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In this paper, dysentery diarrhea deterministic compartmental model is proposed. The local and global stability of the disease-
free equilibrium is obtained using the stability theory of differential equations. Numerical simulation of the system shows that the
backward bifurcation of the endemic equilibrium exists for 𝑅0 > 1. The system is formulated as a standard nonlinear least squares
problem to estimate the parameters.The estimated reproduction number, based on the dysentery diarrhea disease data for Ethiopia
in 2017, is 𝑅0 = 1.1208. This suggests that elimination of the dysentery disease from Ethiopia is not practical. A graphical method
is used to validate the model. Sensitivity analysis is carried out to determine the importance of model parameters in the disease
dynamics. It is found out that the reproduction number is the most sensitive to the effective transmission rate of dysentery diarrhea
(𝛽ℎ). It is also demonstrated that control of the effective transmission rate is essential to stop the spreading of the disease.

1. Introduction

Diarrheal disease is a common threat worldwide, particularly
in developing countries. It is preventable and treatable.
According to [1], diarrhea in its various forms is usually one of
the five major causes of deaths in developing nations. It is the
second leading cause of death in children under five years of
age. Pneumonia and diarrhea are responsible for an estimated
40 percent of all child deaths each year. The authors [2] also
reported that diarrhea causes 18%of all the deaths of children
under the age of five. According to the study, more than 5000
children are dying every day as a result of diarrheal diseases.
African and South-East Asian regions share 78% of all these
deaths.

In most cases, diarrhea disease occurs in three forms
and frequently occurs in children of under five years age
[1, 3]. The first type of diarrhea is called dysentery diarrhea.
This is diarrhea with the loose or watery stools with visible
blood. Dysentery diarrhea is most often caused by shigella
dysenteriae serotype 1 (bacillary dysentery) or Entamoeba
histolytica (amoebic dysentery).The second form of diarrhea

is acute watery diarrhea. This form includes cholera and
is associated with significant fluid loss and rapid dehydra-
tion in an infected individual. It usually lasts for several
hours or days. This can be caused by the pathogens V.
cholerae or E. coli bacteria and rotavirus. The last form
of diarrhea is persistent diarrhea. This is diarrhea with or
without blood that lasts at least 14 days. It is common in
undernourished children and those with other illnesses, such
as AIDS.

Stochastic and deterministic mathematical models are
widely employed by public health practitioners in order
to predict and control disease outbreak as well as deter-
mining the cost effectiveness of the available strategies [4–
10]. In stochastic model, the disease transmission dynamics
within a given population is based on the probabilistic
analyses, while the deterministic models deals with the
use of continuous functions to describe the time evolu-
tion of disease in a homogeneously mixed population [11].
Several authors [12–21] have made use of stability theory
of differential equations in order to analysis deterministic
compartmental models for both local and global dynamics

Hindawi
Journal of Applied Mathematics
Volume 2019, Article ID 8465747, 13 pages
http://dx.doi.org/10.1155/2019/8465747

http://orcid.org/0000-0001-8260-8885
http://orcid.org/0000-0003-4550-9591
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2019/8465747


2 Journal of Applied Mathematics

of diseases transmission in a within hosts and between hosts
population such as HIV/AIDs, cholera, sheep brucellosis,
influenza, typhoid, etc. In all these work, the threshold
parameters for disease control and elimination were deter-
mined.

Epidemiologically speaking, it is important to have
adequate knowledge of the physical characteristic of any
given ailment or disease in order to provide accurate model
that can be utilized to predict and control its outbreak
effectively. The availability of relevant data for the disease
will also enhance the model parameters estimation and the
usefulness of the model with respect to the disease involved.
Model parameters from epidemiological models can be easily
estimated using methods involving ordinary least squares
estimator, maximum likelihood estimator derivative approx-
imation, moments estimator, Markov chain Monte Carlo
(MCMC) strategy, derivative-free optimization algorithms,
the Levenberg-Marquardt, and Trust-Region-Reflective [22–
26]. Biegler and Grossmann [27] employed optimization
technique based on the seasonal data with the SIRS epidemic
model as a constraint in order to estimate the parameters of
a generalized incidence rate function. Li [28] also made use
of optimization method with difference equations associated
with a given system as a constraint in order to estimate the
values of embedded parameters. The SIR model parameters
were numerically estimated by Capaldi et al. [29] using
least squares method. Other authors [30–34] have made
use of various parameter estimation techniques base on the
available data to determine the effects of various epidemi-
ological factors on the disease transmission and possible
control strategy. However, there is still a need to estimate the
parameters involved in the various epidemiological models
in order to assess the relative influence of each input variable
on the output variable.

To the best of our knowledge problem involving estima-
tion of parameters in dysentery diarrhea epidemic model
with sensitivity analysis of the basic reproduction number
has been scarcely investigated. The main objective of this
paper is to tackle this problem by employing constrained
optimization technique in order to estimate the values
of parameters involved in a deterministic compartmental
model for dysentery diarrhea epidemic as a constraint.
Real data based on the weekly dysentery diarrhea epidemic
that occurred in Ethiopia in 2017 were used to estimate
parameters which are not accessible from the characteristic
of the disease. In addition, we establish the local and global
stability of the disease-free equilibrium and perform the
bifurcation analysis. Sensitivity and uncertainty of the basic
reproduction number of the system are analyzed. The study
estimates the reproduction number of Ethiopia using the
estimated parameters to predict the disease spread in the
community. In the following Section 2, we present the
model and its analysis. The numerical approximation and
parameter estimation methods are presented in Section 3.
In Section 4, numerical simulation of the system and sen-
sitivity analysis with given parameter values is performed.
Brief discussion and conclusions are presented in the last
section.

2. The Model and Its Analysis

The SIRSB (Susceptible-Infected-Recovered-Susceptible-
Pathogen population)model for dysentery diarrhea proposed
by same authors [35] consists of the following system of
nonlinear ordinary differential equations:

𝑑𝑆𝑑𝑡 = Λ + 𝛼𝑅 − (𝜆ℎ + 𝜆𝐵 + 𝜇) 𝑆,
𝑑𝐼𝑑𝑡 = (𝜆ℎ + 𝜆𝐵) 𝑆 − (𝜇 + 𝛾 + 𝑑) 𝐼,
𝑑𝑅𝑑𝑡 = 𝛾𝐼 − (𝜇 + 𝛼) 𝑅,
𝑑𝐵𝑑𝑡 = 𝜖𝐼 − 𝜎𝐵,
𝑆 (0) = 𝑆0 ≥ 0,
𝐸 (0) = 𝐼0 ≥ 0,
𝑅 (0) = 𝑅0 ≥ 0,
𝐵 (0) = 𝐵0 ≥ 0.

(1)

The standard (frequency dependent) incidence in the human
to human interaction and the logistic incidence in the
environment to human interaction are respectively given by

𝜆ℎ = 𝛽ℎ𝐼𝑁
and 𝜆𝛽 = 𝛽𝐵𝐵𝐾 + 𝐵.

(2)

𝐾 is the shigella concentration that yields 50% chance of
catching dysentery diarrhea [36]. 𝛽𝐵 and 𝛽ℎ represent rates
of ingesting shigella from the contaminated environment
and through human to human interaction, respectively. It is
assumed that the incidence 𝜆𝐵 = 𝛽𝐵𝐵/(𝐾 + 𝐵) is a nonlinear
function in B. This incidence represents a Hill function. If𝐵 ≪ 𝐾, 𝜆𝐵 grows linearly with B; if 𝐵 ≫ 𝐾, 𝜆𝐵 approaches
a constant state, 𝛽𝐵, resulting in a saturation state. Therefore,
this form is based on the assumption that the incidence has a
saturation form.The pathogen population is diminished (at a
rate of 𝜎2 − 𝜎1 = 𝜎 > 0) [17, 35, 36].

The corresponding flow diagram and the description of
the parameters for themodel are given in Figure 1 and Table 1,
respectively.

2.1. Basic Reproduction Number and Existence of Equilibria.
System equation (1) has one disease-free equilibrium 𝐸0 =(Λ/𝜇, 0, 0, 0). The basic reproduction number (𝑅0) is utilized
to quantify the transmission capability of a sickness. It is
thought of as the quantity of secondary diseases delivered by a
primary case of an infection in a population that is completely
susceptible. It can in this manner be estimated by checking
the quantity of secondary cases following the presentation
of a disease into an absolutely susceptible population. 𝑅0
decides if a pathogen can hold on in such a population,
and it is important for evaluating control alternatives. At the
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Figure 1: Schematic diagram for the flow of dysentery diarrhea infection.

Table 1: Description of parameters of the model equation (1).

Parameters Interpretation Units
Λ Recruitment rate of susceptible population Humans Time−1𝜇 Natural death rate of humans Time−1𝛾 Natural recovery rate of diarrhea Time−1𝛼 Relapse rate of the recovered humans to the susceptible class Time−1𝑑 Disease induced death rate of dysentery diarrhea Time−1𝐾 Concentration of Shigella cells𝛽ℎ Effective transmission rate of diarrhea due to human to human interaction Time−1𝛽𝐵 Effective transmission rate of dysentery diarrhea due to environment to human interaction Time−1𝜖 Pathogen shedding rate Cells Human−1Time−1𝜎1 Shigella Pathogen growth rate Time−1𝜎2 Shigella Pathogen death rate Time−1𝜎 Net death rate of Shigella Pathogen Time−1

point when 𝑅0 is under 1, on average each infected individual
infects less than one other individual, and the pathogen
will cease to exist in the population. Conversely, when 𝑅0
surpasses 1 there is an exponential ascent in the quantity
of cases after some time and disease epidemic results [38].
Using the next generation approach of [39], the reproduction
number is

𝑅0 = 𝛽ℎ(𝜇 + 𝛾 + 𝑑) + Λ𝛽𝐵𝜖𝜇 (𝜇 + 𝛾 + 𝑑)𝐾𝜎. (3)

The endemic equilibrium 𝐸∗ = (𝑆∗, 𝐼∗, 𝑅∗, 𝐵∗) of the system
is the solution of the algebraic equation

Λ − (𝜆ℎ + 𝜆𝐵 + 𝜇) 𝑆∗ + 𝛼𝑅∗ = 0,
(𝜆ℎ + 𝜆𝐵) 𝑆∗ − (𝜇 + 𝑑 + 𝛾) 𝐼∗ = 0,

𝛾𝐼∗ − (𝜇 + 𝛼) 𝑅∗ = 0,
𝜖𝐼∗ − 𝜎𝐵∗ = 0.

(4)
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That is,

𝐵∗ = 𝜖𝐼∗𝜎 ,
𝑅∗ = 𝛾𝐼∗𝛼 + 𝜇 ,
𝑆∗ = Λ (𝛼 + 𝜇) − (𝜇 (𝜇 + 𝛾 + 𝑑) + 𝛼 (𝜇 + 𝑑)) 𝐼∗𝜇 (𝛼 + 𝜇) and

(5)

𝐼∗ is the solution of the following quadratic equation:

𝐴𝐼∗2 + 𝐵𝐼∗ + 𝐶 = 0, (6)

where

𝐴 = 𝜖 ((𝜇𝛽ℎ − 𝛽𝐵𝑑) (𝜇 (𝜇 + 𝑑 + 𝛾) + 𝛼 (𝜇 + 𝑑))
− 𝑑 (𝜇 + 𝑑 + 𝛾)) ,

𝐵 = Λ𝜖 (𝛼 + 𝜇) (𝛽𝐵𝑑 − 𝜇𝛽ℎ) + (𝜇 (𝜇 + 𝑑 + 𝛾) + 𝛼 (𝜇 + 𝑑))
⋅ (𝐾𝜎 + 𝜖Λ𝛽𝐵) − (𝜇 + 𝑑 + 𝛾) (𝐾𝑑𝜎 + 𝜖Λ) ,

𝐶 = 𝜇Λ𝐾𝜎 (𝛼 + 𝜇) (𝜇 + 𝑑 + 𝛾) (1 − 𝑅0) .

(7)

(i) System equation (1) always has the disease-free equi-
librium.

(ii) If 𝑅0 > 1 and 𝐴 < 0, 𝐵 > 0, then system equation (1)
may has two endemic equilibria 𝐸1 and 𝐸2.

(iii) If 𝑅0 > 1, and 𝐴 < 0, 𝐵 < 0, then system equation (1)
may has a unique endemic equilibrium, 𝐸∗.

(iv) If 𝑅0 > 1 and 𝐴 > 0, 𝐵 < 0, then system equation (1)
may has a unique endemic equilibrium, 𝐸∗.

(v) If 𝑅0 > 1 and 𝐴 > 0, 𝐵 > 0, then system equation (1)
has no endemic equilibrium.

(vi) If 0 ≤ 𝑅0 < 1, there is no endemic equilibrium.

2.2. Stability of the Disease-Free Equilibrium. This section is
devoted to analytic conditions for the stability of the disease-
free equilibrium.

2.2.1. Local Stability of the Disease-Free Equilibrium

�eorem 1. �e disease-free equilibrium 𝐸0 is locally asymp-
totically stable if 𝑅0 ≤ 1 and is unstable if 𝑅0 > 1.
Proof. Local stability is analyzed by the Jacobian matrix of (1)
at 𝐸0. That is,

𝐽 (𝐸0) =
[[[[[[[[
[

−𝜇 −𝛽ℎ 𝛼 −𝛽𝐵Λ𝐾𝜇
0 𝛽ℎ − (𝜇 + 𝑑 + 𝛾) 0 𝛽𝐵Λ𝐾𝜇0 𝛾 − (𝛼 + 𝜇) 0
0 𝜖 0 −𝜎

]]]]]]]]
]
. (8)

The eigenvalues of this matrix are

𝜆1 = −𝜇,
𝜆2 = − (𝜇 + 𝛼)
and the solutions of 𝜆2 + 𝑎1𝜆 + 𝑎2 = 0
where 𝑎1 = (𝜇 + 𝑑 + 𝛾 + 𝜎) − 𝛽ℎ
and 𝑎2 = (𝜇 + 𝑑 + 𝛾) 𝜎 (1 − 𝑅0) .

(9)

If 𝑅0 < 1, 𝑎1 < 0 and 𝑎1𝑎2 > 0. Thus, according to the
Hurwitz criterion, the quadratic equation, 𝜆2 + 𝑎1𝜆 + 𝑎2 = 0,
has negative real eigenvalues. Hence, 𝐸0 is locally asymp-
totically stable. If 𝑅0 = 1, one eigenvalue of the quadratic
equation is 0 and it is simple. Hence, based on Hartman-
Grobman Theorem [40], the disease-free equilibrium 𝐸0 is
a nonhyperbolic equilibrium. The loss of hyperbolicity of
the equilibrium implies that the local behavior of the system
cannot be described by the linearized system. And instead
center manifold theory has to be used.The bifurcation analy-
sis Theorem 3 below proves that 𝐸0 is the only equilibrium at𝑅0 = 1 and hence𝐸0 is locally asymptotically stable. If𝑅0 > 1,
then 𝐸0 is unstable.
2.2.2. Global Stability of the Disease-Free Equilibrium. In this
section, we use the method used in [36] to investigate the
global asymptotic stability of the disease-free equilibrium. To
do so, we write system equation (1) as

𝑑X𝑑𝑡 = 𝐹 (X, 𝐼) ,
𝑑I𝑑𝑡 = 𝐺 (X, I) , 𝐺 (X, 0) = 0,

(10)

where X ∈ R𝑚 denotes the number of noninfectious individ-
uals and I ∈ R𝑛 denotes the number of infected individuals.
Let 𝑈0 = (X∗, 0) denote the disease-free equilibrium of this
system. Furthermore, suppose that the following assumptions
are true:

(𝐻1) For 𝑑X/𝑑𝑡 = 𝐹(X, 0), X∗ is globally asymptoti-
cally stable;
(𝐻2)𝐺(X, I) = 𝐴I−𝐺(X, I),𝐺(X, I) ≥ 0 for (X, I) ∈ 𝐴,

where 𝐴 = 𝐷I𝐺(X∗, 0) is an M-matrix.

�eorem 2. �e fixed point 𝑈0 = (𝑋∗, 0) is a globally
asymptotic stable equilibrium of model equation (1) provided
that 𝑅0 ≤ 1 and that assumptions (𝐻1) and (𝐻2) hold.
Proof. To prove this, we write (1) in the form of (10). That is,
X = 𝑆, I = (𝐼, 𝐵). Furthermore,

𝐹 (X, 0) = [Λ − 𝜇𝑆0 ] ,

𝐴 = [
[
𝛽ℎ − (𝜇 + 𝛾 + 𝑑) 𝛽𝐵Λ𝐾𝜇𝜖 −𝜎 ]]

(11)
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and

𝐺 (X, I) = [𝐺1 (X, I)𝐺2 (X, I)]

= [
[
(1 − 𝑆𝑁)𝛽ℎ𝐼 + ( Λ𝐾𝜇 − 𝑆𝐾 + 𝐵)𝛽𝐵𝐵0 ]

]
.

(12)

Since (1 − 𝑆/𝑁) > 0 and (Λ/𝐾𝜇 − 𝑆/(𝐾 + 𝐵)) > 0, then𝐺(X, I) ≥ 0. It is also clear that 𝑋∗ = (Λ/𝜇, 0) is a global
stable equilibrium of the system 𝑑X/𝑑𝑡 = 𝐹(X, 0). Hence, the
above theorem 𝑈0 = (𝑋∗, 0) is globally stable.
2.3. Bifurcation Analysis

�eorem 3. If 𝑅0 < 1, the system exhibits a forward
bifurcation at 𝑅0 = 1.
Proof. To investigate the type of bifurcation, let

𝛽∗𝐵 fl 𝜇𝐾𝜎𝜖Λ ((𝜇 + 𝑑 + 𝛾) − 𝛽ℎ) (13)

be a bifurcation parameter. The Jacobin matrix at 𝐸0 with𝛽𝐵 = 𝛽∗𝐵 is

𝐽 (𝐸0) =
[[[[[[[[
[

−𝜇 −𝛽ℎ 𝛼 −𝛽∗𝐵Λ𝐾𝜇
0 𝛽ℎ − (𝜇 + 𝑑 + 𝛾) 0 𝛽∗𝐵Λ𝐾𝜇0 𝛾 − (𝛼 + 𝜇) 0
0 𝜖 0 −𝜎

]]]]]]]]
]
. (14)

The eigenvalues of the characteristics polynomial at 𝑅0 = 1
are 𝜆1 = −𝜇, 𝜆2 = −(𝛼 + 𝜇), 𝜆3 = 𝛽ℎ(Λ/𝜇) − (𝜇 + 𝑑 + 𝛾 +𝜎), and 𝜆4 = 0. It can observe that the three eigenvalues are
real and negative and one is 0 and simple. Now we denote by
w = (𝑤1, 𝑤2, 𝑤3, 𝑤4)𝑇 the right eigenvector corresponding to𝜆4 = 0. Direct calculation gives,

w = (− (𝛼 (𝜇 + 𝑑) + 𝜇 (𝜇 + 𝑑 + 𝛾))𝜇 (𝛼 + 𝜇) 𝑤2, 𝑤2, 𝜖𝜎𝑤2, 𝛾𝜇 + 𝛼
⋅ 𝑤2)
𝑇 .

(15)

Moreover, the left eigenvector k = (V1, V2, V3, V4)𝑇 that satisfy
k.w = 1 is given by
− 𝜇V1 = 0,
− 𝛽ℎV1 + (𝛽ℎ − (𝜇 + 𝑑 + 𝛾)) V2 + 𝛾V3 + 𝜖V4 = 0,
𝛼V1 − (𝜇 + 𝛼) V3 = 0,
− 𝜎𝜖 ((𝜇 + 𝑑 + 𝛾) − 𝛽ℎ) V1 + 𝜎𝜖 ((𝜇 + 𝑑 + 𝛾) − 𝛽ℎ) V2 − 𝜎V4
= 0.

(16)

Then, the left eigenvector k turns out to be

k = (0, V2, 0, (𝜇 + 𝑑 + 𝛾) − 𝛽ℎ𝜖 V2)
𝑇 . (17)

The equation k.w = 1 results in V2𝑤2 + V4𝑤4 = 1. Assume𝑤2 = 𝜖(𝜇 + 𝛼). Then

k = (0, 1𝜖 (𝜇 + 𝛼) + (𝛾) (𝜇 + 𝑑 + 𝛾) − 𝛽ℎ) , 0,
(𝜇 + 𝑑 + 𝛾) − 𝛽ℎ𝜖 (𝜖 (𝜇 + 𝛼) + (𝛾) (𝜇 + 𝑑 + 𝛾) − 𝛽ℎ)))

𝑇 .
w = (− (𝛼 (𝜇 + 𝑑) + 𝜇 (𝜇 + 𝑑 + 𝛾))𝜇 𝜖, 𝜖 (𝜇 + 𝛼) ,
𝜖2𝜎 (𝜇 + 𝛼) , 𝛾𝜖)

𝑇 .

(18)

Based on theoretical results in [40], we have to compute a and
b where

a = 3∑
𝑘,𝑖,𝑗=1

V𝑘𝑤𝑖𝑤𝑗 𝜕2𝑓𝑘𝜕𝑥𝑖𝜕𝑥𝑗 (𝐸0, 𝛽∗𝐵) ,

b = 3∑
𝑘,𝑖=1

V𝑘𝑤𝑖 𝜕2𝑓𝑘𝜕𝑥𝑖𝜕𝛽 (𝐸0, 𝛽∗𝐵) .
(19)

Set 𝑥1 = 𝑆, 𝑥2 = 𝐼, 𝑥3 = 𝑅, 𝑥4 = 𝐵. Evaluating the partial
derivatives at (𝐸0, 𝛽∗𝐵), we obtain

𝜕2𝑓2𝜕𝑥1𝜕𝑥2 (𝐸0, 𝛽∗𝐵) =
𝜕2𝑓2𝜕𝑥2𝜕𝑥1 (𝐸0, 𝛽∗𝐵) =

𝛽ℎ𝑆0 ,
𝜕2𝑓2𝜕𝑥1𝜕𝑥4 (𝐸0, 𝛽∗𝐵) =

𝜕2𝑓2𝜕𝑥4𝜕𝑥1 (𝐸0, 𝛽∗𝐵) =
−𝛽∗𝐵𝐾

𝜕2𝑓2𝜕𝑥24 (𝐸0, 𝛽
∗
𝐵) = −2𝛽

∗
𝐵𝐾2 .

(20)

Furthermore,

𝜕2𝑓2𝜕𝑥3𝜕𝛽∗𝐵 (𝐸0, 𝛽
∗
𝐵) = Λ𝜇𝐾 (21)

and all the other second order partial derivatives are zero. It
follows that

a = 2V2 (𝑤1𝑤2 𝜕2𝑓2𝜕𝑥1𝜕𝑥2 (𝐸0, 𝛽∗𝐵) + 𝑤1𝑤4
𝜕2𝑓2𝜕𝑥1𝜕𝑥4 (𝐸0, 𝛽∗𝐵)

+ 𝑤242 𝜕
2𝑓2𝜕𝑥24 (𝐸0, 𝛽

∗
𝐵))

(22)

and

b = V2𝑤4 𝜕2𝑓2𝜕𝑥4𝜕𝛽∗𝐵 (𝐸0, 𝛽
∗
𝐵) . (23)

Substituting the eigenvectors and the partial derivatives into
a and b, we get
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a = − 2𝜖 (𝜇 + 𝛼)
Λ (𝜖 (𝜇 + 𝛼) + 𝛾 (𝜇 + 𝑑 + 𝛾) − 𝛽ℎ))𝑎0

where 𝑎𝑜 = (𝛼 (𝜇 + 𝑑) + 𝜇 (𝜇 + 𝑑 + 𝛾)) 𝛽ℎ + ((𝛼 (𝜇 + 𝑑) + 𝜇(𝜇 + 𝑑 + 𝛾) + 𝛾𝛼 + 𝜇)(𝜎𝜖 )( 𝛾𝛼 + 𝜇) (𝜇 + 𝑑 + 𝛾 − 𝛽ℎ)
(24)

and

b = 1𝜖 (𝜇 + 𝛼) + 𝛾 (𝜇 + 𝑑 + 𝛾 − 𝛽ℎ)
𝛾𝜖 Λ𝜇𝐾. (25)

If 𝑅0 < 1, then (𝜇 + 𝑑 + 𝛾) − 𝛽ℎ > 0, a < 0 and b > 0.
This scenario indicates that the system exhibits transcritical
bifurcation at 𝛽𝐵 = 𝛽∗𝐵. Its biological meaning is that as long
as 𝑅0 < 1 the dysentery epidemic can be eliminated from the
population. If parameters change and result in𝑅0 > 1, a small
endemic state may occur.

3. Numerical Methods

3.1. Parameter Estimation. In this manuscript we solve a
dynamics parameter estimation problem. It aims to solve for
the unknown parameters of a dynamic model supplied as
a system of ordinary differential equations. The problem is
setup as a standard nonlinear least squares problem; however
the nonlinear function to be fitted involves solving ordinary
differential equations using a numerical integration scheme.
Least squares are a special case of maximum likelihood in
which it is assumed that the data are drawn from a normal
distribution with mean given by the solution to the ODE.
System equation (1) is formulated as a standard dynamic
model in the following form:

𝑦 = 𝑓 (𝑡, 𝑦, 𝜗) ,
𝑦 (𝑡0) = 𝑦0, (26)

where y is the vector of dependent variables and𝜗 is the vector
of unknown parameters. The error is sum-of-squares error
and is represented by

𝜓 (𝜗) = ∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (27)

in which 𝑦𝑖 is the real data and 𝑦𝑖 = 𝑦(𝑡𝑖, 𝜗) is the solution
to (26) at time 𝑡𝑖 for a given 𝜗. The aim is to minimize the
objective function

min
𝜗

𝜓 (𝜗)
subject to Eq. (26) (28)

to obtain our parameter estimates. The parameter estimation
algorithm based on [25] with some modification is summa-
rized below.

Algorithm
Result: Optimal estimated parameter values 𝜔.
(1) Guess initial parameter values 𝜔0. Set 𝜔 = 𝜔0.
(2) Using MATLAB ode45 routine, solve (26) using 𝜔 to

find the solution 𝑦𝑖.
(3) Evaluate error using (27).
(4) Minimize (28) using an optimization algorithm

lsqnonlin along with Trust-Region-Reflective to
find bounded estimated parameters �̂�. Update 𝜔 = �̂�.

(5) Check convergence criteria. If not converged, go to
(2).

(6) On convergence, set 𝜔 = �̂� to current parameter
values.

4. Numerical Simulations and Discussion

In this section, we first present the existence and nonexistence
of the endemic equilibria. Secondly, fitting the data of
dysentery diarrhea cases in Ethiopia is performed to estimate
the parameters. Next, the sensitivity of the 𝑅0 to the system
parameters is analyzed. Finally, the uncertainty analysis is
presented using the estimated parameters.

4.1. �e Disease-Free and Endemic Equilibria. It is proved in
Theorem 2 that the disease does not exist in the community
so long as the reproduction number is less than unity and
the disease is endemic in the community if the reproduction
number is greater than unity. It is depicted in Figure 2(a).The
disease-free equilibrium is globally stable if 𝑅0 ≤ 1. However,
there exists a possibility of multiple equilibria for 𝑅0 > 1
(Figure 2(b)).

4.2. Dysentery Diarrhea Data. Dysentery diarrhea is one
of the most dangerous types of diarrhea which is endemic
in Ethiopia. It is reported weekly under Integrated Disease
Surveillance and Response System (IDSR) in the Ministry
of Health. Ethiopian Weekly Epidemiological Bulletin [41]
reports National Surveillance Data Summary of diseases in
Ethiopia. For instance, dysentery surveillance data of week 10
of 2018 is 5,345. There is an increment of 614 as compared to
week 9, 2018. However, the number of cases reported during
this week is lower than the same weeks of the previous two
years. The data of dysentery diarrhea reported cases in 2017
used in this simulation are presented in (Table 2). Time series
graphs of data given in (Table 2) are shown in Figure 3.
As shown in Figure 3, the infected cases have maximum
amplitude in the sixteenth week.
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Figure 2: (a) Forward bifurcation graph for Λ = 0.5, 𝛽𝐵 = 0.4, 𝐾 = 1, 𝜇 = 0.2, 𝜖 = 0.05, 𝑑 = 0.1, 𝛾 = 0.1, 𝜎 = 3, 𝛼 = 1, and 𝛽ℎ varies𝛽ℎ = 0.001 : 0.01 : 15. (b) Multiple equilibria for Λ = 2, 𝛽𝐵 = 5, 𝐾 = 1, 𝜇 = 0.5, 𝜖 = 0.05, 𝑑 = 0.8, 𝛾 = 0.1, 𝜎 = 3, 𝛼 = 1, and 𝛽ℎ varies𝛽ℎ = 0 : 0.001 : 50.

4500
5000
5500
6000
6500
7000
7500
8000

D
ys

en
te

ry
 in

fe
ct

ed

10 20 30 40 50 600
time [week]

Figure 3: Weekly time series of dysentery diarrhea data in Ethiopia
2017.

4.3. Estimation of Parameters. In this model we have
ten parameter values to be estimated. Among these
parameters, the value of 𝜇, natural mortality rate is
obtained from the local demography of Ethiopia. The
parameter 𝛾, the duration of infectiousness, is also found
from dysentery diarrhea characteristics [37]. The initial
infectious individuals are taken as the number of infected
ones in the first week of 2017. Furthermore, the shigella
concentration that yields 25 − 50% chance of catching
dysentery diarrhea is 200 [37]. Thus, the initial parameter
values for estimation is 𝜔0 = (Λ, 𝛽ℎ, 𝛽𝐵, 𝐾, 𝜇, 𝛾, 𝑑, 𝛼, 𝜖, 𝜎) =(2500, 0.0158, 0.052, 200, 0.000457, 0.1106, 0.0103, 0.018,0.01, 0.3319) and the initial population is (𝑆0, 𝐼0, 𝑅0, 𝐵0) =(416253, 4542, 200, 2000). Using the algorithm in Section 3.1
the estimated parameter values are given in Table 3.

The reproduction number based on the Ethiopian data is
therefore 𝑅0 = 𝑅2 + 𝑅1 = 1.0476 + 0.0732 = 1.1208. 𝑅2 is the
reproductionnumber due to the human to human interaction
and 𝑅1 is the reproduction number due to the environment
to human interaction.

4.4. Sensitivity Analysis. The sensitivity analysis reveals how
imperative every parameter is to illness transmission. It is

regularly used to decide the robustness of model expec-
tations to parameter values since there are errors in data
collection and assumed parameter values [42]. The per-
turbation of fixed point estimation of model parameters
and the uncertainty in the model parameter estimation are
the two most commonly used techniques for sensitivity
analysis. The sensitivity of a variable with respect to sys-
tem parameters is usually measured by sensitivity index.
Sensitivity indices enable us to quantify the relative change
in a variable when a parameter changes. The normalized
forward sensitivity index of a variable regarding a parameter
is the proportion of the relative change in the variable to
the relative change in the parameter. When the variable is
a differentiable function of the parameter, the sensitivity
index might be on the other hand defined utilizing partial
derivatives.

Definition 4 (see [42, 43]). The normalized forward sensitiv-
ity index of 𝑅0 that depends differentiably on a parameter 𝜌
is defined by

𝜑𝑅0𝜌 = 𝜕𝑅0𝜕𝜌 𝜌𝑅0 . (29)

For instance, 𝜑𝑅0𝜌 = 1 implies an increase (decrease) of𝜌 by 𝑦% increases (decreases) 𝑅0 by the same percentage. On
the other hand, 𝜑𝑅0𝜌 = −1 indicates an increase (decrease) of 𝜌
by 𝑦% decreases (increases) 𝑅0 by 𝑦%. In this case, 𝜌 is called
a highly sensitive parameter.

Proposition 5. Given

𝑅0 = 𝛽ℎ(𝜇 + 𝛾 + 𝑑) + Λ𝛽𝐵𝜖𝜇 (𝜇 + 𝛾 + 𝑑)𝐾𝜎. (30)
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Table 2: Weekly dysentery diarrhea reports in Ethiopia, 2017.
Weeks Infected Weeks Infected Weeks Infected Weeks Infected Weeks Infected
1 4542 12 7000 23 7375 33 7042 43 5583
2 4750 13 7042 24 7167 34 6917 44 5458
3 4792 14 6458 25 7292 35 6208 45 5458
4 5417 15 7083 26 7000 36 5958 46 5458
5 5250 16 7625 27 6583 37 6500 47 5250
6 5125 17 6875 28 6750 38 5958 48 4750
7 5833 18 6375 29 6833 39 5583 49 4750
8 6000 19 6625 30 6792 40 5667 50 4750
9 5542 20 6875 31 6708 41 5667 51 4583
10 5917 21 7000 32 6833 42 5542 52 4500
11 6583 22 7042

Table 3: Estimated parameter values.

Parameter Value Bounds Source
Λ 462 [0, 84388.8700] Estimated𝛽ℎ 0.69864 [0.2175, 1.1798] Estimated𝛽𝐵 0.04465 [0, 2.4170] Estimated𝐾 200 [36]𝜇 0.000457 [36]𝛾 0.1106 [37]𝑑 0.55602 [0.0581, 1.0540] Estimated𝛼 0.0211 [0, 1.0588] Estimated𝜖 0.01 Assumed𝜎 46.2086 [0, 2520.3600] Estimated𝑆0 216253 [91252, 341254] Estimated𝐼0 3152 [0, 58153] Estimated𝑅0 165 [0, 25288] Estimated𝐵0 1356 [0, 4520] Estimated

Let

𝑅2 = 𝛽ℎ(𝜇 + 𝛾 + 𝑑)
and 𝑅1 = Λ𝛽𝐵𝜖𝜇 (𝜇 + 𝛾 + 𝑑)𝐾𝜎.

(31)

�e normalized forward sensitivity index of 𝑅0 with respect to
the given parameters is given by

𝜑𝑅0
𝛽ℎ
= 𝑅2𝑅0 ,

𝜑𝑅0
𝑑
= − 𝑑𝜇 + 𝑑 + 𝛾 ,

𝜑𝑅0𝛾 = − 𝛾𝜇 + 𝑑 + 𝛾 ,
𝜑𝑅0𝜇 = −( 𝜇2𝜇 + 𝑑 + 𝛾 + 𝑅1𝑅0) ,

𝜑𝑅0
𝛽𝐵
= 𝜑𝑅0𝜖 = 𝜑𝑅0Λ = 𝑅1𝑅0 ,

𝜑𝑅0𝐾 = 𝜑𝑅0𝜎 = −𝑅1𝑅0 .
(32)

Proof. This follows immediately from Definition 4.

The sensitivity indices of 𝜑𝑅0Λ , 𝜑𝑅0𝛽ℎ , 𝜑𝑅0𝛽𝐵 , 𝜑𝑅0𝜖 are positive
and the remaining are negative. Since all indices are the func-
tions of other parameters the sensitivity indices will change
with the change in other parameter values. The parameter
values in Table 3 are used to calculate the sensitivity indices.
The normalized sensitivity of the basic reproduction number
with respect to the estimated parameters is given in Table 4.
For example, 𝜑𝑅0

𝛽ℎ
= 0.9901115761; the physical meaning

is that increasing (or decreasing) 𝛽ℎ by 10% increases (or
decreases) 𝑅0 by 9.9%. A highly sensitive parameter should
be carefully estimated, because a small variation in that
parameter will lead to large quantitative changes. As can
be seen from Table 4, the basic reproduction number is
most sensitive to the effective transmission rate of dysentery
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Figure 4: Fitting of the model equation (1) to the reported data in Table 2 and residual analysis using the estimated parameters.

Table 4: Estimated parameters.

Parameter Sensitivity indices of 𝑅0Λ 𝜑𝑅0Λ = 0.009888424079𝛽ℎ 𝜑𝑅0
𝛽ℎ
= 0.9901115761

𝛽𝐵 𝜑𝑅0
𝛽𝐵
= 0.009888424076

𝐾 𝜑𝑅0𝐾 = −0.009888424073𝜇 𝜑𝑅0𝜇 = −0.01466434116𝛾 𝜑𝑅0𝛾 = −0.1651192337𝑑 𝜑𝑅0
𝑑
= −0.8301048495𝜖 𝜑𝑅0𝜖 = 0.009888424080𝜎 𝜑𝑅0𝜎 = −0.009888424073

diarrhea (𝛽ℎ). The implication of this is that an increase in
the transmission rate increases the spread of the disease in
the community.

4.5. Model Validation. Once a model is developed, we use
real data to validate it. There are many statistical techniques
applied for model validation. The two most frequently used
methods are graphical and numerical techniques. Graphical
methods demonstrate a comprehensive range of complex
features of the relationship between the model and the real
data. A numerical technique for model validation, on the
other hand, tends to be narrowly targeted on a specific side
of the connection between the model and the observed data.

4.5.1. Graphical Method. The residuals from a fitted model
are the differences between the real data and the solution
to the model. If the model fits the real data appropriately,
the residuals approximate the random errors that make the
association with the real data and the solution to the system
[44]. As a result, if the residuals seem to behave randomly,
it is sound to say that the model fits the real data. On
the contrary, if nonrandom arrangement is visible in the
residuals, the model fails to depict the true representation of

the real data. Keeping in mind the goal to check the validity
of the model to the given information, Figure 4(a) has been
drawn. Figure 4(a) demonstrates the results of fitting the
SIRSB model in (1) to the dysentery data in Table 2. For
this figure, the continuous line represents the model output
and the points represent the real data points. There are a few
data points that fit poorly with the model outcome. However,
overall the model solution and data agree well.

Residuals plots for the model and the real data in Table 2
are given in Figure 4(b). As given in Figure 4(b), the residuals
seem to be random and the standard errors are generally
small for the model. In this manner the estimates acquired
here are reasonable.

The residual analysis is determined by computing auto-
correlations for the residuals at varying time Lags. Residual
analysis includes two tests: the whiteness test and the inde-
pendence test. The whiteness test is about autocorrelation
function of the residuals for each output. Based on this test,
the residual autocorrelation function of a good model is
inside the confidence interval of the corresponding estimates,
showing that the residuals are uncorrelated. On the other
hand, the independence test checks the cross-correlation
between the input and the residuals for each input output
pair.The independence test makes evident that a goodmodel
has the residuals uncorrelated with past inputs. In this case,
correlation shows that the model does not describe how part
of the output relates to the corresponding input.

The autocorrelation function plot for the residuals shows
that most of the residuals are not statistically significant
(Figure 5) which directly follows that the residuals are
not highly correlated. Except for one major downturn, the
residuals between week one and the last week do not show
any particular form. They fluctuate randomly around zero.
The independence of the residuals obtained suggests that the
parameter estimates obtained are reliable. It is easy to see
from the plot that almost all of the autocorrelations except
the fifth Lag fall within the 99% confidence limits. One Lag
outside the 99% confidence limits does not necessarily show
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Figure 5: Correlation of residuals for the infected individuals Λ =462, 𝜇 = 0.003199, 𝛽ℎ = 0.69864, 𝛽𝐵 = 0.04465, 𝐾 = 200, 𝛼 =0.0211, 𝜖 = 0.01, 𝛾 = 0.1106, 𝜎 = 46.2086, and 𝐾 = 0.1.

nonrandomness. Furthermore, adjacent observations do not
correlate.

4.5.2. Uncertainties Analysis. In the process of parameter
estimation, it is reasonable to assume that the parameters
are dependent. Particularly, the parameters could be thought
to vary together or covary. Covariance is the measure of
how the parameter 𝑦𝑖 is associated with 𝑦𝑗. In the analysis
of model parameters a covariance matrix approximates the
uncertainties in the model parameters and the possible
disorders in the outputs.The diagonal elements of the matrix
contain the variances of the parameters and the off-diagonal
elements contain the covariances between all potential pairs
of parameter. This matrix Σ is positive semidefinite and sym-
metric. The interrelations between the estimated elements in
this are based on the signs. If the covariance between any two
estimated parameters is positive, then the parameters values
tend to vary in a positive way. If the covariance between any
two estimated parameters is 0, then the two parameters are
unrelated. On the other hand, if the covariance between any
two parameters is negative, then the parameters values tend
to move in opposite directions. The covariance matrix Σ for
the model is represented below.

Σ =

[[[[[[[[[[[[[[
[

𝛽ℎ 𝛽𝐵 𝑑 Λ 𝛼 𝜎
𝛽ℎ 0.23 0.16 0.24 34654 −0.42 160
𝛽𝐵 0.16 5.63 0.15 52.17 0.022 5869.23
𝑑 0.24 0.15 0.25 36864.41 −0.45 153.64
Λ 34654 521.65 36864.40 7043651412.80 −87035.24 −762050.23
𝛼 −0.42 0.022094 −0.45 −87035.24 1.08 39.46
𝜎 160 5869.23 153.64 −762050.22 39.46 6121430.51

]]]]]]]]]]]]]]
]

. (33)

The variance in descending order are recruitment rate of
susceptible population, Λ (7043651412.8), the net death rate
of shigella pathogen, 𝜎 (6121430.51), effective transmission
rates of dysentery diarrhea due to the environment to human
interaction, 𝛽𝐵 (5.63), relapse rate of the recovered ones to
susceptible, 𝛼 (1.08), disease induced death rate of dysentery
diarrhea, d (0.23), and effective transmission rates of diarrhea
due to the human to human interaction, 𝛽ℎ (0.23).

The covariance between transmission coefficient (𝛽ℎ) and
transmission coefficient (𝛽𝐵), recruitment rate of susceptible
population (Λ), disease induced death rate of dysentery
diarrhea (𝑑), and net death rate of shigella pathogen (𝜎) is
positive.The covariance between transmission coefficient, 𝛽𝐵
and recruitment rate of susceptible population (Λ), disease
induced death rate of dysentery diarrhea (𝑑), net death rate
of shigella pathogen (𝜎), and relapse rate of the recovered
ones to susceptible (𝛼) is positive. The covariance between
recruitment rate of susceptible population (Λ) and disease
induced death rate of dysentery diarrhea (𝑑) is positive.
The possible implication of this is that if one parameter is
increased, the other parameter must also be increased to
achieve a similar fit to the data. On the other hand, the
covariance between the relapse rate of the recovered ones
to susceptible class (𝛼) and transmission coefficient (𝛽ℎ),

disease induced death rate of dysentery diarrhea (𝑑), and
recruitment rate of susceptible population (Λ) is negative.
The covariance between transmission coefficient (𝛽ℎ) and
the relapse rate of the recovered ones to susceptible class
(𝛼) is negative. The covariance between recruitment rate
of susceptible population (Λ) and the relapse rate of the
recovered ones to susceptible class (𝛼) and net death rate of
shigella pathogen (𝜎) is negative. The physical implication of
this is that if one parameter is increased, the other parameter
must be decreased to achieve a similar fit to the data. Table 5
shows the summary of covariance of the model parameters.

5. Discussion and Conclusions

In this paper, we have proposed a deterministic compart-
mental dysentery diarrhea model. We have proved the global
stability of the disease-free equilibrium. It is established in
Theorem 2 that the basic reproduction number 𝑅0 is a sharp
threshold parameter and it completely determines the global
stability of the disease-free equilibrium for 𝑅0 < 1. The
possible implication of this is that to eliminate the disease
from the community, policymakers have to work on reducing
the reproduction number to below unity.
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Table 5: Covariance of the parameters.

Covariance Direction Covariance Direction Covariance Direction
𝐶𝛽ℎ ,𝛽𝐵 +ve 𝐶𝛽𝐵 ,𝑑 +ve 𝐶𝛼,𝑑 -ve
𝐶𝛽ℎ ,𝑑 +ve 𝐶𝛽𝐵 ,Λ +ve 𝐶𝛼,Λ -ve
𝐶𝛽ℎ ,Λ +ve 𝐶𝛽𝐵 ,𝛼 +ve 𝐶𝛼,𝜎 +ve
𝐶𝛽ℎ ,𝛼 -ve 𝐶𝛽𝐵 ,𝜎 +ve 𝐶𝛽ℎ ,𝜎 +ve
𝐶𝜎,𝑑 +ve 𝐶𝜎,Λ -ve

The authors [17] have reported that the contribution of
each transmission pathway in a disease outbreak is separable
to focus on the control efforts of the infectious humans or the
contaminated environment. Accordingly,𝑅0 could be written
as

𝑅0 = 𝛽ℎ(𝜇 + 𝑑 + 𝛾) + Λ𝛽𝐵𝜖𝜇 (𝜇 + 𝑑 + 𝛾)𝐾𝜎2 (1 − 𝜎1/𝜎2) . (34)

Using Taylor’s series expansion, we have

(1 − 𝜎1𝜎2)
−1

= (1 + 𝜎1𝜎2 + (
𝜎1𝜎2)
2 + higher order terms) .

(35)

Thus,

𝑅0 = 𝑅01 + 𝑅02 + 𝑅03 + higher order terms. (36)

where 𝑅01 = 𝛽ℎ/(𝜇 + 𝑑 + 𝛾), 𝑅02 = (𝜖Λ/𝜇)(1/(𝜇 +𝑑 + 𝛾))(𝛽𝐵/𝐾)(1/𝜎2), and 𝑅03 = (𝜖Λ/𝜇)(1/(𝜇 + 𝑑 +𝛾))(𝛽𝐵/𝐾)(1/𝜎2)(𝜎1/𝜎2).𝑅01 can be expressed as a primary case in the human
populationmakes an infectious contact with humans at a rate
of 𝛽ℎ over the mean infectious period of 1/(𝜇 + 𝑑 + 𝛾). 𝑅02
can be interpreted as a primary case in the human population
makes an infectious contact with the environment at a rate of𝜖Λ/𝜇 over the mean infectious period of 1/(𝜇 + 𝑑 + 𝛾) and a
primary case in the environment makes an infectious contact
with humans at a rate of 𝛽𝐵/𝐾 over the mean infectious
period of 1/𝜎2. 𝑅03 is interpreted as a primary case in the
human population makes an infectious contact with the
environment at a rate of 𝜖Λ/𝜇 over themean infectious period
of 1/(𝜇+𝑑+𝛾) and a primary case in the environment makes
an infectious contact with humans at a rate of 𝛽𝐵/𝐾 over the
mean infectious period of 1/𝜎2, a fraction 𝜎1/𝜎2 of which
survive and become infectious.

Therefore, 𝑅0 = 𝑅01 + 𝑅02 + 𝑅03 represents the total con-
tribution to the infectious class and the pathogen population
class made by the hosts and pathogens of original case. The
higher order terms represent the contribution through direct
human to human and environment to human in the higher
generation.

As an application, we have used our system to simulate
the reported dysentery diarrhea cases in Ethiopia in 2017
(Table 2) and obtained reasonable matches. To solve the
optimization problem, the Runge-Kutta method (ode45)

has been used as a solver of a system of nonlinear dif-
ferential equations along with Trust-Region-Reflective (to
find optimum bounded parameter values) and lsqnonlin
methods for the sumof squared residuals.The results indicate
that simulations of our system can provide a match to the
infectious cases in 2017. More importantly, we estimate that
the basic reproduction number for dysentery transmission
in Ethiopia is 𝑅0 = 1.1208. The implication of this is that
dysentery diarrhea is endemic in country. The estimated
reproduction number is near to one. If control and treatment
measures are implemented, with this value of 𝑅0, the disease
will be eliminated in short time.

The values of parameters describing the system have been
estimated by fitting the integrals of the system to the field data
on dysentery diarrhea epidemic. Estimation of parameters, in
this case, is a challenging task because of missing a large part
of the infectious process. One difficulty is that depending on
the initially specified parameter values a local minimummay
occur and the minimal value of the sum of squared residuals
may be different. In such case, the parameter estimation
should be repeated with different initial parameter guesses to
achieve a better estimate of the global minimum (rather than
local) of the sum of squared residuals.
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