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This work provides the solution of the direct Electroencephalography (EEG) problem
for the complete ellipsoidal shell-model of the human head. The model involves four
confocal ellipsoids that represent the successive interfaces between the brain tissue, the
cerebrospinal fluid, the skull, and the skin characterized by different conductivities. The
electric excitation of the brain is due to an equivalent electric dipole, which is located
within the inner ellipsoid. The proposed model is considered to be physically complete,
since the effect of the substance surrounding the brain is taken into account. The direct
EEG problem consists in finding the electric potential inside each conductive space, as
well as at the nonconductive exterior space. The solution of this multitransmission prob-
lem is given analytically in terms of elliptic integrals and ellipsoidal harmonics, in such
way that makes clear the effect that each shell has on the next one and outside of the
head. It is remarkable that the dependence on the observation point is not affected by
the presence of the conductive shells. Reduction to simpler ellipsoidal models and to the
corresponding spherical models is included.

Copyright © 2006 S. N. Giapalaki and F. Kariotou. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The method of Electroencephalography (EEG) is the most widely used, noninvasive
method for studying the human brain in vivo. The data of an Electroencephalogram
are obtained by measuring the electric potentials in the exterior of the head. The in-
verse EEG problem consists in determining the location of the electrochemical source
inside the brain that produces the externally measured electric potential field. The results
obtained from the solution of the forward EEG problem, namely the electric potential
field that a given source produces, are of major importance for the inverse problem. The
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well-poseness of the mathematical problem demands certain assumptions concerning
the physical model approximating the electrochemical source as well as the geometri-
cal model used for the brain-head approximation. The most popular model used for the
source is that of an equivalent electric dipole current of a given moment.

As far as the geometrical model of the conductor is concerned and for the analytical
treatment of the problem, the dominant model for the brain-head system is the one of
a homogeneous spherical [3, 6, 2, 13], or a homogeneous spheroidal [2, 16] conductor.
The improvement of these models, so that the 3D anisotropy of the system is taken into
account, has led to the concept of more realistic volume conductors [12]. Furthermore,
the case of a homogeneous ellipsoidal conductor, which fits best to the geometrical char-
acteristics of the brain [14], was treated in [8]. Furthermore, the brain is protected by
shells consisted of the cerebrospinal fluid, the bone and the skin that are all characterized
by different electrical conductivities. As it is expected, this inhomogeneity constitutes an
important parameter of the problem that should be taken into account considering lay-
ered volume conductors [2]. The case of one confocal ellipsoidal shell, characterised by
different conductivity, surrounding the homogeneous ellipsoidal conductor, represents
the brain was treated in [7].

In this work, in order to study the effect of inhomogeneity in the measured electric po-
tential for the case of ellipsoidal geometry, we assume the physically complete ellipsoidal
shell-model. Specifically we consider three confocal ellipsoidal shells, each one character-
ized by a different conductivity, which surround the homogeneous ellipsoidal conductor
representing the brain. It is observed that the conductivity values, as well as the geomet-
rical parameters of the four ellipsoidal boundaries, appear in every term of the multipole
expansion of the electric potential, justifying this way the improvement offered by this
model.

The postulation of the transmission problem that the electric potential field has to
satisfy near the dipole source, in the spaces between the ellipsoidal boundaries and in
the exterior space, is presented in Section 2. In Section 3 we deal with the solution of
this problem using eigenfunction expansions in ellipsoidal coordinates. The solution is
expressed in terms of elliptic integrals and ellipsoidal harmonics, while relative expres-
sions in Cartesian and in tensorial form are also included. In Section 4 the corresponding
homogeneous and one shell inhomogeneous ellipsoidal results are recovered through re-
duction process and also the electric potential for the two confocal ellipsoidal shell model
is provided. The corresponding manipulations needed for the reduction to the spherical-
shell model are given in Section 5.

2. Statement of the problem

Following anatomic structure we model the head as an ellipsoid, occupied by the brain,
which is surrounded by three confocal ellipsoidal shells, which are filled, starting from
the inside, with the cerebrospinal fluid, the skull and the skin. From the physical point
of view the above compartments of this realistic model of the head are distinguished by
their different values of electric conductivity.
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Let Ss, Sb, S f , and Sc denote the triaxial ellipsoidal surfaces, which in rectangular coor-
dinates are specified by
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respectively, where ci < fi < bi < si, i= 1,2,3, are their semiaxes. The ellipsoids (2.1), (2.2),
(2.3), (2.4) are confocal and correspond to the ellipsoidal system ρ, μ, ν [5] with semifocal
distances h1, h2, h3, where
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The ellipsoidal coordinates ρ, μ, ν are connected to the Cartesian ones x1, x2, x3 by the
relations [5]
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and vary in the intervals [h2,+∞), [h3,h2], and [−h3,h3], respectively.
In terms of the variable ρ, the surfaces Ss, Sb, S f , and Sc correspond to ρ = s1, ρ = b1,

ρ = f1, and ρ = c1 and represent the boundaries of the skin, the scull (bone), the fluid
and the cerebrum, respectively. The interior to Sc space Vc corresponds to the interval
ρ ∈ [h2,c1) and is characterized by the conductivity σc. The ellipsoidal shell between Sc
and S f , denoted by Vf , corresponds to the interval ρ ∈ (c1, f1) and is characterized by the
conductivity σ f . The ellipsoidal shell between S f and Sb, denoted by Vb, corresponds to
the interval ρ ∈ ( f1,b1) and is characterized by the conductivity σb. Finally, the ellipsoidal
shell bounded by Sb and Ss, is denoted by Vs, corresponds to the interval ρ ∈ (b1,s1)
and is characterized by the conductivity σs. The exterior to Ss nonconductive space V is
described by ρ ∈ (s1,+∞).
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At the point r0 ∈Vc there exists a primary current dipole source with moment Q. This
is specified by the current density function

JP(r)=Qδ
(

r− r0
)
, (2.7)

where δ stands for the Dirac measure at the point r0.
The primary current JP induces an electric field E in the interior conductive space,

which in turn generates an induction current with density JV :

JV (r)= σcEc(r)XVc(r) + σ f E f (r)XVf (r) + σbEb(r)XVb(r) + σsEs(r)XVs(r), (2.8)

where XA(r) denotes the characteristic function of the set A.
Hence, the total current at every point r of the conductor is given by

J(r)= JP(r) + JV (r). (2.9)

The current J generates an electromagnetic field, which propagates in the interior as well
as in the exterior of the conductive space.

Because of the values of the dielectric constant and the electric conductivity of the
brain tissue, the quasistatic approximation of Maxwell’s equations is considered [4, 9, 13,
15]. Therefore the electric field E and the magnetic induction field B satisfy the following
equations [9]:

∇×E= 0, (2.10)

∇×B= μ0J, (2.11)

∇·E= 0, (2.12)

∇·B= 0, (2.13)

where μ0 denotes the magnetic permeability in the whole space.
Since E is irrotational, it can be represented by an electric potential u, via the differen-

tial representation

E(r)=−∇u(r). (2.14)

The electric potential u is the field recorded in any electroencephalogram. In particular,
we denote the electric potential in the interior space Vc by uc, in the ellipsoidal shell Vf

by u f , in the ellipsoidal shell Vb by ub, in the ellipsoidal shell Vs by us and in the exterior
space V by u. Combining (2.9), (2.14), and (2.11), we obtain the Poisson equation

Δuc(r)= 1
σc
∇· JP(r), r∈Vc, (2.15)

which the interior potential uc must satisfy in Vc.
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In the source-free spaces Vf , Vb, Vs, and V the potentials u f , ub, us, and u solve the
Laplace equation

Δu f (r)= 0, r∈Vf , (2.16)

Δub(r)= 0, r∈Vb, (2.17)

Δus(r)= 0, r∈Vs, (2.18)

Δu(r)= 0, r∈V. (2.19)

On the surface Sc the following transmission conditions hold

u f (r)= uc(r), r∈ Sc, (2.20)

σ f ∂nu f (r)= σc∂nuc(r), r∈ Sc, (2.21)

where the ∂n indicates the outward normal differentiation. Conditions (2.20)-(2.21) state
the continuity of the potential function as well as the continuity of the normal component
of the electric field on Sc.

On the surface S f we demand that

ub(r)= u f (r), r∈ S f , (2.22)

σb∂nub(r)= σ f ∂nu f (r), r∈ S f (2.23)

and similarly on Sb,

ub(r)= us(r), r∈ Sb, (2.24)

σb∂nub(r)= σs∂nus(r), r∈ Sb. (2.25)

Since V is characterized by zero conductivity, on the surface Ss the continuity conditions
read

us(r)= u(r), r∈ Ss, (2.26)

∂nus(r)= 0, r∈ Ss. (2.27)

In addition the asymptotic behavior at infinity

u(r)=O
(

1
r

)
, r −→∞, (2.28)

has to be imposed in order to insure uniqueness.

3. The interior and exterior electric potential

The basic notation for the spectral decomposition of the Laplace operator in ellipsoidal
coordinates can be found in [1, 5, 7, 8], where all interior Emn (ρ,μ,ν) and exterior Fmn (ρ,μ,
ν) ellipsoidal harmonics that are used in this work, as well as useful relations connecting
them, can be found. We recall the definition

Fmn (ρ,μ,ν)= (2n+ 1)Imn (ρ)Emn (ρ,μ,ν)= (2n+ 1)Imn (ρ)Em
n (ρ)Em

n (μ)Em
n (ν) (3.1)
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which connects the ellipsoidal exterior harmonics Fmn (r) to the interior ellipsoidal har-
monics Emn (r) via the elliptic integrals

Imn (ρ)=
∫∞
ρ

dt
[
Em
n (t)

]2
√
t2−h2

2

√
t2−h2

3

, (3.2)

where Em
n (x) are the Lamé functions of the first kind.

The solution of (2.19), is an exterior harmonic function which assumes the exterior
ellipsoidal expansion

u(ρ,μ,ν)=
∞∑

n=0

2n+1∑

m=1

f mn F
m
n (ρ,μ,ν), ρ > s1, (3.3)

and satisfies automatically the asymptotic condition (2.28).
Inside the ellipsoidal shells Vs, Vb, Vf the electric potentials us, ub, u f solve (2.18),

(2.17), (2.16), respectively, and therefore they assume the following ellipsoidal expansions

us(r)=
∞∑

n=0

2n+1∑

m=1

[
gmn E

m
n (ρ,μ,ν) +hmn F

m
n (ρ,μ,ν)

]
, b1 < ρ < s1,

ub(r)=
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n=0

2n+1∑

m=1

[
kmn E

m
n (ρ,μ,ν) +mm

n F
m
n (ρ,μ,ν)

]
, f1 < ρ < b1,

u f (r)=
∞∑

n=0

2n+1∑

m=1

[
pmn E

m
n (ρ,μ,ν) + qmn F

m
n (ρ,μ,ν)

]
c1 < ρ < f1.

(3.4)

Finally, in the interior space Vc, which includes the primary source Jp, the interior elec-
tric potential ub solves (2.15), and it is given as a superposition of an interior harmonic
function Φ(r) and the particular solution of Poisson’s equation

V(r)=− 1
4πσc

Q ·∇r
1∣∣r− r0
∣∣ =

1
4πσc

Q ·∇r0

1∣∣r− r0
∣∣ . (3.5)

Using the ellipsoidal expansion for the interior harmonic function Φ(r),

Φ(r)=
∞∑

n=0

2n+1∑

m=1

tmn E
m
n (ρ,μ,ν), (3.6)

we can write the interior electric potential as

uc(r)= 1
4πσc

Q ·∇r0

1∣∣r− r0
∣∣ +

∞∑

n=0

2n+1∑

m=1

tmn E
m
n (ρ,μ,ν), ρ < c1. (3.7)

The ellipsoidal expansion of the fundamental solution of the Laplace operator for ρ > ρ0

is given in [11] by

1∣∣r− r0
∣∣ =

∞∑

n=0

2n+1∑

m=1

4π
2n+ 1

1
γmn
Emn
(
ρ0,μ0,ν0

)
Fmn (ρ,μ,ν), (3.8)
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where γmn are the normalization constants of the surface ellipsoidal harmonics. Applying
properly the gradient operator on (3.8), we obtain the following form for uc:

uc(r)= t1
0 +

∞∑

n=1

2n+1∑

m=1

[
tmn +

1
σcγmn

(
Q ·∇r0E

m
n

(
ρ0,μ0,ν0

))
Imn (ρ)

]
Emn (ρ,μ,ν). (3.9)

In (3.9) we have further expressed the exterior ellipsoidal harmonics in terms of the cor-
responding interior ones, by means of the elliptic integral Imn . Expansion (3.9) holds for
ρ > ρ0, therefore it holds true on all boundaries Sc, S f , Sb, Ss. In (3.3), (3.4) and (3.9) we
have expressed all the potentials in terms of ellipsoidal harmonics and therefore the ap-
plication of the transmission conditions (2.20)–(2.27) is straightforward. Furthermore,
the homogeneity of (2.21), (2.23), (2.25), and (2.27) in the operator ∂n allows for the re-
placement of the normal derivative ∂n with the ρ-derivative ∂ρ, since the corresponding
metric coefficient cancels out.

Introducing (3.3), (3.4), and (3.9) in the boundary conditions (2.20)–(2.27) and using
the orthogonality property of the surface ellipsoidal harmonics, the constants f mn , gmn , hmn ,
kmn , mm

n , pmn , qmn , tmn are determined as the solutions of a 8× 8 linear algebraic system. Long
but straightforward calculations, which are not shown here, lead to the expressions:

g1
0 = k1

0 = p1
0 = t1

0 = f 1
0 I

1
0

(
s1
)
,

h1
0 =m1

0 = q1
0 = 0

(3.10)

while for n= 1,2, . . . , m= 1,2, . . . ,2n+ 1, particular expressions for the eight sequences of
constants f mn , gmn , hmn , kmn , lmn , pmn , qmn , tmn , which contain the Lamé functions of the first
and the second kind evaluated at specific points are obtained. Introducing the notation

Imn (x, y)= Imn (x)− Imn (y)=
∫ y

x

dt
[
Em
n (t)

]2
√
t2−h2

2

√
t2−h2

3

, (3.11)

Smn = Em
n

(
s1
)
Em′
n

(
s1
)
s2s3, (3.12)

Bm
n = Em

n

(
b1
)
Em′
n

(
b1
)
b2b3, (3.13)

Fm
n = Em

n

(
f1
)
Em′
n

(
f1
)
f2 f3, (3.14)

Cm
n = Em

n

(
c1
)
Em′
n

(
c1
)
c2c3, (3.15)

where the prime denotes differentiation with respect to the variable and using the cor-
responding values of the coefficients in (3.3), (3.4), and (3.9) we obtain the following
expressions for the potential fields u, us, ub, u f , and uc which hold true in the indicated
regions. In particular for the exterior space we obtain

u(r)= g1
0
I1

0 (ρ)

I1
0

(
s1
) +

∞∑

n=1

2n+1∑

m=1

Imn (ρ)
Imn
(
s1
) 1
Smn

1
Gm

3,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν), ρ > s1, (3.16)
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where g1
0 is an arbitrary constant. For the skin region we obtain

us(r)= u
(
s1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,s1

) 1
Gm

3,n
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(
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Emn (ρ,μ,ν), b1 < ρ < s1, (3.17)

for the scull region

ub(r)= us
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)

+
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) 1
σb

Gm
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for the fluid region

u f (r)= ub
(
f1
)

+
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(
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) 1
σ f
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(
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and finally for the region occupied by the cerebrum we obtain

uc(r)= u f
(
c1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,c1

) 1
σc

Q ·∇Emn
(
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)

γmn
Emn (ρ,μ,ν), ρ < c1. (3.20)

The constants Gm
1,n, Gm

2,n and Gm
3,n are given by

Gm
1,n = σb +

(
σb− σs

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n , (3.21)

Gm
2,n = σ f +

(
σ f − σb

)(
Imn
(
f1,s1

)
+

1
Smn
− 1
Fm
n

)
Fm
n +

(
σb− σs

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n

+

(
σ f − σb

)(
σb− σs

)

σb
Imn
(
f1,b1

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n F

m
n ,

(3.22)

Gm
3,n = σc +

(
σc− σ f

)(
Imn
(
c1,s1

)
+

1
Smn
− 1
Cm
n

)
Cm
n

+
(
σ f − σb

)(
Imn
(
f1,s1

)
+

1
Smn
− 1
Fm
n

)
Fm
n +

(
σb− σs

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n

+

(
σc− σ f

)(
σ f − σb

)

σ f
Imn
(
c1, f1

)(
Imn
(
f1,s1

)
+

1
Smn
− 1
Fm
n

)
Fm
n C

m
n

+

(
σc− σ f

)(
σb− σs

)

σb
Imn
(
c1,b1

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n C

m
n

+

(
σ f − σb

)(
σb− σs

)

σb
Imn
(
f1,b1

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n F

m
n

+

(
σc− σ f

)(
σ f − σb

)(
σb− σs

)

σ f σb

×Imn
(
c1, f1

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)(
Imn
(
f1,b1

)− 1
Fm
n

)
Bm
n F

m
n C

m
n .

(3.23)
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In trying to interpret (3.16) to (3.20) we observe the following. Expression (3.16) pro-
vides the electric potential at any point outside the conductor. Then the potential within
the outmost shell is expressed as the exterior potential u evaluated on the surface Ss of the
skin, plus an expansion evaluated at the observation point r, which represents the con-
tribution that comes from the shell Vs. In a similar fashion, the potentials (3.17)–(3.19)
within the following succesive shells, as well as the potential (3.20) inside the cerebrum
region, are expressed as the potential of the exterior shell evaluated at their common
boundary plus a contribution from the particular shell, always in the form of the appro-
priate eigenfunction expansion.

Furthermore, the form of each one of these expansions remains the same. They only
differ by the constant ratios involving the conductivity profiles and by the fact that the
corresponding elliptic integrals are evaluated on different surfaces. The above ratios spec-
ify the effect of the surrounding shells normalized by the effect of all shells considered in
the model. Each ratio is multiplied by a conductivity factor which is what the equivalent
homogeneous conductor would impose to the exterior electric potential.

It is worth noticing though that the part of the solution which is depended on the
location of the observation point remains unaltered by the presence of the shells.

In the sequel we are going to work further on the expression (3.16), since the exterior
potential is what it is registered on an electroencephalogram. Therefore, elaborating fur-
ther on (3.16) by using the interior Lamé functions and the interior ellipsoidal harmonics
in terms of the more tractable Cartesian coordinates and by calculating the action of the
gradient on Emn and on Em

n , we obtain the following analytic form of u expressed in Carte-
sian coordinates and elliptic integrals

u(ρ,μ,ν)

= g1
0
I1

0 (ρ)

I1
0

(
s1
) +

3
4πs1s2s3

3∑

m=1

Qmxm
Gm

3,1

Im1 (ρ)
Im1
(
s1
)

− 5
8πs1s2s3

(
Λs−Λ′s

)
3∑

m=1

Qmx0m

[
1

G1
3,2

I1
2 (ρ)

I1
2

(
s1
) E1

2(r)
Λs
(
Λs− s2

m

) − 1
G2

3,2

I2
2 (ρ)

I2
2

(
s1
) E2

2(r)
Λ′s
(
Λ′s − s2

m

)
]

+
15

4πs1s2s3

3∑

i, j=1
i �= j

Qix0 jxix j

G
6−i− j
3,2

(
s2
i + s2

j

)
I
i+ j
2 (ρ)

I
i+ j
2

(
s1
) +O

(
el3
)
.

(3.24)

The notation O(el3) in (3.24) denotes ellipsoidal terms of degree greater or equal to three.
The constants

Λs

Λ′s

}
= s2

1−
1
3

[
h2

2 +h2
3±
√
h4

1 +h2
2h

2
3

]
(3.25)

satisfy the equation

3∑

m=1

1
Λs− s2

m
= 0 (3.26)
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and generate the constant dyadics

Λ̃s = 1
G1

3,2

3∑

m=1

x̂m⊗ x̂m

Λs− s2
m

,

Λ̃
′
s =

1
G2

3,2

3∑

m=1

x̂m⊗ x̂m

Λ′s − s2
m
.

(3.27)

Furthermore, in terms of the dyadic fields

Ã(ρ)= 3
4πs1s2s3

3∑

m=1

1
Gm

3,1

Im1 (ρ)
Im1
(
s1
) x̂m⊗ x̂m,

B̃(r)=− 5
8πs1s2s3

(
Λs−Λ′s

)
[
I1

2 (ρ)

I1
2

(
s1
) Λ̃s

Λs
E1

2(r)− I2
2 (ρ)

I2
2

(
s1
) Λ̃

′
s

Λ′s
E2

2(r)
] (3.28)

and the tetradic field

˜̃Γ(ρ)= 15
4πs1s2s3

3∑

i, j=1
i �= j

1

G
6−i− j
3,2

I
i+ j
2 (ρ)

I
i+ j
2

(
s1
)

x̂i⊗ x̂ j ⊗ x̂i⊗ x̂ j

s2
i + s2

j

(3.29)

we rewrite the electric field as

u(r)= g1
0
I1

0 (ρ)

I1
0

(
s1
) + Q · Ã · r + Q⊗ r0 : B̃(r) + Q⊗ r0 : ˜̃Γ(ρ) : r⊗ r +O

(
el3
)
, (3.30)

where the double contraction is defined by

a⊗b : c⊗d= (a · c)(b ·d). (3.31)

The use of the polyadic notation in expressing the exterior electric potential offers the ad-
vantage of a unified and compact form in which the source enters in a distinctive and clear

way. In fact, the polyadic fields Ã(ρ), B̃(r), ˜̃Γ(ρ) include all the geometric and physical
characteristics of the conductor while the moment and position of the source is obtained
from them via simple and double contraction.

4. Physical degeneracies

Our purpose here is to recover from results (3.16), (3.17), (3.18), (3.19), and (3.20) for
the electric potential fields in the four compartment ellipsoidal model, the corresponding
results for the one shell model [7]. In the notation of the present work the corresponding
results read as

u1(r)= g1
0
I1

0 (ρ)

I1
0

(
s1
) +

∞∑

n=1

2n+1∑

m=1

Imn (ρ)
Imn
(
s1
) 1
Smn

1
Gm

1,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν) (4.1)
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for ρ > s1,

u1,s(r)= u1
(
s1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,s1

) 1
Gm

1,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν) (4.2)

for c1 < ρ < s1 and

u1,c(r)= u1,s
(
c1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,c1

) 1
σc

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν) (4.3)

for ρ0 < ρ < c1, where s1, c1 appear in (2.1) and (2.4), respectively.
In (4.1), g1

0 is an arbitrary constant and the rest of the notation in (4.1), (4.2), and
(4.3) remain identical with the present work. In order to reduce the three shells-ellipsoidal
model to the one shell-ellipsoidal model we need to unify appropriately the spaces Vs, Vb,
Vf and Vc. This is obtained by the following three options. One corresponds to taking
the limits

σ f −→ σb −→ σs (4.4)

while the conductivity of the core remains σc.
The second choice corresponds to

σb −→ σs, σ f −→ σc (4.5)

and the third one is obtained by

σb −→ σ f −→ σc (4.6)

while we preserve the conductivity of the outer boundary to be σs.
Whichever of these three settings we choose, the results for the one shell-ellipsoidal

model are recovered. Indicatively we select the first alternative, which geometrically cor-
responds to

fi −→ bi −→ si, i= 1,2,3. (4.7)

and it is denoted by 3sh→ 1sh. As a consequence, from (3.21) we obtain

lim
3sh→1sh

(
Gm

1,n

)= σs (4.8)

while from (3.22) we obtain

lim
3sh→1sh

(
Gm

2,n

)= σs (4.9)

and finally, in view of (3.23),

lim
3sh→1sh

(
Gm

3,n

)= σc +
(
σc− σs

)(
Imn
(
c1,s1

)
+

1
Smn
− 1
Cm
n

)
Cm
n (4.10)

which is the conductivity term for the one shell model.



12 The complete ellipsoidal shell-model in EEG imaging

That explains the claim that Gm
3,n plays the role of the conductivity term in the case

of the one shell model, incorporating the geometry as well as the physics of the different
conductivity supports. Under these reductions (3.17), (3.18), and (3.19) degenerate to

lim
3sh→1sh

u f (r)= lim
3sh→1sh

ub(r)= lim
3sh→1sh

us(r)= u1,s(r) (4.11)

and (3.16), (3.20) give immediately

lim
3sh→1sh

u(r)= u1(r), lim
3sh→1sh

uc(r)= u1,c(r), (4.12)

respectively.
Comparing results (3.16), (3.17), (3.18), (3.19), and (3.20) with (4.1), (4.2), and (4.3),

it is obvious that the effect of the presence of the shell-inhomogeneity on the electric
potential fields is incorporated into the conductivity factor multiplying each multipole
term, leaving the rest of the structure invariant. This observation is enhanced in the sequel
where we reduce further our model to the absence of any inhomogeneous shell covering
the conductivity core. Actually, we notice that the exterior electric potential, in both the
three-shells model and the one-shell model, enjoys the same structure. Moreover, all the
effects of the three shells are incorporated in the conductivity factor multiplying each
multipole term.

Afterwards, we recover from the corresponding results (3.16), (3.17), (3.18), (3.19),
and (3.20) for the electric potential fields in the three-shells model, the results for the
single model which is the case of a homogeneous ellipsoidal conductor characterized by
conductivity σ . As it is shown in [8], using the notation of the present work, the exterior
potential assumes the form

u0(r)= g1
0
I1

0 (ρ)

I1
0

(
s1
) +

∞∑

n=1

2n+1∑

m=1

Imn (ρ)
Imn
(
s1
) 1
Smn

1
σ

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν) (4.13)

for ρ > s1, while the interior potential is given by

u0,s(r)= u0
(
s1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,s1

) 1
σ

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν) (4.14)

for ρ0 < ρ < s1.
In order to reduce the three-shells model to the homogeneous ellipsoidal conductor

we need to unify the spaces Vs , Vb, Vf , and Vc. This is obtained by considering the limits

σc −→ σ f −→ σb −→ σs = σ (4.15)

which geometrically means that

ci −→ fi −→ bi −→ si, i= 1,2,3, (4.16)

and it is denoted by 3sh→ hom. As a consequence, of (3.21), (3.22), and (3.23) we obtain

lim
3sh→hom

(
Gm

1,n

)= lim
3sh→hom

(
Gm

2,n

)= lim
3sh→hom

(
Gm

3,n

)= σ , (4.17)
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where σ is the constant conductivity of the homogeneous ellipsoidal conductor. That
also justifies the claim that Gm

3,n is reduced to the conductivity term in the case of the
homogeneous ellipsoidal conductor.

Under these reductions (3.17), (3.18), (3.19), and (3.20) degenerate to

lim
3sh→hom

uc(r)= lim
3sh→hom

u f (r)= lim
3sh→hom

ub(r)= lim
3sh→hom

us(r)= u0,s(r) (4.18)

and (3.16) implies immediately that

lim
3sh→hom

u(r)= u0(r). (4.19)

We turn now to the calculation of the electric potential fields in the case of the two-shells
ellipsoidal model. This will be achieved by the reduction of the corresponding results for
the 3-shells model, using appropriate settings for the conductivity profiles. As it is shown
below, in the exterior potential form, the conductivity factor for this case is Gm

2,n, which
has already been given in (3.22). Actually by setting

σc −→ σ f , (4.20)

which geometrically means that

ci −→ fi, i= 1,2,3, (4.21)

and it is denoted by 3sh→ 2sh, we observe that Gm
1,n remains unaltered, as from (3.21) we

obtain

lim
3sh→2sh

(
Gm

1,n

)= σb +
(
σb− σs

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n =Gm

1,n. (4.22)

Moreover (3.22) and (3.23) furnish the expression

lim
3sh→2sh

(
Gm

2,n

)= lim
3sh→2sh

(
Gm

3,n

)

= σ f +
(
σ f − σb

)(
Imn
(
f1,s1

)
+

1
Smn
− 1
Fm
n

)
Fm
n

+
(
σb− σs

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n

+

(
σ f − σb

)(
σb− σs

)

σb
Imn
(
f1,b1

)(
Imn
(
b1,s1

)
+

1
Smn
− 1
Bm
n

)
Bm
n F

m
n

=Gm
2,n,

(4.23)
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which proves the claim that Gm
2,n is nothing else but the conductivity term for the two

shells-model. Under these reductions (3.16), (3.17), and (3.18) immediately give the lim-
its

lim
3sh→2sh

u(r)= u2(r)= g1
0
I1

0 (ρ)

I1
0

(
s1
) +

∞∑

n=1

2n+1∑

m=1

Imn (ρ)
Imn
(
s1
) 1
Smn

1
Gm

2,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν),

(4.24)

lim
3sh→2sh

us(r)= u2,s(r)= u2
(
s1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,s1

) 1
Gm

2,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν), (4.25)

lim
3sh→2sh

ub(r)= u2,b(r)= u2,s
(
b1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ,b1

) 1
σb

Gm
1,n

Gm
2,n

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν),

(4.26)

while (3.19) and (3.20) degenerate to

lim
3sh→2sh

uc(r)= lim
3sh→2sh

u f (r)= u2, f (r)

= u2,b
(
f1
)

+
∞∑

n=1

2n+1∑

m=1

Imn
(
ρ, f1

) 1
σ f

Q ·∇Emn
(

r0
)

γmn
Emn (ρ,μ,ν).

(4.27)

Finally we draw our conclusions for the form of the potentials in the above four cases.
The exterior potential for the case of the three confocal ellipsoidal shells, surrounding the
homogeneous ellipsoidal brain, is given in (3.16).The exterior potential for the reduced
cases of two shells, one shell as well as for the ellipsoidal homogeneous model is given
by (4.24), (4.1), and (4.13), respectively. Observing these forms, it is important to note
the role of the gradually reduced conductivity factors in each result. Similar, but more
complicated results stand for the interior electric potentials, where all conductivity factors
are involved and impose a certain effect on each potential.

5. Geometrical degeneracies

We consider here the reduction of the anisotropic ellipsoidal geometry to the isotropic
spherical one [10]. We denote this by the symbol el→ sr.

The case of four concentric spheres corresponds to el→ sr, which implies the reduc-
tion.

lim
el→sr

si = s > b = lim
el→sr

bi > lim
el→sr

fi = f > c = lim
el→sr

ci, i= 1,2,3. (5.1)

From the ellipsoidal system we obtain

lim
el→sr

hi = 0= lim
el→sr

μ= lim
el→sr

ν, i= 1,2,3, (5.2)
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and finally, that

lim
el→sr

ρ= r. (5.3)

The elliptic integrals can be calculated now and they lead to the expressions

lim
el→sr

Imn (ρ)= 1
(2n+ 1)r2n+1

(5.4)

for each n = 0,1,2, . . . and m = 1,2, . . . ,2n+ 1 and from the form of the Lamé functions
[1] we can easily see that

lim
el→sr

Em
n (ρ)= rn. (5.5)

In order to handle the indeterminacies, occurring during the reduction process, we use
the following identities [1]

E2
2(ρ,μ,ν)

Λ′s − s2
1
= (Λ′s − s2

2

)(
x2

3 − x2
1

)
+
(
Λ′s − s2

3

)(
x2

2 − x2
1

)
+
(
Λ′s − s2

2

)(
Λ′s − s2

3

)
,

E2
2(ρ,μ,ν)

Λ′s − s2
2
= (Λ′s − s2

1

)(
x2

3 − x2
2

)
+
(
Λ′s − s2

3

)(
x2

1 − x2
2

)
+
(
Λ′s − s2

1

)(
Λ′s − s2

3

)
,

E2
2(ρ,μ,ν)

Λ′s − s2
3
= (Λ′s − s2

1

)(
x2

2 − x2
3

)
+
(
Λ′s − s2

2

)(
x2

1 − x2
3

)
+
(
Λ′s − s2

1

)(
Λ′s − s2

2

)
.

(5.6)

Also, some technical manipulations and the use of (5.6) lead to the key formula

lim
el→sr

E2
2(r)(

Λs−Λ′s
)(
Λ′s − s2

i

) = 1
2

(
r2− 3x2

i

)
, i= 1,2,3. (5.7)

Replacing Λ′s with Λs and E2
2(ρ,μ,ν) with E1

2(r) in (5.6) we obtain the corresponding iden-
tities for E1

2(r).Then using the Cartesian expressions of Emn and Em
n , as they are given in

[1], into the expressions (3.16) and (3.23), and taking the spherical limits (5.1)–(5.5) and
(5.7) we arrive at

lim
el→sr

u(r)= g1
0
s

r
+

3
4πT1r3

3∑

i=1

Qixi− 5
8πT2

1
r3

3∑

i=1

Qix0i +
15

8πT2

1
r5

3∑

i, j=1

Qix0 jxix j +O
(

1
r4

)
,

(5.8)
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where

T1 = σc +
(
σ f − σc

)2
3

(
1− c3

s3

)
− (σ f − σb

)2
3

(
1− f 3

s3

)
− (σb− σs

)2
3

(
1− b3

s3

)

+

(
σ f − σc

)(
σ f − σb

)

σ f

2
9

(
1− c3

f 3

)(
1− f 3

s3

)

+

(
σ f − σc

)(
σb− σs

)

σb

2
9

(
1− c3

b3

)(
1− b3

s3

)

−
(
σ f − σb

)(
σb− σs

)

σb

2
9

(
1− f 3

b3

)(
1− b3

s3

)

−
(
σ f − σc

)(
σ f − σb

)(
σb− σs

)

σ f σb

2
27

(
1− c3

f 3

)(
2 +

f 3

b3

)(
1− b3

s3

)
,

T2 = σc +
(
σ f − σc

)3
5

(
1− c5

s5

)
− (σ f − σb

)3
5

(
1− f 5

s5

)
− (σb− σs

)3
5

(
1− b5

s5

)

+

(
σ f − σc

)(
σ f − σb

)

σ f

6
25

(
1− c5

f 5

)(
1− f 5

s5

)

+

(
σ f − σc

)(
σb− σs

)

σb

6
25

(
1− c5

b5

)(
1− b5

s5

)

−
(
σ f − σb

)(
σb− σs

)

σb

6
25

(
1− f 5

b5

)(
1− b5

s5

)

−
(
σ f − σc

)(
σ f − σb

)(
σb− σs

)

σ f σb

6
25

(
1− c5

f 5

)(
2 +

f 5

b5

)(
1− b5

s5

)
.

(5.9)

Using the dyadic notation in the above expression we obtain the following compact form
for the electric potential in the exterior of the layered spherical inhomogeneous conduc-
tor

lim
el→sr

u(r)= g1
0
s

r
+

3
4πT1

Q · r̂
r2

− 5
8πT2

Q⊗ r0 :
Ĩ− 3r̂⊗ r̂

r3
+O

(
1
r4

)
. (5.10)

Comparing the result (5.10) with the corresponding ellipsoidal one in (3.30) we appre-
ciate the much higher level of complication exhibited by the ellipsoidal solution. In fact
in each polyadic quantity, which carries the geometry and the physics of the conductor,
the conductivity term varies in every multipole term. On the other hand, in the spherical
case, the conductivity term changes only by the order n of the corresponding multipole
term, reflecting in this way the geometrical simplicity of the spherical model.

It is further worth pointing out, the similarity of the exterior potential for the three
shells spherical model, as given in (5.10) with the corresponding result of the simple
spherical one [8]

usr(r)= g1
0
s

r
+

3
4πσ

Q · r̂
r2

− 5
8πσ

Q⊗ r0 :
Ĩ− 3r̂⊗ r̂

r3
+O

(
1
r4

)
. (5.11)
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We see that both potentials enjoy exactly the same form with the only difference that
the conductivity factors T−1

1 , T−1
2 are reduced to the constant σ−1 for the homogeneous

model. The fact that the conductivity factors in (5.10) incorporate the boundaries of
the conductivity supports, thus making the conductor “visible” in every term of (5.10),
illustrates the strong influence that the shells have upon the electric field. On the other
hand, in (5.11) the boundary of the conductor appears only on the leading monopole
term, which also carries the arbitrary constant g1

0 .
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