteria which allow building totally convex function
on product spaces.

Proposition 2.4 (cf. [48]). Let X1, X2 be real Banach spaces, fi : Xi→ (−∞,+∞], i= 1,2,
two proper convex lower semicontinuous functions whose domains have nonempty interiors.
Define the function f : X1×X2 → (−∞,+∞] by f (x1,x2)= f1(x1) + f2(x2). Then

(i) For any x = (x1,x2) ∈ dom f , such that ∂ f (x) �= ∅, the domain of ν f (x,·) is an
interval [0,τ f (x)) or [0,τ f (x)] with 0≤ τ f (x)= τ f1 (x1) + τ f2 (x2)≤∞, where

τ fi
(
xi
)= sup

{
t : t ∈ domν fi

(
xi,·

)}
, i= 1,2. (2.7)

Moreover,

ν f (x, t)= inf
{
ν f1

(
x1,s

)
+ ν f2

(
x2, t− s) : s∈ [0, t]

}
. (2.8)

If ∂ f (x)=∅, then domν f (x,·)= {0}.
(ii) For any x = (x1,x2)∈ dom f and t ∈ domν f (x,·),

ν f (x, t)≥min
{

ν fi

(
xi,

t

2

)}
, i= 1,2. (2.9)

Therefore, if both functions fi are totally convex, then f is totally convex.
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2.5. The following characterization of total convexity makes clear why functions with
this property are useful in convergence analysis of many algorithms: Df -convergence of
a sequence {yn}n∈N to x, that is, the fact that {Df (yn,x)}n∈N converges to zero (see [15])
implies convergence in norm of {yn}n∈N to x.

Proposition 2.5 (cf. [62]). Let X be a Banach space and f : X → (−∞,+∞] be a convex
function. If x ∈ dom f , then the following statements are equivalent:

(i) the function f is totally convex at x;
(ii) for any sequence {yn}n∈N ⊆ dom f ,

lim
n→∞Df

(
yn,x

)= 0=⇒ lim
n→∞

∥
∥yn− x∥∥= 0; (2.10)

(iii) For any sequence {yn}n∈N ⊆ dom f ,

liminf
n→∞ Df

(
yn,x

)= 0=⇒ liminf
n→∞

∥
∥yn− x∥∥= 0; (2.11)

(iv) for any sequence {yn}n∈N ⊆ dom f ,

lim
n→∞Df

(
yn,x

)= 0=⇒ liminf
n→∞

∥
∥yn− x∥∥= 0; (2.12)

(v) for any ε > 0, there exists δ > 0 such that if y ∈ dom f and Df (y,x)≤ δ, then ‖x−
y‖ ≤ ε.

2.6. Characteristic properties of totally convex functions were given in [31, 32, 62]. De-
note by � the set of functions ψ : [0,+∞)→ [0,+∞] which satisfy the conditions below:

(i) intdomψ �= ∅;
(ii) ψ is convex and lower semicontinuous;

(iii) ψ(0)= 0 and ψ(t) > 0 whenever t > 0.
The following characterization appears in [31].

Proposition 2.6. Suppose that x ∈ dom f and ∂ f (x) �= ∅. The function f is totally convex
at x if and only if there exists a function ϕ∈� such that, for any y ∈ X , one has

f (y)− f (x)≥ f ◦(x, y− x) +ϕ
(‖y− x‖). (2.13)

2.7. We list below some special features which make totally convex functions of interest
in many applications. To this end, recall (see [69, Section 3.3]) that the pseudo-conjugate
of a function ϕ ∈ �, is the lower semicontinuous convex function ϕ# : [0,∞) → [0,∞]
defined by

ϕ#(t)= sup
{
st−ϕ(s) : s≥ 0

}
. (2.14)

Proposition 2.7 (cf. [31]). If the function f is totally convex at x ∈ dom f and if x∗ ∈
∂ f (x), then x∗ ∈ int(dom f ∗) and any of the following equivalent conditions are satisfied:

(i) there exists ϕ∈� such that, for any y ∈ X , one has

f (y)− f (x)≥ 〈
x∗, y− x〉+ϕ

(‖y− x‖); (2.15)
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(ii) there exists ϕ∈� such that, for any y∗ ∈ X∗, one has

f ∗
(
y∗

)− f ∗
(
x∗

)≤ 〈
y∗ − x∗,x

〉
+ϕ#(∥∥y∗ − x∗∥∥); (2.16)

(iii) the function f ∗ is Fréchet differentiable at x∗.
If, in addition, f is lower semicontinuous, then these conditions are also equivalent to

each of the following requirements:
(iv) there exists ϕ ∈� such that, for any pair (y, y∗) ∈ X ×X∗ with y∗ ∈ ∂ f (y), one

has

〈
y∗ − x∗, y− x〉≥ ϕ(‖y− x‖); (2.17)

(v) there exists a nondecreasing function θ : [0,+∞)→ [0,+∞] with limt↘0 θ(t)= 0 such
that, for any pair (y, y∗)∈ X ×X∗ with y∗ ∈ ∂ f (y), one has

‖y− x‖ ≤ θ(‖y∗ − x∗∥∥). (2.18)

2.8. Under additional assumptions on the function f , one obtains the following charac-
terization of the total convexity of f at a point.

Proposition 2.8 (cf. [31]). Suppose that f is continuous at the point x ∈ int(dom f ).
Then, the following conditions are equivalent:

(i) the function f is totally convex at x;
(ii) there exists ϕ∈� such that, for any y ∈ X and for any x∗ ∈ ∂ f (x) one has

f (y)− f (x)≥ 〈
x∗, y− x〉+ϕ

(‖y− x‖); (2.19)

(iii) there exists ϕ∈� such that, for any y∗ ∈ X∗ and for any x∗ ∈ ∂ f (x) one has

f ∗
(
y∗

)− f ∗
(
x∗

)≤ 〈
y∗ − x∗,x

〉
+ϕ#(∥∥y∗ − x∗∥∥); (2.20)

(iv) ∂ f (x) ⊆ int(dom( f ∗)) and the function f ∗ is uniformly Fréchet differentiable on
∂ f (x).

If, in addition, the function f is lower semicontinuous, then these conditions are equiva-
lent to each of the following requirements:

(v) There exists ϕ∈ F such that, for any x∗ ∈ ∂ f (x) and for any pair (y, y∗)∈ X ×X∗
with y∗ ∈ ∂ f (y), one has

〈
y∗ − x∗, y− x〉≥ ϕ(‖y− x‖); (2.21)

(vi) There exists a nondecreasing function θ : [0,+∞) → [0,+∞] with limt↘0 θ(t) = 0
such that, for any pair (y, y∗)∈ X ×X∗ with y∗ ∈ ∂ f (y), one has

‖y− x‖ ≤ θ(∥∥y∗ − x∗∥∥). (2.22)

2.9. According to Proposition 2.2, in spaces of finite dimension any strictly convex func-
tion with closed domain, which is continuous on its domain, is totally convex at any point
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of its domain. In infinite dimensional Banach spaces the distinction between strict con-
vexity and total convexity is more drastic as we explain below. We start by reviewing the
relationships between the modulus of total convexity and several moduli of uniform con-
vexity. Recall (see, e.g., [31, 67], and [69, page 203]) that the modulus of uniform convexity
of f at x ∈ dom f is the function μ f (x,·) : [0,+∞)→ [0,+∞] defined by

μ f (x, t)= inf
{
f (x) + f (y)− 2 f

(
x+ y

2

)
: y ∈ dom f , ‖y− x‖ = t

}
. (2.23)

The function f is called uniformly convex at x if μ f (x, t) > 0, whenever t > 0.
The modulus of uniform convexity of f is the function μ f : [0,+∞)→ [0,+∞] defined

by

μ f (t)= inf
{
f (x) + f (y)− 2 f

(
x+ y

2

)
: x, y ∈ dom f , ‖y− x‖ = t

}
. (2.24)

The function f is called uniformly convex if μ f (t) > 0, whenever t > 0.
It was shown in [28] that uniform convexity of a function at a point implies total

convexity at that point, while the converse is not true. The last fact is illustrated by the
function g : �1 →R given by

g(x)=
∞∑

k=1

∣
∣xk

∣
∣1+1/k

. (2.25)

This function is totally convex at any point of the convex set

C =
{
x ∈ �1 : limsup

k→∞

∣
∣xk

∣
∣1/k

< 1
}

, (2.26)

but it is not uniformly convex at any point of �1. However, under additional hypothesis,
one has the following result.

Proposition 2.9 (cf. [31]). Suppose that f is lower semicontinuous. If f is Fréchet differ-
entiable at x∈dom f , then f is totally convex at x if and only if f is uniformly convex at
x.

2.10. In order to have a better understanding of the connections between the notion of
total convexity and that of uniform convexity, recall that the modulus of uniformly strict
convexity of f on the set E ⊆ X is the function μ f (E,·) : [0,+∞)→ [0,+∞] given by

μ f (E, t)= inf
{
μ f (x, t) : x ∈ E∩dom f

}
. (2.27)

The function f is said to be uniformly strictly convex on bounded sets (cf. [10]) if for
each nonempty bounded subset E of X , μ f (E, t) > 0 for all t ∈ (0,+∞). Also, recall (cf.
[28]) that the modulus of total convexity of the function f on the set E is the function
ν f (E,·) : [0,+∞)→ [0,+∞] given by

ν f (E, t)= inf
{
ν f (x, t) : x ∈ E∩dom f

}
. (2.28)
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The function f is called totally convex on bounded sets if ν f (E, t) is positive for any
nonempty bounded set E and any t > 0. It immediately results from Proposition 2.1
that, if f is totally convex on bounded sets and the set E is nonempty and bounded,
then ν f (E,ct)≥ cν f (E, t) for any c ≥ 1 and t ≥ 0. Consequently, in this case, the function
ν f (E,·) is strictly increasing on [0,+∞). The relevance of the concept of total convexity
on bounded sets in convergence analysis of various algorithms (see [15, 28, 31, 33, 36])
stems from the fact that functions which are totally convex on bounded sets are sequen-
tially consistent. Recall that the function f is called sequentially consistent if for any two
sequences {xk}k∈N and {yk}k∈N in X such that the first is bounded,

lim
k→∞

Df
(
yk,xk

)= 0=⇒ lim
k→∞

∥
∥xk − yk

∥
∥= 0. (2.29)

We follow [69] and call the function f uniformly convex on bounded sets if for each positive
real numbers r and t the function fr = f + ιB(0,r) has μ fr (X , t) > 0, where ιB(0,r) stands for
the indicator function of the closed ball of center 0 and radius r in X .

The following result shows the connections between sequential consistency, uniform
convexity on bounded sets, total convexity on bounded sets and uniformly strict con-
vexity on bounded sets. One should note that, for lower semicontinuous functions, the
sequential consistency, the total convexity on bounded sets and the uniform convexity on
bounded sets are equivalent. Uniform strict convexity seems to be a stronger condition
than sequential consistency, although we do not have examples of functions which are
sequentially consistent without being uniformly strictly convex.

Theorem 2.10. Let f : X → (−∞,+∞] be a convex function whose domain contains at least
two points. The following statements hold true:

(i) the function f is sequentially consistent if and only if it is totally convex on bounded
sets;

(ii) if f is also lower semicontinuous, then f is sequentially consistent if and only if f is
uniformly convex on bounded sets;

(iii) if f is uniformly strictly convex on bounded sets, then it is sequentially consistent and
the converse implication holds when f is lower semicontinuous, Fréchet differentiable
on its domain and the Fréchet derivative f ′ is uniformly continuous on bounded sets.

Proof. The statements (i) and (ii) were proved in [31, Proposition 4.2]. In analyzing the
proof of that result one should take into account that the definition of uniform convexity
on bounded sets given in [31, Section 4.1] is incorrectly formulated. It is congruent with
what we call here uniformly strict convexity on bounded sets. However, the notion of
uniform convexity on bounded sets de facto used in the paper [31] is that occurring
here. The fact that uniformly strict convexity on bounded sets implies total convexity on
bounded sets follows immediately from [28, Proposition 1.2.5]. We show next that if f is
lower semicontinuous, totally convex on bounded sets, Fréchet differentiable on dom f
and its Fréchet derivative f ′ is uniformly continuous on bounded sets, then f is also
uniformly strictly convex on bounded sets. Note that dom f is open because f is Fréchet
differentiable on it. Let E be a bounded subset of X such that E∩ dom f �=∅. Suppose
that t > 0 is a number such that ν f (E, t/2) is finite. Then, by the total convexity of f on
bounded sets, we deduce that ν f (E, t/2) > 0. Since f ′ is uniformly continuous on the
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bounded set E∩ dom f , there exists a number τ > 0 such that, for any x,z ∈ E∩ dom f ,
one has

‖z− x‖ ≤ τ =⇒ ∥
∥ f ′(z)− f ′(x)

∥
∥≤ 1

t
ν f

(
E,
t

2

)
. (2.30)

Fix x ∈ E∩dom f arbitrarily. For any y ∈ X with ‖y− x‖ = t/2 one has

f (y)≥ f (x) +
〈
f ′(x), y− x〉+ ν f

(
E,
t

2

)
. (2.31)

Let α∈ (0,1) be such that 1−α < 2τ/t and assume that u∈ dom f is such that ‖u− x‖ =
t. Define

w = x+
1−α

2
(u− x). (2.32)

Clearly, w ∈ dom f because it is a convex combination of x,u∈ dom f . Note that

‖w− x‖ = 1−α
2
‖u− x‖ = 1−α

2
t ≤ τ, (2.33)

and this implies that

∥
∥ f ′(w)− f ′(x)

∥
∥≤ 1

t
ν f

(
E,
t

2

)
(2.34)

because of (2.30). Obviously, one has

f (x)≥ f (w) +
〈
f ′(w),x−w〉= f (w) +

1−α
2

〈
f ′(w),x−u〉, (2.35)

1
2

(x+u)= α

α+ 1
u+

1
α+ 1

w. (2.36)

From (2.36) one deduces that

α

α+ 1
f (u) +

1
α+ 1

f (w)≥ f
(

1
2

(x+u)
)

, (2.37)

that is,

α f (u) + f (w)≥ (1 +α) f
(

1
2

(x+u)
)
. (2.38)

Summing up this inequality and (2.35) one gets

f (x) +α f (u)≥ (1 +α) f
(

1
2

(x+u)
)

+
〈
f ′(w),

1−α
2

(x−u)
�
. (2.39)
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Consequently,

f (x) + f (u)− 2 f
(

1
2

(x+u)
)

≥ 1−α
α

[

f
(

1
2

(x+u)
)
− f (x) +

1
2

〈
f ′(w),x−u〉

]

≥ 1−α
α

[
ν f

(
E,
t

2

)
+

1
2

〈
f ′(x),u− x〉+

1
2

〈
f ′(w),x−u〉

]

≥ 1−α
α

[
ν f

(
E,
t

2

)
− 1

2

∥
∥ f ′(x)− f ′(w)

∥
∥‖u− x‖

]

= 1−α
α

[
ν f

(
E,
t

2

)
− t

2

∥
∥ f ′(x)− f ′(w)

∥
∥
]

≥ 1−α
α

[
ν f

(
E,
t

2

)
− t

2

ν f (E, t/2)

t

]
,

(2.40)

where the last inequality results from (2.34). Hence, one has

f (x) + f (u)− 2 f
(

1
2

(x+u)
)
≥ 1−α

2α
ν f

(
E,
t

2

)
, (2.41)

for all u∈ X with ‖u− x‖ = t and this implies that

μ f (x, t)≥ 1−α
2α

ν f

(
E,
t

2

)
> 0. (2.42)

Since this inequality holds for any x ∈ E∩dom f , the proof is complete. �

2.11. The following property of totally convex functions on bounded sets was used in the
study of generic fixed point properties of some classes of operators done in [32]. Although
stated in [32, Lemma 2.1] for uniformly convex functions, the proof is done in fact for
functions which are totally convex on bounded sets.

Proposition 2.11. If the function f is totally convex on bounded sets, then for each x ∈
dom f and each ε > 0, there exists δ > 0 such that if y,z ∈ dom f , ‖y− x‖ ≤ δ and Df (z,
y)≤ δ, then ‖x− z‖ ≤ ε.

2.12. In finite dimensional spaces, one of the most useful totally convex functions is
the negentropy, that is, the negative of the Boltzmann-Shannon entropy (see [36]). Its
extension to �1(Ω), when Ω is a nonempty bounded and measurable subset of Rd, is the
function f : �1(Ω)→ (−∞,+∞] defined by

f (x)=
⎧
⎪⎨

⎪⎩

∫

Ω
x(t) lnx(t)dt if x ≥ 0 a.e., x lnx ∈�1(Ω),

+∞ otherwise.
(2.43)

This function is used in methods which aim at reconstructing a function from a finite
number of moments (see [18, 19]) as well as in regularization methods for ill-posed in-
verse problems (see, e.g., [41, 43]). Note that the domain of the negentropy f is not equal
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to �1
+(Ω), but it is a much smaller set. For instance, if Ω = [0,1], then the nonnegative

function x defined by x(t) = 1/t(ln t− 1)2 for t ∈ (0,1] and x(0) = 0, belongs to �1(Ω),
while x lnx does not, that is, x is not contained in dom f . This implies that, contrary to
what is claimed in [13, Remark 5.7], the domain of the function defined by

Iψ(x) := f (x)−‖x‖�1(Ω) (2.44)

for any x ∈�1
+(Ω), which obviously equals that of the negentropy, is not �1

+(Ω), but a
smaller set.

The interior of the domain of f is empty since the interior of �1
+(Ω) is so. Thus,

the function is not differentiable, while its directional derivative f ◦(x, y − x) exists and
belongs to [−∞,+∞), for all x, y ∈ dom f . The following result shows that the extended
negentropy preserves the most basic properties which make its finite counterpart of much
interest in the convergence analysis of algorithms in Rn.

Proposition 2.12. The function f defined by (2.43) has the following properties:
(i) for any x, y ∈ dom f , one has

‖y− x‖2 ≤
(

2
3
‖y‖+

4
3
‖x‖

)
Df (y,x); (2.45)

(ii) for any x ∈ dom f and α > 0, the following level sets are weakly compact in �1(Ω):

{
y ∈ dom f :Df (y,x)≤ α}; (2.46)

(iii) the function f is totally convex on bounded sets and, for any nonempty bounded set
E ⊆ dom f , there exist two positive real numbers a and b such that, for any number
t ≥ 0, we have

ν f (E, t)≥ t2

at+ b
; (2.47)

(iv) the function f is uniformly convex on bounded sets.

Proof. (i) See [18]. (ii) See [42, Chapter 8, Theorem 1.3]. (iii) it follows immediately from
(i). (iv) results from Theorem 2.10. �

2.13. Total convexity is a somewhat stronger form of essentially strict convexity. Recall,
(cf. [13]), that the function f is essentially strictly convex if (∂ f )−1 is locally bounded on
its domain and f is strictly convex on every convex subset of dom(∂ f ). This notion is
of interest in the theory of some classes of fixed point algorithms ([12, 13]); it was in-
troduced by Rockafellar [63] in Rn and was further generalized and studied by Bauschke
et al. [13] in the context of infinite dimensional Banach spaces. The following result, es-
tablishing the connection between totally convex and essentially strictly convex functions,
is a reformulation of a similar one from [62] where it was proved under the additional,
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but superfluous, hypotheses that dom(∂ f ) is convex. Since total convexity of a function is
a local notion, convexity of the set on which total convexity is discussed is not necessary.

Proposition 2.13. Suppose that X is reflexive and that f is a proper convex lower semi-
continuous function which is totally convex at any point of dom(∂ f ). Then f is essentially
strictly convex.

2.14. The converse implication in Proposition 2.13 is not true. To see that, let f =
(1/2)‖ · ‖2 and suppose that the space X is strictly convex and reflexive. Then, according
to [13, Definition 5.2], the function f is essentially strictly convex. However, the func-
tion f may not be totally convex as happens in the case when X is the space contained
in Vanderwerff ’s example (see [15, page 3]). That space is strictly convex and reflexive
but does not have the Kadec-Klee property; in such a situation f is not totally convex, as
follows from Proposition 3.2 below. In finite dimensional Banach spaces, essential strict
convexity seems to be slightly different from total convexity. In this respect, it is inter-
esting to note that the most useful essentially strictly convex functions in Rn (see, for
instance, [12]) are also totally convex. Moreover, any function which has closed domain
and which is strictly convex and continuous on its domain, as well as any strictly convex
function whose domain is the entire space is totally convex (cf. [28, Proposition 1.2.6])
and essentially strictly convex (cf. Proposition 2.13). On one hand, we do not have any
example of a function which simultaneously satisfies the assumptions of Proposition 2.13
and is essentially strictly convex without being totally convex. On the other hand, we do
not have a proof for the equivalence of the two notions even in finite dimensional Banach
spaces except for the case dom f =Rn discussed below.

2.15. It was noted in Section 2.9 that, in general, strict convexity and total convexity are
not equivalent notions. However, if dom f =Rn, then f is totally convex at any point of
Rn if and only if it is strictly convex as follows from Proposition 2.2. Moreover, for func-
tions f having dom f = Rn, the strict convexity is a property equivalent to the uniform
convexity on bounded sets. This may be already known, but we do not have any reference
for it. In the case of functions f defined and differentiable on the whole space Rn, the
equivalence between strict convexity and uniform convexity on bounded sets was implic-
itly shown in [45, Lemma 1.1, page 60]. Without requiring differentiability of f , but in
the case of functions f with dom f = R, the same equivalence is proved in [69, Propo-
sition 3.6.5]. Our next statement shows that for functions f which are finite everywhere
on Rn, uniform convexity on bounded sets is equivalent to strict convexity.

Theorem 2.14. Let f : Rn → R be a convex function. Then the following conditions are
equivalent:

(i) f is strictly convex;
(ii) f is essentially strictly convex;

(iii) f is totally convex at any x ∈Rn;
(iv) f is uniformly convex at any x ∈Rn;
(v) f is totally convex on bounded sets;

(vi) f is sequentially consistent;
(vii) f is uniformly convex on bounded sets.
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Proof. The equivalences (v)⇔(vi)⇔(vii) result from Theorem 2.10. The implications (v)⇒
(iv)⇒(iii)⇒(ii) follow from Theorem 2.10, [28, Proposition 1.2.5] and Proposition 2.13,
while the implication (ii)⇒(i) follows from [13, Theorem 5.11]. We prove here that (i)⇒
(vii). To this end, one applies [69, Theorem 3.5.10]. According to this theorem, it is suf-
ficient to show that if E is a nonempty bounded subset of Rn, then there exists a function
φ : [0,+∞)→ [0,+∞] with φ(0)= 0 which is strictly increasing and such that

〈ξ − ζ ,u− v〉 ≥ φ(‖u− v‖), (2.48)

whenever u,v ∈ E and ξ ∈ ∂ f (u), ζ ∈ ∂ f (v). Observe that it is enough to prove that this
condition is satisfied on sets E which are closed balls of center zero. So, let E be a closed
ball of center zero and radius M > 0. Denote

Et := {
(u,v,ξ,ζ)∈R4n : u,v ∈ E, ‖u− v‖ = t, ξ ∈ ∂ f (u), ζ ∈ ∂ f (v)

}
. (2.49)

Define θ : [0,+∞)→ [0,+∞] by

θ(t)= inf
{〈ξ − ζ ,u− v〉 : (u,v,ξ,ζ)∈ Et

}
. (2.50)

Clearly, θ(t)=∞ for t > 2M, domθ = [0,2M] and θ(0)= 0. Since f is finite everywhere
and convex, it is also continuous on Rn and, thus, it is bounded on bounded sets. Con-
sequently, according to [28, Proposition 1.1.11], the multi-valued mapping ∂ f :Rn→Rn

transforms bounded sets into bounded sets. So, the set Et is contained in the bounded
set E×E× ∂ f (E)× ∂ f (E). In order to show closedness of Et, let {(uk,vk,ξk,ζk)}k∈N be a
sequence contained in Et and converging to (u,v,ξ,ζ) in R4n. Then, for each k ∈N, one
has ‖uk − vk‖ = t, ξk ∈ ∂ f (uk) and ζk ∈ ∂ f (vk). Since the mapping ∂ f is upper semicon-
tinuous (cf. [57, Proposition 2.5]), it follows that ξ ∈ ∂ f (u) and ζ ∈ ∂ f (v). Obviously,
one also has that ‖u− v‖ = t and these show that (u,v,ξ,ζ)∈ Et, that is, Et is closed.

Due to the compactness of Et, for any t ∈ (0,2M], there exists ut,vt ∈ E and ξt ∈
∂ f (ut), ζt ∈ ∂ f (vt) such that

∥
∥ut − vt

∥
∥= t, θ(t)= 〈

ξt − ζt,ut − vt
〉
> 0, (2.51)

where the last inequality follows from the strict monotonicity of ∂ f because f is strictly
convex. We claim that θ is strictly increasing on [0,2M]. To prove that, let 0 < t1 < t2 ≤
2M. Denote ū= ut2 , v̄ = vt2 , ξ̄ = ξt2 and ζ̄ = ζt2 . Let t̄ = t1/t2 and w̄ := ū+ t̄(v̄− ū). Clearly,
w̄ ∈ E and

‖w̄− ū‖ = t̄‖v̄− ū‖ = t1. (2.52)

Therefore, using the definition of θ, one deduces that, for any η ∈ ∂ f (w̄), one has that

θ
(
t1
)≤ 〈η− ξ̄,w̄− ū〉 = t̄〈η− ξ̄, v̄− ū〉 ≤ 〈η− ξ̄, v̄− ū〉. (2.53)

On the other hand, one has that

θ
(
t2
)= 〈ζ̄ − ξ̄, v̄− ū〉 = 〈ζ̄ −η, v̄− ū〉+ 〈η− ξ̄, v̄− ū〉. (2.54)
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Since ζ̄ ∈ ∂ f (v̄), η ∈ ∂ f (w̄) and ∂ f is strictly monotone (because f is strictly convex), we
deduce that 〈ζ̄ −η, v̄− w̄〉 > 0. Thus, we have

0 < 〈ζ̄ −η, v̄− w̄〉 = (1− t̄)〈ζ̄ −η, v̄− ū〉, (2.55)

where (1− t̄) > 0. This, (2.53) and (2.54) combined imply

θ
(
t2
)
> 〈η− ξ̄, v̄− ū〉 ≥ θ(t1

)
, (2.56)

proving that θ is strictly increasing on [0,2M].
Define the function φ : [0,+∞)→ [0,+∞] by

φ(s)=
⎧
⎪⎨

⎪⎩

2
∫ s

0
τ−1θ(τ)dτ if s > 0,

0 if s= 0.
(2.57)

We are going to show that this function is well defined and satisfies condition (2.48). Let
t ∈ (0,2M], let u,v ∈ E be such that ‖u− v‖ = t and let ξ ∈ ∂ f (u), ζ ∈ ∂ f (v). From the
definition of θ one has that

〈ζ − ξ,v−u〉 ≥ θ(‖u− v‖). (2.58)

For any s∈ (0,1], denote us := u+ s(v−u) and take ηs ∈ ∂ f (us). Then one gets

〈
ηs− ξ,us−u

〉≥ θ(∥∥us−u
∥
∥), (2.59)

that is,

〈
ηs− ξ,v−u〉≥ s−1θ

(
s‖v−u‖). (2.60)

Letting τ = s‖v−u‖ one obtains
〈
ηs− ξ,v−u〉
‖v−u‖ ≥ θ(τ)

τ
. (2.61)

Let {sk}k∈N ⊂ (0,1] be a sequence converging to zero. Then the sequence {usk}k∈N con-
verges to u and, due to the local boundedness of the operator ∂ f , the sequence {ηsk}k∈N
is bounded. So, by eventually taking a subsequence, we may assume that {ηsk}k∈N con-
verges to some vector η. By the upper semicontinuity of the operator ∂ f we deduce that
η ∈ ∂ f (u). Since in (2.61) the vector ξ is an arbitrary element of ∂ f (u), it results that

〈
ηsk −η,v−u〉
‖v−u‖ ≥ θ

(
τk
)

τk
, (2.62)

where τk = sk‖v− u‖. So, letting k →∞ in (2.62), one deduces that limτ→0+ θ(τ)/τ = 0,
and this implies that the function φ is well defined. Since θ is strictly increasing, it results
that φ(s) = 0 if and only if s = 0, and ϕ is strictly increasing, too. From the inequality
(2.60) one also has that

〈
ηs,v−u

〉≥ 〈ξ,v−u〉+ s−1θ
(
s‖v−u‖). (2.63)
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If one chooses a point ηs ∈ ∂ f (u+ s(v−u)) for each s∈ [0,1], then the following integral
exists and

∫ 1

0

〈
ηs,v−u

〉
ds= f (v)− f (u). (2.64)

This fact was proved in a particular case in [30] and the proof can be extended without
much change. Hence, integrating in (2.63), one gets

f (v)− f (u)≥ 〈ξ,v−u〉+
∫ 1

0
s−1θ

(
s‖v−u‖)ds. (2.65)

Interchanging u and v in the previous arguments one deduces that

f (u)− f (v)≥ 〈ζ ,u− v〉+
∫ 1

0
s−1θ

(
s‖v−u‖)ds. (2.66)

Adding the last two inequalities one obtains

〈ζ − ξ,v−u〉 ≥ 2
∫ 1

0
s−1θ

(
s‖v−u‖)ds= 2

∫ ‖v−u‖

0

θ(τ)
τ

dτ = φ(‖v−u‖). (2.67)

This completes the proof. �

3. Totally convex Banach spaces

3.1. Identifying totally convex functions in Banach spaces of infinite dimension is a prob-
lem of practical interest in optimization and in other areas. If they happen to be totally
convex, then the functions hr = ‖ · ‖r , r > 1, are among the most convenient such func-
tions to work with (see [28, Chapter 3], [7]). Thus, it is natural to ask whether, and under
which conditions, the function hr is totally convex as to ensure that D-convergence and
norm convergence are equivalent. Recall that, in uniformly convex Banach spaces, uni-
form convexity of the function hr and then, implicitly, total convexity, was established by
Asplund [10], Clarkson [38], Vladimirov et al. [67] for r ≥ 2. Zălinescu [68] proved that
for r > 1, the functions hr are uniformly convex at any x ∈ X in locally uniformly convex
spaces, and thus, totally convex at any x ∈ X . This also follows from the next result which
gives evaluations of the moduli of total convexity of hr in (locally) uniformly convex Ba-
nach spaces. These evaluations were established in [30, 31] and were used in the design
and convergence analysis of the algorithms presented in [28, Chapter 3], [8, 33].

Proposition 3.1. (i) If X is a locally uniformly convex Banach space and φ(t) := |t|r , then,
for any t ≥ 0, one has

μhr (0, t)= (
1− 21−r)tr , (3.1)

and, when x �= 0 and α is any number in (0,1), one has

νhr (x, t)≥ μhr (x, t)≥ ‖x‖r min
{
μφ

(
1,

αt

‖x‖
)

,ζ(a)
}

, (3.2)
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where ζ : [0,1]→ [0,∞) is the function

ζ(s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− [
2− (1− 2s)r/(r−1)

]1−r
if s∈

[
0,

1
2

)
,

1− 21−r if s≥ 1
2

,

μφ(1,s)=min
{

1 + (1 + s)r − 21−r(2 + s)r , 1 + |1− s|r − 21−r|2− s|r},

a := δX
(

x

‖x‖ , (1−α)
t

‖x‖
)

;

(3.3)

(ii) If X is uniformly convex and r ∈ (1,∞), then the function hr is totally convex, and,
for any z ∈ X and t > 0, one has:

νhr (z, t)≥ rM
(
t

2

)r ∫ 1

0
τr−1δX

(
τt

2
(‖z‖+ τt

)
)
dτ > 0, (3.4)

where M is some positive constant and δX is the modulus of convexity of X .

3.2. It is known that geometric properties of Banach spaces, such as strict convexity,
locally uniform convexity, uniform convexity can be characterized analytically by prop-
erties of the square of the norm (see, for instance, [37]). In [62], a Banach space X is
called locally totally convex if the function h= (1/2)‖ · ‖2 is totally convex at each x ∈ X .

Locally uniformly convex spaces are locally totally convex; separable or reflexive Ba-
nach spaces can be equivalently renormed for becoming locally uniformly convex spaces
(see [50, 66], resp.).

It follows from [69, Section 3.7] that (locally) uniform convexity of a Banach space
is equivalent to (locally) uniform convexity of a large class of functions Φ of the norm,
where

Φ(x)=
∫ ‖x‖

0
ϕ(s)ds (3.5)

and ϕ is a weight function. An analogous result is true in the case of total convexity, as
shown by the result below. Recall that the Banach space X is said to be an E-space if it is
reflexive, strictly convex and has the Kadec-Klee property. According to [37, page 47], a
Banach space is an E-space if and only if it is weakly uniformly convex, that is, for any two
sequences {xn}n∈N, {yn}n∈N ⊆ X with ‖xn‖ = ‖yn‖ = 1,n∈N, one has

lim
n→∞

〈
x∗,xn + yn

〉= 2=⇒ lim
n→∞

∥
∥xn− yn

∥
∥= 0, (3.6)

whenever x∗ ∈ X∗, ‖x∗‖ = 1. The E-spaces, introduced by Fan and Glicksberg [44], were
studied mostly because they are the natural setting for the research of strong Tykhonov
and Hadamard well-posedness of convex best approximation problems (see, e.g., [39,
46]), and variational inequalities in Banach spaces (see, e.g., [7]).

Proposition 3.2 (cf. [62]). The following conditions are equivalent:
(i) X is locally totally convex;
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(ii) there exists a weight function ϕ such that the function Φ defined at (3.5), is totally
convex at any x ∈ X ;

(iii) for any weight function ϕ, the function Φ is totally convex at any x ∈ X ;
(iv) the function (1/2)‖ · ‖2 is totally convex at each point of the unit sphere of X .

Moreover, if X is reflexive, then these conditions are also equivalent to the follow-
ing:

(v) X is an E-space;
(vi) X has the Kadec-Klee property.

3.3. The next result shows another characterization of locally totally convex spaces and
points out some geometric properties of the norm in this context. It was suggested to
us by Constantin Zălinescu. In view of Proposition 3.2, if X is reflexive, then this result
provides also a characterization of the E-spaces. In what follows, we denote by SX the unit
sphere of X .

Theorem 3.3. Let X be a Banach space. Then the following conditions are equivalent:
(i) the space X is locally totally convex;

(ii) for any x ∈ SX and for any real number ε > 0, there exists δ = δ(x,ε) > 0 such that,
for all y ∈ SX with ‖y− x‖ ≥ ε, there exists λ0 ∈ (0,1) such that

∥
∥(1− λ0

)
x+ λ0y

∥
∥ < 1− λ0δ; (3.7)

(iii) for any x ∈ SX and for any real number ε > 0, there exists δ = δ(x,ε) > 0 such that,
for all y ∈ SX with ‖y− x‖ = ε, there exists λ0 ∈ (0,1) such that the inequality (3.7)
holds.

Proof. (i)⇒(ii). Let h = (1/2)‖ · ‖2. Suppose, by contradiction, that for some ‖x0‖ = 1,
for some ε0 > 0 and for any n∈N, there is yn ∈ X with ‖yn‖ = 1 and ‖yn− x0‖ ≥ ε0 such
that

∥
∥x0 + λ

(
yn− x0)∥∥≥ 1− λ

n
= ∥
∥x0

∥
∥− λ

n
, (3.8)

whenever λ ∈ (0,1). Subtracting ‖x0‖, dividing the resulting inequality by λ and letting
λ→ 0+, one gets −g◦(x0, yn− x0)≤ 1/n, where g = ‖ · ‖. Consequently, Dh(yn,x0)≤ 1/n
for any n ∈ N, since h◦(x0, yn − x0) = ‖x0‖ · g◦(x0, yn − x0). By Proposition 2.5 and the
total convexity of h at x0, it follows that {yn}n∈N converges to x0, which is a contradiction.

(ii)⇒(i). According to Proposition 2.1(v) and Proposition 3.2, it is sufficient to show
that

inf
{
Dh(y,x) : ‖y− x‖ ≥ ε} > 0, (3.9)

for any x ∈ SX and ε > 0. Take y ∈ X with ‖y− x‖ ≥ ε. Denote v = y/‖y‖ and ε0 = ε/2.
Then, for some δ = δ(x,ε) > 0 and for any w ∈ SX with ‖x−w‖ ≥ ε0, there is λ0 ∈ (0,1)
such that

1−∥
∥x+ λ0(w− x)

∥
∥ > λ0δ. (3.10)
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Observe that

Dh(y,x)≥ 1
2
‖y‖2− 1

2
−

∥
∥x+ λ(y− x)

∥
∥2− 1

2λ
:= ζλ(x, y) (3.11)

for any λ∈ (0,1), because

h◦(x, y− x)≤ h
(
x+ λ(y− x)

)−h(x)
λ

. (3.12)

We distinguish the following possible situations:

Case 1. If ‖x‖−‖y‖ ≥ ε/2, then

ζ1/2(x, y)≥ 1
4

(‖x‖−‖y‖)2 ≥ 1
16
ε2. (3.13)

By using (3.11) and taking infimum over y ∈ X such that ‖y − x‖ ≥ ε, inequality (3.9)
follows.

Case 2. Suppose that 0 ≤ ‖x‖− ‖y‖ < ε/2. Denote α = 1/‖y‖, β = (λ0 + α2(1− λ0))1/2,
z = x+ λ0(v− x), and γ = ‖z‖+ (1− λ0)(α− 1). Then one has

x+ λ0(y− x)= ‖y‖[z+
(
1− λ0

)
(α− 1)x

]
. (3.14)

Note that

∥
∥x+ λ0(y− x)

∥
∥≤ ‖y‖[‖z‖+

(
1− λ0

)
(α− 1)

]
. (3.15)

Then one gets

Dh(y,x)≥ ζλ0 (x, y)≥ ‖y‖
2

2

(
1−α2− γ2−α2

λ0

)

= ‖y‖
2

2λ0
(β+ γ)(β− γ)≥ ‖y‖

2

2λ0

(
1−‖z‖),

(3.16)

where the last inequality holds because β + γ ≥ 1 and β ≥ 1 + (1− λ0)(α− 1). Observe
that

‖v− x‖ =
∥
∥
∥
∥x− y +

‖y‖− 1
‖y‖ y

∥
∥
∥
∥≥

[‖x− y‖− (
1−‖y‖)]≥ ε

2
= ε0. (3.17)

If ‖y‖ ≥ ε/2 then, by using (3.10), one obtains that ζλ0 (x, y)≥ δε2/8. Otherwise, one has
‖x‖ > ε/2 because ‖y− x‖ ≥ ε. Consequently, ‖y‖ > ‖x‖− ε/2 > 0 and, thus,

ζλ0 (x, y)≥ δ

2

(
‖x‖− ε

2

)2

> 0. (3.18)

Therefore, in both situations, inequality (3.9) holds.

Case 3. Suppose that 0≤ ‖y‖−‖x‖ < ε/2. If one denotes α= ‖y‖ and preserves the no-
tations for β and γ, then the argument in this case is similar to that in Case 2.
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Case 4. If ‖y‖−‖x‖ ≥ ε/2, then one proceeds as in Case 1 with x and y interchanged.

The proof of (i)⇔(iii) is identical to that of (i)⇔(ii), due to Proposition 2.1(v). �

3.4. As pointed out in Section 2.9, there are totally convex functions which are not lo-
cally uniformly convex. However, we do not know any example of a Banach space which
is locally totally convex without being locally uniformly convex. The following proposi-
tion seems to support our conjecture that locally totally convex spaces are not necessarily
locally uniformly convex. The key fact is that λ0 in the statement below does not depend
on y, while in the previous theorem it does.

Proposition 3.4. Let X be a Banach space. Then the following conditions are equivalent:
(i) the space X is locally uniformly convex;

(ii) for any x ∈ SX and for any real number ε > 0, there exists δ = δ(x,ε) > 0 and λ0 ∈
(0,1) such that, for all y ∈ SX with ‖y− x‖ ≥ ε, one has

∥
∥(1− λ0

)
x+ λ0y

∥
∥ < 1− λ0δ. (3.19)

Proof. (i)⇒(ii). Let x ∈ SX and ε > 0. From the definition of locally uniformly convex
spaces, there exists δ > 0 and λ0 = 1/2 such that (3.19) holds.

(ii)⇒(i). It follows immediately. �

4. Relative projections onto closed convex sets

4.1. In this section we present the basic properties of a class of operators we call relative
projections. They are natural generalizations of the Bregman projections introduced in
[20] and of the generalized projections defined and studied by Alber [3, 5]. In the sequel
we assume that the Banach space X is reflexive and f : X → (−∞,+∞] represents a proper
lower semicontinuous function which is strictly convex on its domain dom f . As usual,
we denote by f ∗ : X∗ → (−∞,+∞] the Fenchel conjugate of f , that is, the function defined
by

f ∗(ξ) := sup
{〈ξ,x〉− f (x) : x ∈ X}. (4.1)

We follow Alber [5] and, with the function f we associate the functionW f : X∗ ×X →
(−∞,+∞] defined by

W f (ξ,x)= f (x)−〈ξ,x〉+ f ∗(ξ). (4.2)

Clearly, W f is nonnegative and, for any ξ ∈ dom f ∗, the function W f (ξ,·) is strictly
convex.

4.2. For any ξ ∈ X∗ and for any subset K of X denote

W f (ξ,K)= inf
{
W f (ξ,x) : x ∈ K}

. (4.3)
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An element y ∈ K such that

W f (ξ, y)=W f (ξ,K) (4.4)

is called projection of ξ onto K relative to f . The following result shows sufficient condi-
tions for existence of such projections. In the case of a strongly coercive function f , this
result, as well as Proposition 4.3 below occur in [5].

Proposition 4.1. Suppose that ξ ∈ dom f ∗ and that the set K ⊆ dom f is nonempty,
closed and convex. If the set

R
f
α (ξ)= {

z ∈ dom f :W f (ξ,z)≤ α} (4.5)

is bounded for any α∈ [0,+∞), then there exists a unique projection of ξ onto K relative to
f . In particular, this happens if any of the following conditions holds:

(i) ξ ∈ range(∂ f ) and f is totally convex at each point of its domain;
(ii) f is strongly coercive (in the sense that lim‖x‖→∞( f (x)/‖x‖)= +∞).

Proof. It was noted in Section 4.1 that the function W f (ξ,·) is strictly convex. This guar-
antees that there is no more than one vector y satisfying (4.4). Since the functionW f (ξ,·)
is also convex, lower semicontinuous and R

f
α (ξ) is bounded for each α ∈ [0,+∞), it re-

sults that W f (ξ,·) has at least one minimizer in the convex set K , that is, the projection
of ξ onto K relative to f exists.

Suppose that ξ ∈ range(∂ f ), f is totally convex and that, for some α ≥ 0, the set

R
f
α (ξ) is unbounded. Then there exists a sequence {yk}k∈N contained in R

f
α (ξ) such that

limk→∞‖yk‖ = +∞. According to Proposition 2.1, for any x ∈ dom f and for any natural
number k such that ‖yk − x‖ ≥ 1, one has

α≥W f
(
ξ, yk

)=Df
(
yk,x

)
+ f ◦

(
x, yk − x)− 〈

ξ, yk − x〉+W f (ξ,x)

≥ ν f (x,1)
∥
∥yk − x∥∥+ f ◦

(
x, yk − x)− 〈

ξ, yk − x〉. (4.6)

Since ξ ∈ range(∂ f ), there exists a vector x0 ∈ dom∂ f such that ξ ∈ ∂ f (x0). One can
check (or see, e.g., [57, page 41]) that

f ◦
(
x0, yk − x0)≥ 〈

ξ, yk − x0〉. (4.7)

This, combined with (4.6), implies that

α≥ ν f
(
x0,1

)∥∥yk − x0
∥
∥. (4.8)

Since f is totally convex at x0, it results that ν f (x0,1) > 0. Therefore, by letting k→∞ in

(4.8), one gets a contradiction. Hence, the set R
f
α (ξ) is bounded for all α≥ 0.

Now, suppose that f is strongly coercive and that, for some α ≥ 0, there exists a se-

quence {xk}k∈N contained in R
f
α (ξ) such that limk→∞‖xk‖ = +∞. Then

α≥W f
(
ξ,xk

)≥ f ∗(ξ) +
∥
∥xk

∥
∥
(
f
(
xk
)

∥
∥xk

∥
∥ −‖ξ‖∗

)

(4.9)
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and letting here k→ +∞ one gets a contradiction. Hence, in this case too, the set R
f
α (ξ) is

bounded for all α≥ 0. �

4.3. Whenever it exists, we denote by P
f
K (ξ) the projection of ξ onto K ⊆ dom f with re-

spect to f . The function ξ → P
f
K (ξ) : domP

f
K → K is called the projection operator onto K

relative to f . Proposition 4.1 shows that if f is totally convex, then range(∂ f )⊆ domP
f
K .

Also, if f is strongly coercive, then domP
f
K = dom f ∗. One can ask whether strongly

coercivity implies total convexity or vice-versa. The examples below show that this is
not the case. First, consider the situation when X = R and f : R→ [0,+∞) is given by
f (x) = e−x. This function is not strongly coercive, while, by Proposition 2.2, it is totally
convex at any point of its domain. Also, it was noted in Section 2.14 that there are Banach
spaces on which the strongly coercive function (1/2)‖ · ‖2 is strictly convex (even Gâteaux
differentiable—see [15]) without being totally convex at all points of the space.

Note that the existence of relative projections onto closed convex sets does not involve
differentiability requirements on f . However, in applications, the case when f is Gâteaux
differentiable is of most interest. From now on, and until the end of this section, we
presume that the following condition holds.

Assumption 4.2. The function f is Gâteaux differentiable on int(dom f ).

In this situation, one has that

f ∗
(
f ′(x)

)= 〈
f ′(x),x

〉− f (x), (4.10)

for any x ∈ int(dom f ) and, consequently,

Df (y,x)=W f
(
f ′(x), y

)
. (4.11)

Recall that the Bregman projection of x onto the nonempty closed convex set K ⊆ dom f (as

defined in [20]), is the necessarily unique vector Π
f
K (x)∈ K , satisfying

Df
(
Π

f
K (x),x

)= inf
{
Df (y,x) : y ∈ K}

. (4.12)

According to Proposition 4.1, since f ′(x)∈ int(dom f ∗) for all x ∈ int(dom f ), one has
that

Π
f
K (x)= P f

K

(
f ′(x)

)=
(
P
f
K ◦ f ′

)
(x). (4.13)

4.4. Similarly to the metric projection in Hilbert spaces, Bregman projections and gener-
alized projections (i.e., the projections relative to h = (1/2)‖ · ‖2) have variational
characterizations—see [3, 6]. This property extends to relative projections with respect
to totally convex differentiable functions.

Proposition 4.3. Let f be totally convex at any point of int(dom f ) and let K ⊆ int(dom
f ) be a nonempty, closed and convex set. If ξ ∈ X∗ and x̂ ∈ K , then the following conditions
are equivalent:

(a) The vector x̂ is the projection of ξ onto K relative to f ;
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(b) The vector x̂ is the unique solution in K of the following variational inequality:

〈
ξ − f ′(z),z− y

〉≥ 0, ∀y ∈ K ; (4.14)

(c) The vector x̂ is the unique solution contained in K of the following variational in-
equality:

W f (ξ,z) +W f
(
f ′(z), y

)≤W f (ξ, y), ∀y ∈ K. (4.15)

Proof. We prove first that (a) and (b) are equivalent. Suppose that (a) holds. Then, for
any x ∈ K one has W f (ξ, x̂)≤W f (ξ,x). In particular, this holds for x = (1− τ)x̂+ τ y for
all y ∈ K and for all τ ∈ [0,1]. Hence, one obtains

0≥W f (ξ, x̂)−W f
(
ξ, (1− τ)x̂+ τ y

)≥ 〈[
W f (ξ,·)]′((1− τ)x̂+ τ y

)
,τ(x̂− y)

〉
, (4.16)

where [W f (ξ,·)]′ = f ′ − ξ. Therefore, for any τ ∈ (0,1], one has that

0≥ 〈
f ′
(
(1− τ)x̂+ τ y

)− ξ, x̂− y
〉

(4.17)

and, letting here τ → 0+, one obtains (4.14) because the function 〈 f ′(·)− ξ, x̂ − y〉 is
continuous due to the norm-to-weak∗ continuity of f ′. Now, suppose that x̂ ∈ K satisfies
(4.14). Then, for any y ∈ K , one has

W f (ξ, y)−W f (ξ, x̂)≥ 〈[
W f (ξ,·)]′(x̂), y− x̂〉= 〈

f ′(x̂)− ξ, y− x̂〉≥ 0, (4.18)

showing that x̂ minimizes W f (ξ,·) over K , that is, x̂ = P
f
K (ξ). In order to show that (b)

and (c) are equivalent, it is sufficient to observe that

W f (ξ, x̂) +W f
(
f ′(x̂), y

)−W f (ξ, y)= 〈
f ′(x̂)− ξ, x̂− y

〉
(4.19)

for any y ∈ K . �

4.5. Combining Proposition 4.3 with (4.13), one re-finds the variational characteriza-
tions of the Bregman projections given in [28].

Corollary 4.4. Suppose that f is totally convex at any point of int(dom f ). Let x ∈
int(dom f ) and let K ⊆ int(dom f ) be a nonempty, closed and convex set. If x̂ ∈ K , then
the following conditions are equivalent:

(i) the vector x̂ is the Bregman projection of x onto K with respect to f ;
(ii) the vector x̂ is the unique solution of the variational inequality

〈
f ′(x)− f ′(z),z− y

〉≥ 0, ∀y ∈ K ; (4.20)

(iii) the vector x̂ is the unique solution of the variational inequality

Df (y,z) +Df (z,x)≤Df (y,x), ∀y ∈ K. (4.21)
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4.6. If X is a Hilbert space and f = (1/2)‖ · ‖2, then the operators P
f
K and Π

f
K coin-

cide and are equal to the metric projection operator onto the set K . It is known (see,
for instance, [39]) that the metric projection operators in Hilbert spaces have valuable
continuity and stability properties. Such properties were also proved in [61] for Bregman
projections with respect to totally convex functions. As shown by the next result, which
extends [61, Theorem 2.2.12] and [47, Theorem 4.1], some of these properties remain

true for the relative projection operators P
f
K in any reflexive Banach space. Recall (cf.

[54]) that a sequence {Kn}n∈N of subsets of X is called convergent (in Mosco’s sense) to the
set K (we write M-convergent for short) if

K =w− lim
n→∞Kn = s− limn→∞Kn, (4.22)

where s− limn→∞ Kn represents the collection of all y ∈ X which are limits (in the strong
convergence sense) of sequences {xk}k∈N with the property that xn ∈ Kn for all n ∈ N
and w− limn→∞ Kn denotes the collection of all x ∈ X such that there exists a sequence
{yn}n∈N inX converging weakly to x and with the property that there exists a subsequence
{Kin}n∈N of {Kn}n∈N such that yn ∈ Kin for all n∈N.

Theorem 4.5. Suppose that f is lower semicontinuous and at least one of the following
conditions is satisfied:

(i) f is strongly coercive;
(ii) f is totally convex on bounded sets.
If K and Kn, (n ∈ N), are nonempty closed convex subsets of int(dom f ) and if the se-

quence {Kn}n∈N isM-convergent to K , then for any sequence {ξn}n∈N contained in int(dom
f ∗) which converges to some ξ ∈ int(dom f ∗), the following limits exist and we have

lim
n→∞W

f
(
ξn,Kn

)=W f (ξ,K), (4.23)

w− lim
n→∞P

f
Kn

(
ξn
)= P f

K (ξ). (4.24)

Proof. Denote x̂n = P f
Kn(ξn) and x̂ = P f

K (ξ). Suppose that {zn}n∈N is a sequence in X such
that zn ∈ Kn for all n ∈ N and limn→∞ zn = z. Since {Kn}n∈N is M-convergent to K it
results that z ∈ K . By Proposition 4.3 one deduces that

W f
(
ξn, x̂n

)
+W f

(
f ′
(
x̂n
)
,zn

)≤W f
(
ξn,zn

)
, ∀n∈N. (4.25)

Since f and f ∗ are lower semicontinuous they are continuous on the interior of their
respective domains. Consequently, W f is continuous on int(dom f ∗)× int(dom f ) and,
therefore, the sequence {W f (ξn,zn)}n∈N is convergent. By (4.25), this implies that the
sequence {W f (ξn, x̂n)}n∈N is bounded. We claim that {x̂n}n∈N is bounded too. In order
to show that, suppose first that f is coercive. Then the following inequality, which results
immediately from the definition of W f (ξn, x̂n), cannot hold unless {x̂n}n∈N is bounded:

W f
(
ξn, x̂n

)≥ f ∗
(
ξn
)

+
∥
∥x̂n

∥
∥
(
f
(
x̂n
)

∥
∥x̂n

∥
∥ −∥

∥ξn
∥
∥
)

. (4.26)
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Now, assume that f is totally convex on bounded sets. By Theorem 2.10, the function f
is also uniformly convex on bounded sets. Thus, according to [69, Proposition 2.4.13],
for each n∈N, one has that

ξn ∈ int
(

dom f ∗
)= int

(
dom∂ f ∗

)= int
(
range (∂ f )

)= int
(
range ( f ′)

)
. (4.27)

Thus, for each n ∈N, there exists un ∈ int(dom f ) such that f ′(un) = ξn. The sequence
{un}n∈N is contained in the set

⋃
n∈N ∂ f ∗(ξn). Since the operator ∂ f ∗ is monotone, it is

also locally bounded and, so, there exists a neighborhood V of ξ such that
⋃
ζ∈V ∂ f ∗(ζ)

is bounded. The sequence {ξn}n∈N being convergent to ξ, there exists a positive integer
n0 such that ξn ∈V for all n≥ n0. Hence, for any n≥ n0 one has

un ∈ ∂ f ∗(ξn)⊆
⋃

ζ∈V
∂ f ∗(ζ), (4.28)

and this implies that the sequence {un}n∈N is bounded. Thus, the function ν f ({un}n∈N,·)
is strictly increasing (see Section 2.10). Observe that

ν f
({
un

}
n∈N,

∥
∥x̂n−un∥∥)≤Df

(
x̂n,un

)=W f
(
ξn, x̂n

)
, (4.29)

where the sequence {W f (ξn, x̂n)}n∈N is bounded. Since the sequence {un}n∈N is also
bounded, this inequality cannot hold unless the sequence {x̂n}n∈N is bounded too.

We show next that the only weak accumulation point of {x̂n}n∈N is x̂. Clearly, this
implies (4.24). To this end, note that, if {ζn}n∈N is strongly convergent to ζ in X∗ and if
{un}n∈N is weakly convergent to u in X , then

W f (ζ ,u)≤ liminf
n→∞ W f

(
ζn,un

)
(4.30)

because of the weak lower semicontinuity of f and the lower semicontinuity of f ∗. Since
x̂ ∈ K and K is the Mosco limit of the sequence of sets {Kn}n∈N, there exists a sequence
{vn}n∈N in X such that vn ∈ Kn for all n ∈ N and limn→∞ vn = x̂. Let x̄ be an arbitrary
weak accumulation point of {x̂n}n∈N and let {x̂in}n∈N be a subsequence of {x̂n}n∈N which
converges weakly to x̄. Clearly, x̄ ∈ K and, by (4.30), one has

W f (ξ, x̂)≤W f (ξ, x̄)≤ liminf
n→∞ W f

(
ξin , x̂in

)

≤ liminf
n→∞ W f

(
ξin ,vin

)= lim
n→∞W

f
(
ξn,vn

)=W f (ξ, x̂).
(4.31)

This shows that W f (ξ, x̂) =W f (ξ, x̄) where x̂ is the only minimizer of W f (ξ,·) in K .
Consequently, one gets x̂ = x̄. Since x̄ is an arbitrary weak accumulation point of {x̂n}n∈N,
one obtains (4.24).

In order to prove (4.23) observe that, sincew− limn→∞ x̂n = x̂, one can use (4.30) again
in order to deduce that

W f (ξ, x̂)≤ liminf
n→∞ W f

(
ξn, x̂n

)≤ limsup
n→∞

W f
(
ξn, x̂n

)

≤ lim
n→∞W

f
(
ξn,vn

)=W f (ξ, x̂).
(4.32)

This shows that limn→∞W f (ξn, x̂n)=W f (ξ, x̂), that is, (4.23) holds. �
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4.7. A direct consequence of Theorem 4.5 is the monotonicity of the operator P
f
K .

Proposition 4.6. Suppose that f is either strongly coercive or totally convex at each point

of its domain. Then, for any nonempty closed convex subset K of dom f , the operator P
f
K

monotone. Moreover, if domP
f
K = X∗ and K ⊆ int(dom f ), then P

f
K is maximal monotone.

Proof. According to the definition of P
f
K , for any ξ, ζ ∈ domP

f
K , one has that

W f
(
ξ,P

f
K (ξ)

)≤W f
(
ξ,P

f
K (ζ)

)
,

W f
(
ζ ,P

f
K (ζ)

)≤W f
(
ζ ,P

f
K (ξ)

)
.

(4.33)

Adding these inequalities one obtains

〈
P
f
K (ξ)−P f

K (ζ),ξ − ζ〉≥ 0, (4.34)

showing the operator P
f
K is monotone. According to Theorem 4.5, the monotone opera-

tor P
f
K is hemicontinuous. Now, suppose that domP

f
K = X∗ and K ⊆ int(dom f ). Apply-

ing [56, Corollary 2.3, page 106], maximal monotonicity of P
f
K results. �

4.8. Computing relative projections may not be an easy task. Clearly, for any ξ ∈ int(dom
f ∗), we have

P
f
X(ξ)= f ∗′(ξ) (4.35)

because

W f
(
ξ, f ∗′(ξ)

)= f ∗(ξ)− 〈
ξ, f ∗′(ξ)

〉
+ f

(
f ∗′(ξ)

)
. (4.36)

It is easy to see that (4.10) applies with f and f ∗ interchanged, because f = f ∗∗. If K
is a hyperplane or a half space, then formulas for computing the Bregman projection

P
f
K ( f ′(x)) =Π

f
K (x) are given in [6, 30] in the case when f = ‖ · ‖p for some p ∈ (1,∞)

and X is smooth and strictly convex. Iterative algorithms for computing Bregman pro-
jections on more general sets are presented in [15]. The following result gives a formula
for computing relative projections onto closed hyperplanes and half spaces. It applies, for
instance, when X is smooth and f = ‖·‖p with p ∈ (1,∞).

Theorem 4.7. Suppose that dom f = X , f is totally convex at any x ∈ X , dom f ∗ = X∗,
f ∗′ is positively homogeneous of degree q > 0, a∈ X∗\{0} and b ∈R.

(i) If K = {x ∈ X : 〈a,x〉 = b}, then

P
f
K (ξ)= f ∗′(sa+ ξ), (4.37)

where s is a necessarily existing solution of the equation

〈
a, f ∗′(sa+ ξ)

〉= b. (4.38)
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(ii) If K = {x ∈ X : 〈a,x〉 ≥ b}, then

P
f
K (ξ)=

⎧
⎨

⎩
f ∗′(sa+ ξ) if f ∗′(ξ) /∈ K
f ∗′(ξ) if f ∗′(ξ)∈ K ,

(4.39)

where s is a necessarily existing positive solution of (4.38).

Proof. We first justify that dom f ∗′ = X∗. Indeed, this is so because the function f is
essentially strictly convex (cf. Proposition 2.13) and, according to [13, Theorem 5.9], it
satisfies dom f ∗′ = int(dom f ∗) which is exactly X∗ in our context.

Now we show that there exists s ∈ R such that 〈a, f ∗′(sa+ ξ)〉 = b. To this end, con-
sider the function

ψ(s)= 〈
a, f ∗′(sa+ ξ)

〉− b. (4.40)

Clearly, ψ(0)= 〈a, f ∗′(ξ)〉− b. If f ∗′(ξ)∈ K , then s= 0 is the required solution. Other-
wise, suppose that ψ(0) < 0 and observe that the function ψ is continuous. By the homo-
geneity of f ∗′ one has f ∗′(0)= 0q f ∗′(0)= 0 and, thus, one obtains that

〈
a, f ∗′(a)

〉= 〈
a− 0, f ∗′(a)− f ∗′(0)

〉
> 0, (4.41)

due to the strict monotonicity of f ∗′. Consequently, for any s > 0, one has

ψ(s)= sq〈a, f ∗′
(
a+ s−1ξ

)〉− b. (4.42)

Taking into account that f ∗′ is norm-to-weak∗ continuous, one deduces that

lim
s→∞ψ(s)= 〈

a, f ∗′(a)
〉

lim
s→∞s

q− b =∞. (4.43)

This, the fact that ψ(0) < 0, and the continuity of ψ imply that ψ has a root s in the interval
(0,∞). Now, observe that for the root s of ψ and for all y ∈ K one has

〈
ξ − f ′

(
f ∗′(sa+ ξ)

)
, f ∗′(sa+ ξ)− y

〉= 〈
ξ − (sa+ ξ), f ∗′(sa+ ξ)− y

〉

=−s〈a, f ∗′(sa+ ξ)− y
〉= 0,

(4.44)

showing that f ∗′(sa+ ξ) satisfies the variational inequality (4.14). The case ψ(0) > 0 can
be treated similarly by noting that it is exactly the previous case with a and b replaced by
−a and −b, respectively. This proves (i). The proof of (ii) is similar. �

5. A method of solving operator equations

5.1. In this section we assume that X is a reflexive Banach space and f : X →R is a lower
semicontinuous function satisfying the following conditions:

Assumption 5.1. (i) f is totally convex on bounded sets.
(ii) f , as well as its Fenchel conjugate f ∗, are defined and (Gâteaux) differentiable on X

and X∗, respectively.
(iii) f ′ is uniformly continuous and f ∗ is bounded on bounded sets.
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Note that, since f is lower semicontinuous, then the differentiability of f ∗ required by
Assumption 5.1(ii) can be deduced from the strict convexity of f which is guaranteed by
Assumption 5.1(i) (cf. [64, Theorem 11.13]). In particular, this happens when X is finite
dimensional because, in this case, f is continuous on X as being convex.

We consider the problem of finding a vector x such that

Ax = 0, x ∈Ω, (5.1)

where A : domA→ X∗ is a given operator and Ω is a nonempty closed convex subset of
domA. We are going to present an iterative method for solving (5.1) for a class of op-
erators which, when X is a Hilbert space, contains all inverse-strongly-monotone opera-
tors (see [53] and Lemma 5.3 below) and, implicitly, the gradients of many differentiable
functions of interest in optimization (see [11, Corollary 10]).

For each α∈ (0,∞) we define the operator A
f
α : domA→ X by

A
f
αx = f ∗′

(
f ′(x)−αAx). (5.2)

Note that Ax = 0 if and only if x ∈ domA is a fixed point of A
f
α . We say that the operator

A is inverse-monotone relative to f on the set Ω if there exists a real number α > 0 and a
vector z ∈Ω such that

〈
Ay,A

f
α y− z〉≥ 0, ∀y ∈Ω. (5.3)

In this case, the vector z involved in (5.3) is called monotonicity pole of A.

5.2. The most typical example of an operator which is inverse-monotone relative to f is
the operator A= f ′ in the case when the function f has a global minimizer z ∈ X . In this
case, for any α∈ (0,1), we have that

A
f
αx = f ∗′

(
(1−α) f ′(x)

)= (
(1−α)−1 f

)∗′( f ′(x)
)
. (5.4)

Also, according to [64, Theorem 11.8(b)], we have that ((1− α)−1 f )∗′(0) = z because z
also minimizes the function (1−α)−1 f on X . Hence,

〈
Ax,A

f
αx− z〉=

〈
f ′(x),

(
1

1−α f
)∗

′( f ′(x)
)− z

�

=
〈
f ′(x)− 0,

(
1

1−α f
)∗

′( f ′(x)
)−

(
1

1−α f
)∗

′(0)
�
≥ 0,

(5.5)

where the last inequality is due to the monotonicity of the operator ((1−α)−1 f )∗′.

5.3. The following result establishes connections between the properties of relative
inverse-monotonicity defined here and the property of total nonexpansivity introduced
in [28]. Recall that an operator T : X → X is called totally nonexpansive with respect to the
function f on the set Ω if there exists a vector z ∈Ω such that

Df (z,Tx) +Df (Tx,x)≤Df (z,x), ∀x ∈Ω. (5.6)
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A vector z for which the condition (5.6) is satisfied is called nonexpansivity pole of T
with respect to f and it is necessarily a fixed point of T . Note that total nonexpansivity
of operators is closely related to the notion of �-class operator in the sense given to this
term by Bauschke et al. [14]. More precisely, if a �-class operator T has fixed points, then
it is totally nonexpansive.

Lemma 5.2. The operator A is inverse-monotone relative to f on Ω with constant α if and

only if the operator A
f
α is totally nonexpansive with respect to f on Ω, that is, for some z ∈Ω,

the following inequality holds:

Df

(
z,A

f
αx

)
+Df

(
A
f
αx,x

)
≤Df (z,x), ∀x ∈Ω. (5.7)

In this case, z ∈Ω is a monotonicity pole of A if and only if it is a nonexpansivity pole of A
f
α .

Proof. Observe that for any x ∈Ω one has

Df (z,x)−Df

(
z,A

f
αx

)
= f

(
A
f
αx

)
− f (x)− 〈

f ′(x),z− x〉+
〈
f ′
(
A
f
αx

)
,z−Af

αx
〉

, (5.8)

where f ′(Af
αx)= f ′(x)−αAx. Hence,

Df (z,x)−Df

(
z,A

f
αx

)
=Df

(
A
f
αx,x

)
+α

〈
Ax,A

f
αx− z

〉
. (5.9)

This implies that A is inverse-monotone relative to f on Ω and z is a monotonicity pole

of it if and only if A
f
αx is totally nonexpansive with respect to f on Ω and z is a nonex-

pansivity pole of it. �

5.4. It is interesting to observe that if X is a Hilbert space and if f (x)= (1/2)‖x‖2, then
the inverse-monotonicity condition (5.3) can be rewritten in a more familiar form. Op-
erators B on a Hilbert space X which satisfy the condition that there exists a real number
α > 0 such that

〈Bx−Bz,x− z〉 ≥ α‖Bx−Bz‖2, ∀x,z ∈ domB (5.10)

are called inverse-strongly-monotone operators (see, for instance, [53, page 320]). These
are nonexpansive operators whose (set valued) inverses are strongly monotone. Note
that, according to the lemma proved below, an inverse-strongly-monotone operator B
which has a zero at some point z ∈ domB is necessarily inverse-monotone relative to
f = (1/2)‖ · ‖2 on domB and has z as a monotonicity pole. In other words, the notion of
inverse-monotonicity relative to a function f can be viewed as a generalization of that of
inverse-strong-monotonicity for operators in Hilbert spaces.

Lemma 5.3. If X is a Hilbert space and f = (1/2)‖ · ‖2, then the operator A is inverse-
monotone relative to f on Ω if and only if, for some z ∈Ω, one has that Az = 0 and

〈Ax,x− z〉 ≥ α‖Ax‖2, ∀x ∈Ω. (5.11)
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Proof. If A is inverse-monotone relative to f on Ω and z ∈Ω is a monotonicity pole of it

then, by Lemma 5.2, z is a nonexpansivity pole of A
f
α and, thus, z is a fixed point of A

f
α .

Since, in these circumstances, f ′ is the identity, it follows that z = A
f
αz = z− αAz and,

therefore, z is a solution of (5.1). Hence, for any x ∈Ω, one has

〈Ax,x− z〉−α‖Ax‖2 = 〈Ax−Az,x− z〉−α‖Ax−Az‖2

= 〈
Ax−Az,x− z−α(Ax−Az)

〉

=
〈
Ax,A

f
αx− z

〉
≥ 0.

(5.12)

Conversely, if A satisfies (5.11) for some z ∈Ω with Az = 0 and for any x ∈Ω, then the
previous chain of equalities shows that (5.3) holds. �

5.5. Now we are going to describe an iterative procedure for solving (5.1). To this end,

for each real number α > 0, we define the operator S
f
α : domA→ X by

S
f
αx = P f

Ω

(
f ′(x)−αAx), (5.13)

where P
f
Ω is the projection operator relative to f onto the set Ω. According to (4.13) we

also have

S
f
α =Π

f
Ω ◦Af

α . (5.14)

We are interested in the behavior of the following iterative process:

Choose y0 ∈ domA and define yk+1 = S fα yk, ∀k ∈N. (5.15)

The next result shows that if the operator A is inverse-monotone relative to a function
f having the properties required at the beginning of this section, then (5.1) has solu-
tions and the sequences {yk}k∈N generated according to the rule (5.15) produces weak
approximations of solutions of (5.1). A careful analysis of the proof shows that (5.15) is

essentially a method of approximating fixed points of the operator S
f
α .

Theorem 5.4. If the operator A is inverse-monotone relative to f on Ω with constant α > 0,
then (5.1) has solutions and any sequence {yk}k∈N generated according to the rule (5.15) is
bounded, has weak accumulation points and limk→∞Ayk = 0. If, in addition, the operator
A is sequentially weakly-weakly∗ continuous on Ω, then any weak accumulation point of
{yk}k∈N is a solution of (5.1). In this case, if (5.1) has unique solution, then the sequence
{yk}k∈N converges weakly to that solution.

Proof. According to Lemma 5.2, the operator A
f
α is totally nonexpansive with respect to

f on Ω. This implies that there exists a vector z ∈Ω such that

Df

(
z,A

f
αx

)
≤Df (z,x), ∀x ∈Ω. (5.16)

Taking here x = z, one obtains that z = A
f
αz. Consequently, one has f ′(z) = f ′(Af

αz)
which, together with (5.2), impliesAz = 0. Hence, (5.1) has solutions. According to (5.16)
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combined with Corollary 4.4 and (5.14) one has that

Df

(
z,S

f
αx

)
+Df

(
S
f
αx,A

f
αx

)
≤Df

(
z,A

f
αx

)
≤Df (z,x), ∀x ∈Ω. (5.17)

Writing these inequalities for x = yk (which is contained in Ω) one deduces that

Df
(
z, yk+1)+Df

(
yk+1,A

f
α yk

)
≤Df

(
z,A

f
α yk

)
≤Df

(
z, yk

)
, ∀k ∈N. (5.18)

This implies that the sequence {Df (z, yk)}k∈N is nonincreasing and, therefore, bounded.

Thus, the sequence { f ′(yk)}{k∈N} is contained in the set R
f ∗

β (z), where β is a positive up-

per bound of the sequence {Df (z, yk)}k∈N. The set R
f ∗

β (z) is bounded because f ∗ −〈·,z〉
is coercive and, thus, yk = f ∗′( f ′(yk)) is bounded (cf. Assumption 5.1). Hence, the se-
quence {yk}k∈N is bounded and, since the space X is reflexive, there exists a subsequence
{yik}k∈N of {yk}k∈N which converges weakly to some point ȳ. Since all yik ’s are contained
in Ω, the vector ȳ is contained in Ω too (Ω is convex and closed and, thus, weakly closed).

We claim that the sequences {yik}k∈N and {Af
α yik}k∈N have the same weak limit ȳ. For

proving this it is sufficient to show that

lim
k→∞

∥
∥
∥A

f
α yk − yk

∥
∥
∥= 0. (5.19)

Observe that (5.18) implies

0≤Df

(
z,A

f
α yk

)
−Df

(
z, yk+1)≤Df

(
z, yk

)−Df
(
z, yk+1), ∀k ∈N. (5.20)

As noted above, the sequence {Df (z, yk)}k∈N converges. Therefore, the last inequality

shows that the sequence {Df (z,A
f
α yk)}k∈N converges and has the same limit as the se-

quence {Df (z, yk)}k∈N. By (5.9) one also has

Df
(
z, yk

)−Df

(
z,A

f
α yk

)
=Df

(
A
f
α yk, yk

)
+α

〈
Ayk,A

f
α yk − z

〉
, (5.21)

where the last term on the right-hand side is nonnegative because of the inverse- mono-
tonicity of A. Thus, one obtains that

0≤ lim
k→∞

Df

(
A
f
α yk, yk

)
≤ lim

k→∞

[
Df

(
z, yk

)−Df

(
z,A

f
α yk

)]
= 0, (5.22)

which shows that limk→∞Df (A
f
α yk, yk)= 0. The function f is totally convex on bounded

sets and the sequence {yk}k∈N is bounded. Therefore, the function ν f (E,·) associated to
the set E := {yk}k∈N, is strictly increasing on [0,∞) (see Section 2.10), vanishes at 0 and
satisfies

ν f
(
E,
∥
∥
∥A

f
α yk − yk

∥
∥
∥
)
≤Df

(
A
f
α yk, yk

)
, ∀k ∈N. (5.23)

This and (5.22) imply that

lim
k→∞

ν f
(
E,
∥
∥
∥A

f
α yk − yk

∥
∥
∥
)
= 0. (5.24)
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Due to the strict monotonicity of ν f (E,·), this cannot happen unless (5.19) holds. Since
f ′ is uniformly continuous on bounded sets, by (5.19) one deduces that

lim
k→∞

∥
∥
∥ f ′

(
A
f
α yk

)
− f ′

(
yk
)∥∥
∥∗ = 0. (5.25)

Note that, according to (5.2), one also has that f ′(Af
α yk)− f ′(yk)=−αAyk. The last two

equalities imply that limk→∞‖Ayk‖∗ = 0.
Now, suppose that A is sequentially weakly-weakly∗ continuous. Since the sequence

{yik}k∈N converges weakly to ȳ, we obtain that ‖Aȳ‖∗ ≤ limk→∞‖Ayik‖∗ = 0, showing
that ȳ is a solution of (5.1). If the solution of (5.1) is unique, then the sequence {yk}k∈N
has a unique weak accumulation point and this completes the proof. �

5.6. The sequential weak-weak∗ continuity condition imposed upon the operator A in
Theorem 5.4 is restrictive. However, this condition always holds whenA is linear and con-
tinuous on X or, alternatively, when X is finite dimensional and A is continuous on its
domain. An immediate application of Theorem 5.4 to convex unconstrained optimiza-
tion in Rn is emphasized in the result below.

Corollary 5.5. Suppose that f : Rn → R is a differentiable strictly convex function. If f ′

is uniformly continuous on bounded sets and if f has a global minimizer, then for each
α∈ (0,1), the sequence {yk}k∈N generated according to the rule

y0 ∈Rn, yk+1 = f ∗′
(
(1−α) f ′

(
yk
))

, ∀k ∈N, (5.26)

converges to the minimizer of f .

Proof. Theorem 2.14 ensures that f satisfies Assumption 5.1. As noted in Section 5.2, in
these circumstances, the operator A = f ′ is inverse-monotone relative to f . Applying
Theorem 5.4 and taking into account that f has a single minimizer (i.e., the equation
f ′(x)= 0 has a single solution) yields the conclusion. �

5.7. The following technical result, which will be used later, is a generalization of a result
known as Opial’s lemma [55, Lemma 2]. Opial’s lemma says that if X is a Hilbert space,
if g = (1/2)‖ · ‖2 and if T : Ω→ X is a nonexpansive mapping on the nonempty closed
convex subset Ω of X , then for any sequence {zk}k∈N ⊆Ω which is weakly convergent and
has limk→∞‖Tzk − zk‖ = 0, the vector z = w− limk→∞ zk is necessarily a fixed point of T .
We extend this result to not necessarily Hilbertian Banach spaces and to nonexpansive
operators in a generalized sense.

Lemma 5.6. Suppose that the function g : X →R is totally convex on bounded sets and has
bounded on bounded sets Gâteaux derivative g′. If T : Ω→ X is an operator such that

Dg(Ty,Tx)≤Dg(y,x), ∀x, y ∈Ω, (5.27)

then for any weakly convergent sequence {zk}k∈N ⊆ Ω which has limk→∞Dg(Tzk,zk) = 0,
the vector z =w− limk→∞ zk is a fixed point of T .
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Proof. Observe that, for any x ∈ X , one has

Dg
(
zk,x

)−Dg
(
zk,z

)=−g(x)− 〈
g′(x),zk − x〉+ g(z) +

〈
g′(z),zk − z〉

=Dg(z,x) +
〈
g′(x)− g′(z),z− zk〉,

(5.28)

where limk→∞〈g′(x)− g′(z),z− zk〉 = 0. Therefore,

liminf
k→∞

Dg
(
zk,x

)≥Dg(z,x) + liminf
k→∞

Dg
(
zk,z

)
, (5.29)

which shows that, when x �= z, one has

liminf
k→∞

Dg
(
zk,x

)
> liminf

k→∞
Dg

(
zk,z

)
. (5.30)

We claim that

liminf
k→∞

Dg
(
Tzk,Tz

)= liminf
k→∞

Dg
(
zk,Tz

)
. (5.31)

In order to show that, observe that

Dg
(
Tzk,Tz

)= g(Tzk)− g(Tz)− 〈
g′(Tz),Tzk −Tz〉

=Dg
(
zk,Tz

)
+
[
g
(
Tzk

)− g(zk)]+
〈
g′(Tz),zk −Tzk〉. (5.32)

The function g is sequentially consistent (cf. Theorem 2.10). Consequently, since

lim
k→∞

Dg
(
Tzk,zk

)= 0, (5.33)

one also has that

lim
k→∞

∥
∥Tzk − zk∥∥= 0. (5.34)

This implies that

lim
k→∞

〈
g′(Tz),zk −Tzk〉= 0. (5.35)

From the convexity of g one deduces that

〈
g′
(
Tzk

)
,Tzk − zk〉≥ g(Tzk)− g(zk)≥ 〈

g′
(
zk
)
,Tzk − zk〉, (5.36)

where the sequence {zk}k∈N is bounded as being weakly convergent and {Tzk}k∈N is
bounded because of (5.34). The function g′ being bounded on bounded sets the se-
quences {g′(zk)}k∈N and {g′(Tzk)}k∈N are bounded too. Thus, letting k →∞ in (5.36)
we deduce that

lim
k→∞

[
g
(
Tzk

)− g(zk)]= 0. (5.37)
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This, combined with (5.35) and (5.32), proves (5.31). Now, suppose by contradiction that
Tz �= z. Then, according to (5.30), one has that

liminf
k→∞

Dg
(
zk,Tz

)
> liminf

k→∞
Dg

(
zk,z

)
. (5.38)

By (5.27), one deduces that

liminf
k→∞

Dg
(
zk,z

)≥ liminf
k→∞

Dg
(
Tzk,Tz

)= liminf
k→∞

Dg
(
zk,Tz

)
, (5.39)

where the last equality results from (5.31). Since (5.38) and (5.39) contradict each other,
our assumption that Tz �= z is false, that is, z is a fixed point of T . �

5.8. It was noted above that applicability of Theorem 5.4 is restricted because of the re-
quirement that the operator A should be sequentially weakly-weakly∗ continuous. Us-
ing the generalization of Opial’s lemma proved above we can give another variant of
Theorem 5.4 in which that requirement is dropped. The price to pay for dropping that
condition is the need to strengthen our demands on the function f and on the nonex-
pansivity of A. In order to present the alternative version of Theorem 5.4 we will call the
operatorA inverse-strongly-monotone on Ω relative to f with constant α > 0 if A is inverse-

monotone relative to f with constant α > 0 and the operator A
f
α is nonexpansive on Ω

with respect to f in the sense given to this term in [32], that is, if

Df

(
A
f
αx,A

f
α y

)
≤Df (x, y), ∀x, y ∈Ω. (5.40)

Note that, in general, the operator A may satisfy condition (5.40) for some α > 0 without
being inverse-monotone with respect to f with constant α. For instance, take X to be a
Hilbert space, Ω = X , f = (1/2)‖ · ‖2 and Ax = x for any x ∈ X . It is easy to verify that,
in this case, condition (5.40) holds for any α ∈ (0,2]. However, the operator A is not
inverse-monotone relative to f (i.e., it does not satisfy (5.3)) for any α∈ (1,2].

Now we are in position to prove the new version of Theorem 5.4 that applies to oper-
ators which are inverse-strongly-monotone with respect to f .

Theorem 5.7. If the operator A is inverse-strongly-monotone relative to f on Ω with con-
stant α > 0 and if (5.1) has at least one solution, then any sequence {yk}k∈N generated ac-
cording to the rule (5.15) has the following properties:

(i) it is bounded, has weak accumulation points and any such point is a solution of (5.1);
(ii) if (5.1) has unique solution, then the sequence {yk}k∈N converges weakly to that

solution;
(iii) if the space X has finite dimension, then {yk}k∈N converges to a solution of (5.1).

Proof. Let z ∈Ω be a solution of (5.1). Then z is a fixed point of A
f
α and one has

Df

(
z,A

f
αx

)
=Df

(
A
f
αz,A

f
αx

)
≤Df (z,x), ∀x ∈Ω. (5.41)

Consequently, (5.16) holds and all the considerations in the proof of Theorem 5.4 up
to, and including, formula (5.22) can be reproduced without any modification. Formula
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(5.22) implies that

lim
k→∞

Df

(
A
f
α yk, yk

)
= 0. (5.42)

Also, according to [48, Proposition 4], the derivative f ′ is bounded on bounded sets
because it is uniformly continuous on bounded sets (cf. Assumption 5.1). Therefore, one
can apply Lemma 5.6 to the weakly convergent subsequence {yik}k∈N. It implies that ȳ is

a fixed point of the operator A
f
α , that is, a solution of the problem (5.1). This proves (i).

Clearly, (ii) results from (i). Now, suppose that X has finite dimension. By Corollary 4.4
and (5.41), one has that

Df
(
ȳ, yk+1)+Df

(
yk+1,A

f
α yk

)
≤Df

(
ȳ, yk

)
, ∀k ∈N. (5.43)

This implies that {Df ( ȳ, yk)}k∈N is convergent. Since it has a subsequence convergent to
zero, then the whole sequence converges to zero. By Assumption 5.1 and Theorem 2.10,
f is sequentially consistent. Hence, ‖yk − ȳ‖→ 0 as k→∞ and this completes the proof.

�

5.9. Theorem 5.7 leads to the following partially known result (see [1], [17, Section 2.3]
and [34, Corollary 4.1]).

Corollary 5.8. Suppose that X is a Hilbert space and ϕ : X →R is a convex function which
is Gâteaux differentiable on X and such that its derivative is Lipschitzian with Lipschitz
constant L. If ϕ has at least one minimizer in X , then any sequence generated according to
the rule

yk+1 = yk −αϕ′(yk), ∀k ∈N, (5.44)

has the following properties, no matter how the constant α ∈ (0,L−1] and the initial point
y0 ∈ X are chosen:

(i) {yk}k∈N is bounded, has weak accumulation points, and any such point is a mini-
mizer of ϕ;

(ii) if ϕ has a unique minimum on X , then the sequence {yk}k∈N converges weakly to a
minimizer of ϕ;

(iii) if X is finite dimensional, then the sequence {yk}k∈N converges to a minimizer of ϕ.

Proof. According to [11, Corollary 10], the operatorA= ϕ′ is inverse-strongly-monotone
with any constant α ∈ (0,L−1]. By Lemma 5.3, this implies that ϕ′ is inverse-monotone
relative to the function f = (1/2)‖ · ‖2 on the whole space X with any constant α ∈
(0,L−1]. Also, one can easily check that A satisfies condition (5.40) for any α∈ (0,2L−1].
Therefore, the operator A is inverse-strongly-monotone relative to f = (1/2)‖ · ‖2 with
any α∈ (0,L−1]. By applying Theorem 5.7 to A= ϕ′ and by taking into account that f ′ is
the identity, the result follows. �
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