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The nonmonotone alternating direction algorithm (NADA) was recently proposed for effectively solving a class of equality-
constrained nonsmooth optimization problems and applied to the total variation minimization in image reconstruction, but the
reconstructed images suffer from the artifacts. Though by the 𝑙0-norm regularization the edge can be effectively retained, the
problem is NP hard.The smoothed 𝑙0-norm approximates the 𝑙0-norm as a limit of smooth convex functions and provides a smooth
measure of sparsity in applications. The smoothed 𝑙0-norm regularization has been an attractive research topic in sparse image and
signal recovery. In this paper, we present a combined smoothed 𝑙0-norm and 𝑙1-norm regularization algorithm using the NADA
for image reconstruction in computed tomography. We resolve the computation challenge resulting from the smoothed 𝑙0-norm
minimization. The numerical experiments demonstrate that the proposed algorithm improves the quality of the reconstructed
images with the same cost of CPU time and reduces the computation time significantly while maintaining the same image quality
compared with the 𝑙1-norm regularization in absence of the smoothed 𝑙0-norm.

1. Introduction

Statistical and iterative reconstruction algorithms in com-
puted tomography (CT) are widely applied since they yield
more accurate results than analytic approaches for low-dose
and limited-view reconstruction. These algorithms involve
solving a linear system:

Φ𝑓 + 𝑒 = 𝑢, (1)

where Φ is an 𝑚 × 𝑛2 projection matrix, 𝑓 ∈ 𝑅𝑛2 represents
a 2D 𝑛 × 𝑛 image to be reconstructed, 𝑒 is an additive noise
with ‖𝑒‖2 ≤ 𝜀 for some known 𝜀 > 0, and 𝑢 ∈ 𝑅𝑚 is
the noisy projection data. For limited-view reconstruction,
the underdetermined system (𝑚 ≪ 𝑛2) has infinitely many
solutions. An optimal solution representing the original
image as well as possible is sought by iteration methods.

The theory of compressed sensing [1–3] has recently
shown that signals and images that have sparse represen-
tations in some orthonormal bases can be reconstructed at
high quality from much less data than what the Nyquist

sampling theory [4] requires. In many cases in tomography,
images can be approximately modeled to be essentially
piecewise constant so the gradients are sparse. With the
gradient operator as a sparse transform, compressed sensing
provides a novel framework for CT image reconstruction
[1, 3, 5]. The 𝑙0-norm of a vector, the number of its nonzero
elements, is an appropriate measurement for the sparsity
of a vector. So the 𝑙0-norm regularization might be an
approach for the reconstruction of an image with sparse
gradient. However, the 𝑙0-norm is a nonconvex function
and the 𝑙0-norm regularization problem is NP hard [6]. A
pseudoinverse transform of the discrete gradient and the
iterative hard thresholding algorithm are used to address
the issues of the 𝑙0-norm [7]. The smoothed 𝑙0-norm (𝑠𝑙0-
norm) provides a smooth measure of sparsity and is applied
in compressed sensing MRI imaging [8]. The 𝑠𝑙0-norm is
used to find the jointly sparse representation via the low-
resolution image [9]. 𝑠𝑙0-norm regularization model is pro-
posed for sparse-view X-ray CT reconstruction [10]. Two
new smoothed functions approximating the 𝑙0-norm are
proposed in the mechanism of reweighted regularization
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[11, 12]. An edge-preserving image reconstruction method
based on 𝑙0-regularized gradient prior for limited-angle CT
is investigated [13]. The local and global minimizers of 𝑙0
gradient regularized model with box constraints for image
restoration are discussed [14]. A new 𝑙0 regularization and
wavelet tight framelets to suppress the slope artifacts in the
limited-angle X-ray CT reconstruction are addressed [15].
An image model based on 𝑙0 and 𝑙2 regularizations for the
limited-angle CT is proposed, and the existence of a solution
and a local convergence analysis under certain conditions are
proved [16].

The 𝑙1-norm regularization, known as total variation (TV)
minimization [17], has been widely used in CT reconstruc-
tion. Under certain conditions, the 𝑙1 -normminimization has
a unique sparsest solution which is a good approximation to
the original image [18]. However, the 𝑙1-norm regularization
provides less sparsity representation than the 𝑙0-norm regu-
larization and may lose some detailed features and contrast.
In addition, the discrete gradient transformation ∇𝑓 does
not satisfy the restricted isometry property required by the
compressed sensing theory.

Researchers in this area have been seeking for other
efficient and stable algorithms inspired by the compressed
sensing theory, for example, solving an 𝑙1 -normminimization
with an 𝑙2-norm constraint using the alternating direction
method (ADM) [19, 20] and the nonmonotone alternating
direction method (NADA) [21, 22]. Regularization including
multiple norms is developed to address the drawbacks of the𝑙1-norm and 𝑙0-norm. A combined 𝑙1-norm and 𝑠𝑙0-norm
regularization minimization with an 𝑙2-norm constraint
using SART algorithm and the gradient decent method is
proposed for sparse-view CT image reconstruction in [23].
It is observed in the paper that the convergence is slow and
the computation is time consuming because of the alternative
minimization of the 𝑙1-norm and 𝑠𝑙0-norm.

The purposes of this paper are multifold:
(i) Presenting a combined 𝑠𝑙0-norm and 𝑙1-norm reg-

ularization algorithm for image reconstruction in CT: The
proposed algorithm is unique in the following aspects: A
new parameter is introduced to balance the 𝑠𝑙0-norm and𝑙1-norm terms; two-norm regularization is combined in one
Lagrangian object function to be minimized

(ii) Adopting a newly developed alternating direction
method NADA to efficiently solve minimization

(iii) Resolving the computation challenge problem caused
from the 𝑠𝑙0-norm minimization

The numerical experiments demonstrate that the pro-
posed algorithm improves the quality of the recovered images
for the same cost of CPU time and reduces the computation
time significantly while maintaining the same image quality
compared with the 𝑙1-norm regularization in absence of the𝑠𝑙0-norm.

The rest of the paper is organized as follows. Section 2
includes the background and notations. In Section 3, a
combined 𝑠𝑙0-norm and 𝑙1-norm regularization algorithm
with the NADA is developed. Numerical experiments with
the Shepp-Logan phantom and a cardiac image are presented
in Section 4. Finally, Section 5 concludes the paper by
discussions and conclusions.

2. Background and Notations

The TV minimization of an image 𝑓 for solving system (1) is
mathematically represented as [17]

min 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑇𝑉
subject to Φ𝑓 + 𝑒 = 𝑢, (2)

where the total variation ‖𝑓‖𝑇𝑉 is the 𝑙1-norm of the magni-
tude of the discrete gradients:

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑇𝑉 = 󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1 = ∑
𝑖,𝑗

√(𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗)2 + (𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗)2. (3)

Then a 2D image 𝑓with sparse gradients and noisy measure-
ments in CT can be reconstructed by solving the following𝑙1-norm minimization with an 𝑙2-norm constraint:

min
𝑓

󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1
subject to 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩2 ≤ 𝜀, (4)

which can be implemented [24] by

min
𝑓

{𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1} . (5)

Here 𝜇 > 0 is a regularization parameter which controls
the trade-off between sparsity of gradients and accuracy of
approximation.

For convenience, we denote 𝐷𝑝𝑓 as the forward dif-
ference of 𝑓 at a pixel 𝑝 in both horizontal and vertical
directions; i.e.,

𝐷𝑝𝑓 = 𝐷𝑖,𝑗𝑓 = [𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗, 𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗]𝑇 ∈ 𝑅2,
for 𝑝 = (𝑖 − 1) 𝑛 + 𝑗. (6)

Then ‖∇𝑓‖1 = ∑𝑛2𝑝=1 ‖𝐷𝑝𝑓‖2 andminimization (5) is rewritten
as

min
𝑓

{{{
𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 +

𝑛2∑
𝑝=1

󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓󵄩󵄩󵄩󵄩󵄩2}}} . (7)

With the Lagrangian function [19, 20]

𝐿 (𝑓, V, 𝜆)
= 𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22
+ 𝑛2∑
𝑝=1

{󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 − 𝜆𝑇𝑝 (𝐷𝑝𝑓 − V𝑝) + 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓 − V𝑝󵄩󵄩󵄩󵄩󵄩22} ,
(8)

minimization (7) is converted to

min
𝑓

𝐿 (𝑓, V, 𝜆) , (9)
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which can be solved by the ADM [19–22]. The ADM is
a variant of the classic augmented Lagrangian method for
optimization. It has been applied to solve different types of𝑙1-minimization problems for sparse solution recovery. The𝑘th step of the ADM for solving (9) involves the procedures

𝑓𝑘+1 = argmin
𝑓
𝐿 (𝑓, V𝑘, 𝜆𝑘) ; (10)

V𝑘+1 = argmin
V
𝐿 (𝑓𝑘+1, V, 𝜆𝑘) ; (11)

𝜆𝑘+1 = 𝜆𝑘 + 𝛽 (𝐷𝑓𝑘+1 − V𝑘+1) . (12)

Minimization (10) and minimization (11) can be suc-
cessfully solved using the framework of the NADA with a
nonmonotone line search scheme recently developed in [21,
22]. The idea is outlined as follows.

(i) Choose a direction 𝑑𝑘 = −(𝜕/𝜕𝑓)𝐿(𝑓𝑘, V𝑘, 𝜆𝑘).
(ii) Select a step size 𝑠𝑘 uniformly bounded above such

that 𝐿(𝑓𝑘 + 𝑠𝑘𝑑𝑘, V𝑘, 𝜆𝑘) ≤ 𝐶𝑘 − 𝑠𝑘𝛿‖𝑑𝑘‖22, for 0 < 𝛿 < 1.
(iii) Set 𝑓𝑘+1 = 𝑓𝑘 + 𝑠𝑘𝑑𝑘.
(iv) Compute 𝐶𝑘+1 such that 𝐿(𝑓𝑘+1, V𝑘, 𝜆𝑘) ≤ 𝐶𝑘+1 ≤ 𝐶𝑘.
Combined with the solution of (11), the sequence{𝐿(𝑓𝑘, V𝑘, 𝜆𝑘)} is bounded above by a monotonically non-

increasing sequence {𝐶𝑘} though {𝐿(𝑓𝑘, V𝑘, 𝜆𝑘)} itself is not
decreasing. The advantage of the NADA lies in the fact that𝐿(𝑓, V, 𝜆) is not required to be differentiable while reducing
the computation complexity and improving the efficiency.
The convergence analysis of the NADA for solving a general
model including minimization (11) can be found in [21].

The 𝑠𝑙0-norm approximates the 𝑙0-norm by a smooth
function [8]. The 𝑠𝑙0-norm of a vector 𝑥 ∈ 𝑅𝑛2 , denoted by‖𝑥‖𝑠0, is defined as

‖𝑥‖𝑠0 = 𝑛2 − 𝑛2∑
𝑗=1

lim
𝜎󳨀→0

exp(−𝑥2𝑗2𝜎2 ) . (13)

It is easy to see that ‖𝑥‖𝑠0 = ‖𝑥‖0.
A new approach for solving a more general minimization

than the regularization minimization in [23] is proposed in
the next section.

3. 𝑠𝑙0-Norm and 𝑙1-Norm
Regularization Algorithm

In this section we present 𝑠𝑙0-norm and 𝑙1-norm regular-
ization algorithm for CT reconstruction using the NADA.
Consider the following constrained minimization problem
for image reconstruction in CT:

min
𝑓

{󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1 + 𝛼 󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩𝑠0}
subject to 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 ≤ 𝜀,

(14)

where the parameter 𝛼 is used to balance the two terms of
the minimization. While the 𝑙1-norm is used for the approxi-
mation accuracy, the 𝑠𝑙0-norm is introduced in consideration

of the sparsity of gradients. It is remarked that minimization
(14) is an extension of minimization (4) (𝛼 = 0) and the
minimization (𝛼 = 1) in [23].

3.1. New Approach. The term ‖∇𝑓‖𝑠0 in (14) can be approxi-
mated by a smooth function

𝑠𝜎 (∇𝑓) fl 𝑛2 − 𝑛2∑
𝑝=1

exp(− 󵄨󵄨󵄨󵄨󵄨(∇𝑓)𝑝󵄨󵄨󵄨󵄨󵄨22𝜎2 )

= 𝑛2 − 𝑛2∑
𝑝=1

exp(− 󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓󵄩󵄩󵄩󵄩󵄩222𝜎2 )
(15)

for a small positive parameter 𝜎. So minimization (14) can be
approximately obtained by solving

min
𝑓

{󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1 + 𝛼𝑠𝜎 (∇𝑓)}
subject to 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 ≤ 𝜀,

small 𝜎 > 0.
(16)

To deal with the constraint ‖Φ𝑓 − 𝑢‖22 ≤ 𝜀 in (16), we rewrite
(16) with a positive parameter 𝜇 as

min
𝑓

{𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑓󵄩󵄩󵄩󵄩1 + 𝛼𝑠𝜎 (∇𝑓)} ,
for small 𝜎 > 0, (17)

or

min
𝑓

{{{
𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 +

𝑛2∑
𝑝=1

󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 + 𝛼𝑠𝜎 (󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2)}}} ,
for small 𝜎 > 0,

subject to 𝐷𝑝𝑓 = V𝑝, 1 ≤ 𝑝 ≤ 𝑛2.
(18)

Using a positive parameter 𝛽 and Lagrange vectors 𝜆𝑝 ∈ 𝑅2,1 ≤ 𝑝 ≤ 𝑛2, we define a Lagrangian function

𝐿𝛼 (𝑓, V, 𝜆) = 𝜇2 󵄩󵄩󵄩󵄩Φ𝑓 − 𝑢󵄩󵄩󵄩󵄩22 +
𝑛2∑
𝑝=1

{󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2
− 𝜆𝑇𝑝 (𝐷𝑝𝑓 − V𝑝) + 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓 − V𝑝󵄩󵄩󵄩󵄩󵄩22
+ 𝛼𝑠𝜎 (󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2)} .

(19)

Finally, minimization (18) is converted to the following
minimization:

min
𝑓

𝐿𝛼 (𝑓, V, 𝜆) . (20)

It is obvious that 𝐿𝛼(𝑓, V, 𝜆) is an extension of 𝐿(𝑓, V, 𝜆) in (8).
Consequently the NADA is adopted to solve minimization
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(20). The 𝑘th iteration for solving (20) includes the following
steps:

𝑓𝑘+1 = argmin
𝑓
𝐿𝛼 (𝑓, V𝑘, 𝜆𝑘) , (21)

V𝑘+1 = argmin
V
𝐿𝛼 (𝑓𝑘+1, V, 𝜆𝑘) , (22)

𝜆𝑘+1 = argmin
𝜆
𝐿𝛼 (𝑓𝑘+1, V𝑘+1, 𝜆) . (23)

It is noted that the objective function 𝐿𝛼(𝑓, V, 𝜆) in (19)
has an extra term 𝛼𝑠𝜎(‖V𝑝‖), depending only on the vector
V, compared with 𝐿(𝑓, V, 𝜆) in (8). So the methods for the
calculation of 𝑓𝑘+1 in (10) and 𝜆𝑘+1 in (12) can be applied to
the calculation of 𝑓𝑘+1 in (21) and 𝜆𝑘+1 in (23). For example,
in (23), 𝜆𝑘+1 = 𝜆𝑘 + 𝛽(𝐷𝑓𝑘+1 − V𝑘+1). However, finding V𝑘+1
in (22) is a challenging problem.

3.2. Calculation of V𝑘+1𝑝 . In this subsection we address how to
calculate V𝑘+1𝑝 in (22) for 1 ≤ 𝑝 ≤ 𝑛2. Actually, for each 𝑝, we
need to solve for V𝑝 from the following equation:

𝜕𝐿𝛼𝜕V𝑝 =
V𝑝󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 + 𝜆𝑝 − 𝛽𝐷𝑝𝑓 + 𝛽V𝑝
+ 𝛼V𝑝𝜎2 exp(− 󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩222𝜎2 ) = 0.

(24)

It follows from (24) that

V𝑝 [[1 +
1𝛽 󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 +

𝛼𝛽𝜎2 exp(−
󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩222𝜎2 )]]

= 𝐷𝑝𝑓 − 𝜆𝑝𝛽 .
(25)

If ‖V𝑝‖2 is calculated then

V𝑝 =
󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 (𝐷𝑝𝑓 − 𝜆𝑝/𝛽)󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓 − 𝜆𝑝/𝛽󵄩󵄩󵄩󵄩󵄩2 . (26)

Thus, it suffices to determine ‖V𝑝‖2 from the following
equation:

󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩2 [[1 +
𝛼𝛽𝜎2 exp(−

󵄩󵄩󵄩󵄩󵄩V𝑝󵄩󵄩󵄩󵄩󵄩222𝜎2 )]]
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐷𝑝𝑓 −

𝜆𝑝𝛽
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 − 1𝛽 .

(27)

Denote 𝑐 = ‖𝐷𝑝𝑓 − 𝜆𝑝/𝛽‖2 − 1/𝛽. If 𝑐 ≤ 0 we set V𝑝 = 0. If𝑐 > 0, it follows from (27) that ‖V𝑝‖2 is a positive real solution
of the equation

ℎ (𝑧) fl 𝑧 + 𝛼𝑧𝛽𝜎2 exp(−𝑧
2

2𝜎2) − 𝑐 = 0. (28)

It is obvious that there is a positive zero 𝑧 of ℎ(𝑧) between 0
and 𝑐 and 𝑧 󳨀→ 𝑐 as 𝜎 󳨀→ 0.

Equation (28) can be rewritten as

exp(−𝑧22𝜎2) = 𝛽𝜎
2 (𝑐 − 𝑧)𝛼𝑧

or 𝑧22𝜎2 = ln 𝛼𝑧𝛽𝜎2 (𝑐 − 𝑧) .
(29)

By substituting 𝑧 = √𝑤, the above equation becomes

𝑠 (𝑤) fl 𝑤 − 2𝜎2 (ln 𝛼√𝑤𝛽𝜎2 (𝑐 − √𝑤)) = 0,
on (0, 𝑐2) .

(30)

Thus, we have shown the following lemma.

Lemma 1. Let ℎ(𝑧) and 𝑠(𝑤) be given in (28) and (30),
respectively. Then 𝑤 is a zero of 𝑠(𝑤) on (0, 𝑐2) if and only if𝑧 = √𝑤 is a zero of ℎ(𝑧) on (0, 𝑐).

Before we develop a procedure to calculate a positive root
of 𝑠(𝑤) = 0, we will list some properties of 𝑠(𝑤) below.

It is known that

𝑠󸀠 (𝑤) = 1 − 𝜎2𝑐𝑤 (𝑐 − √𝑤) = −𝑤√𝑤 + 𝑐𝑤 − 𝜎
2𝑐𝑤 (𝑐 − √𝑤) . (31)

With 𝑧 = √𝑤, the sign of 𝑠󸀠(𝑤) on (0, 𝑐2) is the same as that
of the function

𝑞 (𝑧) fl −𝑧3 + 𝑐𝑧2 − 𝜎2𝑐 (32)

on (0, 𝑐). By calculus, it is easy to see that 𝑞(𝑧) is increasing on(0, (2/3)𝑐) and decreasing on ((2/3)𝑐, 𝑐) since 𝑞󸀠(𝑧) = −𝑧(3𝑧−2𝑐). Thus, 𝑞(𝑧) achieves a local maximum (4/27)𝑐3 − 𝜎2𝑐 at𝑧 = (2/3)𝑐.Therefore, if (4/27)𝑐3 −𝜎2𝑐 > 0 (or 𝜎 < (2/3√3)𝑐)
then the equation 𝑞(𝑧) = 0 has two positive roots 𝑧1, 𝑧2 with𝑧1 < 𝑧2. It follows that 𝑞(𝑧) < 0 on (0, 𝑧1)∪(𝑧2, 𝑐) and 𝑞(𝑧) > 0
on (𝑧1, 𝑧2). On the other hand, if 𝜎 > (2/3√3)𝑐, then 𝑞(𝑧) < 0
on (0, 𝑐). We have the following monotonicity of 𝑠(𝑤).
Property 2. If𝜎 < (2/3√3)𝑐 then 𝑠(𝑤) is increasing on (𝑧21 , 𝑧22)
and decreasing on (0, 𝑧21) and (𝑧22 , 𝑐2), where 𝑧1 and 𝑧2 are two
positive zeros of 𝑞(𝑧). If 𝜎 ≥ (2/3√3)𝑐 then 𝑠(𝑤) is always
decreasing on (0, 𝑐2).

The second derivative

𝑠󸀠󸀠 (𝑤) = 𝜎2𝑐𝑤2 (𝑐 − √𝑤)2 (𝑐 − 32√𝑤) (33)

indicates the following features of 𝑠(𝑤).
Property 3. 𝑠󸀠󸀠(𝑤) > 0 on (0, (4/9)𝑐2) and 𝑠󸀠󸀠(𝑤) < 0
on ((4/9)𝑐2, 𝑐2). The graph of 𝑠(𝑤) has an inflection point𝑃((4/9)𝑐2, (4/9)𝑐2 − 2𝜎2 ln(2𝛼/𝛽𝜎2)). The function 𝑠(𝑤)
achieves a local minimum value at 𝑤 = 𝑧21 and a local maxi-
mum value at 𝑤 = 𝑧22 . In addition, we have lim𝑤󳨀→0+𝑠(𝑤) =∞ and lim𝑤󳨀→𝑐2−𝑠(𝑤) = −∞.



Journal of Applied Mathematics 5

inputΦ, 𝑢, 𝛼, 𝜀
initialize 𝛽, 𝜇, 𝑓0, V0, 𝜆0, 𝑚𝑎𝑥𝑖𝑡, 𝜎, 𝛿, 𝑟𝑎𝑡𝑖𝑜, 𝑡𝑜𝑙
while 𝑘 < 𝑚𝑎𝑥𝑖𝑡
1. update 𝑓𝑘+1 = argmin𝑓𝐿𝛼(𝑓, V𝑘, 𝜆𝑘) by the NADA

1.1. decent direction 𝑑𝑘 = −(𝜕/𝜕𝑓)𝐿𝛼(𝑓𝑘, V𝑘, 𝜆𝑘)
1.2. step size 𝑠𝑘 such that 𝐿𝛼(𝑓𝑘 + 𝑠𝑘𝑑𝑘, V𝑘, 𝜆𝑘) ≤ 𝐶𝑘 − 𝑠𝑘𝛿‖𝑑𝑘‖22
1.3. update 𝑓𝑘+1 = 𝑓𝑘 + 𝑠𝑘𝑑𝑘
1.4. compute 𝐶𝑘+1 such that 𝐿𝛼(𝑓𝑘+1, V𝑘, 𝜆𝑘) ≤ 𝐶𝑘+1 ≤ 𝐶𝑘

2. update V𝑘+1 = argminV𝐿𝛼(𝑓𝑘+1, V, 𝜆𝑘)
for 𝑝 = 1 to 𝑛2
2.1. set 𝑐 = ‖𝐷𝑝𝑓𝑘+1 − 𝜆𝑘𝑝/𝛽‖2 − 1/𝛽
2.2. if 𝑐 ≤ 0 then

V𝑘+1𝑝 = 0
else

select an initial guess 𝑤0 fromTheorem 4
find a zero 𝑤 of 𝑠(𝑤) in (30) by Newton’s iterations

V𝑘+1𝑝 = √𝑤(𝐷𝑝𝑓𝑘+1 − 𝜆𝑘𝑝/𝛽)‖𝐷𝑝𝑓𝑘+1 − 𝜆𝑘𝑝/𝛽‖2
end if

end for
3. update 𝜆𝑘+1 = 𝜆𝑘 + 𝛽(𝐷𝑓𝑘+1 − V𝑘+1)
4. if 𝑒𝑟𝑟𝑜𝑟 < 𝑡𝑜𝑙 then exit
5. update 𝜎 = 𝜎 × 𝑟𝑎𝑡𝑖𝑜; 𝑘 = 𝑘 + 1
end while
output 𝑓𝑘+1 and 𝑒𝑟𝑟𝑜𝑟

Algorithm 1: Calculation process of 𝑠𝑙0 + 𝑙1 regularization algorithm (𝑠𝑙0-norm and 𝑙1-norm regularization algorithm).

Finally, we can determine the locations of zeros of 𝑠(𝑤) by
convergent Newton’s iterations.

Theorem 4. Let 𝑠(𝑤) and 𝑞(𝑧) be, respectively, given in (30)
and (32), where 𝑧 = √𝑤. Let 𝑧2 be a larger positive root
of 𝑞(𝑧) on (0, 𝑐) for 𝜎 < (2/3√3)𝑐. Then a positive root of𝑠(𝑤) = 0 on (0, 𝑐2) can be calculated by Newton’s method. The
convergence of Newton’smethod is guaranteed if an initial guess𝑤0 is selected as follows.
Case 1. (i) 𝜎 < (2/3√3)𝑐, 𝑠(𝑧22) > 0 or (ii) 𝜎 ≥ (2/3√3)𝑐,(2/9)𝑐2 − 𝜎2 ln(2𝛼/𝛽𝜎2) > 0.

Choose 𝑤0 < 𝑐2 and near 𝑐2 with 𝑠(𝑤0) < 0.
Case 2. (i) 𝜎 < (2/3√3)𝑐, 𝑠(𝑧22) < 0 or (ii) 𝜎 ≥ (2/3√3)𝑐,(2/9)𝑐2 − 𝜎2 ln(2𝛼/𝛽𝜎2) < 0.

Choose 𝑤0 = (𝛽𝜎2𝑐/(𝛼 + 𝛽𝜎2))2.
Proof. We identify an interval containing a positive root of𝑠(𝑤) = 0 on which 𝑠󸀠(𝑤) and 𝑠󸀠󸀠(𝑤) do not change signs for
each subcase.Then the convergence of Newton’smethod with
an initial guess above is guaranteed.

Case 1. For subcase (i), there is a positive solution of 𝑠(𝑤) = 0
on (𝑧22 , 𝑐2) on which both 𝑠󸀠(𝑤) and 𝑠󸀠󸀠(𝑤) are negative. For
subcase (ii), the inflection point 𝑃 of the graph of 𝑠(𝑤) is
on the upper half plane. So a positive zero is on ((4/9)𝑐2, 𝑐2)
on which both 𝑠󸀠(𝑤) and 𝑠󸀠󸀠(𝑤) are negative. So one should

choose 𝑤0 < 𝑐2 and near 𝑐2 with 𝑠(𝑤0) < 0 for the
convergence of Newton’s method.

Case 2. For subcase (i), there is a positive solution of 𝑠(𝑤) = 0
on (0, 𝑧21) on which 𝑠󸀠(𝑤) < 0 and 𝑠󸀠󸀠(𝑤) > 0. For subcase (ii),
the inflection point 𝑃 is on the lower half plane. So a positive
zero is on (0, (4/9)𝑐2) on which 𝑠󸀠(𝑤) < 0 and 𝑠󸀠󸀠(𝑤) > 0. One
could choose 𝑤0 = (𝛽𝜎2𝑐/(𝛼 + 𝛽𝜎2))2 for the convergence of
Newton iteration since 𝛽𝜎2𝑐/(𝛼 + 𝛽𝜎2) is a lower bound of
positive solutions of ℎ(𝑧) = 0 on (0, 𝑐) in (28).

Thus, ‖V𝑘+1𝑝 ‖2, 1 ≤ 𝑝 ≤ 𝑛2, can be calculated from
Lemma 1 and Theorem 4.Then V𝑘+1 in (26) can be obtained.

3.3. Algorithm. Based on the above discussion, the calcula-
tion process of the proposed 𝑠𝑙0 + 𝑙1 regularization algorithm
is summarized in Algorithm 1.

4. Numerical Experiments and Results

In this section, the proposed combined 𝑠𝑙0-norm and 𝑙1-norm
regularization is compared with the regularization without𝑠𝑙0-norm for its performance. Both regularization algorithms
are implemented using the NADA. The MATLAB code is
developed based on the software package TVAL3 [22], and
the numerical experiments are conducted on an Intel Core i7
3.40 GHz PC. The 2D Shepp-Logan phantom and a cardiac
image [25] of size 128× 128 are tested. In each test, a random
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Figure 1: Original and reconstructed images. First row: Shepp-Logan phantom after 150 iterations. Second row: cardiac image after 80
iterations.

Table 1: Comparison of two algorithms after same number of iterations.

(a)

Shepp-Logan Phantom, after 70 iterations
Time(s) Error RMSE NRMSD NMAD SSIM𝑙1 regularization 9.5 0.121 0.030 0.031 0.124 0.826𝑠𝑙0 + 𝑙1 regularization 6.3 0.067 0.016 0.017 0.068 0.912

(b)

Cardiac Image, after 50 iterations
Time(s) Error RMSE NRMSD NMAD SSIM𝑙1 regularization 5.1 0.131 0.047 0.033 0.152 0.696𝑠𝑙0 + 𝑙1 regularization 4.9 0.116 0.042 0.029 0.131 0.735

matrix Φ ∈ 𝑅𝑚×𝑛2 (𝑚 ≈ 0.3𝑛2) is used to create the same
system 𝑢 = Φ𝑓 + 𝑒 for two regularization algorithms, where
the noise 𝑒 = 0.02∗mean(Φ𝑓)∗randn(𝑚).The parameters are
taken as 𝛼 = 1, 𝛽 = 23, 𝜇 = 25 for the Shepp-Logan phantom
and 𝛼 = 1, 𝛽 = 24, 𝜇 = 27 for the cardiac image, respectively.
The values of the parameter 𝜎 in the 𝑠𝑙0-norm are decreasing
at a ratio of 0.9 with a starting value 𝜎0 = 0.1.

Experiments are conducted to compare the reconstruc-
tion by the two algorithms after the same number of iter-
ations. The original/reconstructed Shepp-Logan phantom
images and the original/reconstructed cardiac images after
same numbers of iterations are shown in Figure 1. The
reconstructed images show that the proposed 𝑠𝑙0 + 𝑙1-norm
regularization produces better imageswhile taking about 75%
of the CPU time.

The quality of images is evaluated using the relative
error ‖𝑓 − 𝑓𝑟𝑒𝑐𝑜𝑛‖𝐹/‖𝑓‖𝐹 of the reconstructed image 𝑓𝑟𝑒𝑐𝑜𝑛

in Frobenius norm. The root-mean-square error (RMSE),
the normalized root-mean-square deviation (NRMSD), the
normalizedmean absolute deviation (NMAD), and the struc-
tural similarity index (SSIM) are also measured to reflect
different aspects of the quality of the recovered images.
RMSE evaluates the reconstruction quality on a pixel-by-
pixel basis. NRMSD emphasizes large errors in a few pixels of
the recovered image. NMAD focuses on small errors in the
recovered image. SSIM compares the quality of the images
using the original phantom image as a reference. A greater
value of an SSIM indicates the better image quality. The
experimental results from 100 tests are summarized in Table 1.
The data in Table 1 indicates that the proposed 𝑠𝑙0 + 𝑙1-
norm regularization provides a better accuracy after the same
iteration number.

Experiments are also conducted to compare iteration
numbers and CPU time by the two algorithms when the same
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Figure 2: Relative error vs. iteration number in reconstruction by two algorithms to achieve the same tolerance of relative error 0.05. (a)
Shepp-Logan phantom; (b) cardiac image.

Table 2: Comparison of two algorithms with the same tolerance of relative error 0.05.

Phantom 𝑙1 Regularization 𝑠𝑙0 + 𝑙1 Regularization CPU Time Saved
No. Iter. Time(s) No. Iter. Time(s)

Shepp-Logan 129 17.4 86 7.4 58%
Cardiac 194 24.9 178 19.4 22%

relative error is achieved and thus the image quality is same.
The tolerance of the relative error to terminate the iteration is
selected as 0.05.The average iteration numbers and CPU time
from 100 tests of the 𝑠𝑙0 + 𝑙1-norm regularization and 𝑙1-norm
only regularization are listed in Table 2. The comparison
indicates that the CPU time is significantly reduced in the
proposed algorithm while producing the same image quality.
Thegraphof relative errors vs. the number of iterations for the
two algorithms, shown in Figure 2, indicates that the 𝑠𝑙0 + 𝑙1-
norm regularization requires less iterations to achieve the
same accuracy.

Both types of the numerical experiments demonstrate
that the proposed 𝑠𝑙0 + 𝑙1-norm regularization is superior to
the regular 𝑙1-norm regularization minimization.

5. Discussions and Conclusions

The application of the 𝑠𝑙0-norm in CT reconstruction has
become one of active research topics recently. A combined𝑠𝑙0-norm and 𝑙1-norm regularization algorithm is proposed
in this paper. The 𝑠𝑙0-norm of a vector 𝑥 is the limit of a
smooth convex function 𝑠𝜎(𝑥). In iterations of the proposed
algorithm, the parameter 𝜎 is getting smaller and closer to
zero. The smooth function 𝑠𝜎(∇𝑓) in the objective function

𝐿𝛼(𝑓, V, 𝜆) approaches ‖∇𝑓‖0, and the sparsity of the recov-
ered image is fulfilled quickly. So the proposed algorithm
improves the quality of the reconstructed images and the
efficiency in terms of the iteration number and CPU time
even with the extra computation from the added 𝑠𝑙0-norm
term. The numerical results demonstrate that the proposed
algorithm improves the 𝑙1-norm regularization with the
NADA in reducing the computation time significantly. The
effects of the weight parameter 𝛼 of the 𝑠𝑙0-norm and the 𝑠𝑙0-
norm parameter 𝜎 are also tested. From our experiments, the
parameter 𝛼 from 0.5 to 2 and the initial value 𝜎0 from 0.05
to 0.9 almost do not affect the efficiency of the algorithm. The
decreasing ratio of parameter𝜎 between 0.8 and 0.95 is a good
choice, but a ratio smaller than 0.7 is not recommended.

There are some aspects to be further investigated. It is a
challenging problem to select good values of other parame-
ters such as 𝛽 and 𝜇 in the Lagrangian function 𝐿𝛼(𝑓, V, 𝜆).
The impact of these parameters on the performance of the
algorithm will be further investigated.

Data Availability

TheMATLAB numerical data used to support the findings of
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