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In this work, we want to detect the shape and the location of an inclusion𝜔 via some boundarymeasurement on 𝜕Ω. In practice, the
body 𝜔 is immersed in a fluid flowing in a greater domain Ω and governed by the Stokes equations. We study the inverse problem
of reconstructing 𝜔 using shape optimization methods by defining the Kohn-Vogelius cost functional. We aim to study the inverse
problem with Neumann and mixed boundary conditions.

1. Introduction

The problem of detecting an inclusion 𝜔 immersed in a fluid
flowing in a greater bounded domain Ω has been researched
by many authors. In [1], Alvarez et al. investigated this
problem to find the location and the shape of 𝜔 using the
measurement of the velocity of the fluid and the Cauchy
forces on the boundary 𝜕Ω. Badra et al. [2] studied the same
problem using the least-squares functional and Caubet et al.
in [3] solved the problem using the Kohn-Vogelius functional
with Dirichlet boundary conditions.

In this work we assume that the fluid is governed by
Stationary Stokes equations with homogeneous Neumann
boundary condition on the interior boundary and nonho-
mogeneous Dirichlet boundary condition on the exterior
boundary. We solve our inverse problem by minimizing
the Kohn-Vogelius cost functional. Then we characterize the
gradient of this functional.

The paper is organized as follows: in the first part of the
paper, we introduce the notations and the overdetermined
problem that we consider. In the second part we state the
main results of this work and we compute the first order
derivative of the cost functional.

In order to do so, we need to fix some notation and
definitions. For a bounded Lipschitz open subset Ω ⊂ R𝑑

(𝑑 = 2 or 3) with a smooth boundary 𝜕Ω, n represents

the external unit normal to 𝜕Ω, and for a smooth enough
function 𝑢, we note, respectively, 𝜕𝑛𝑢 and 𝜕2𝑛𝑛𝑢, the normal
derivative and the second normal derivative of 𝑢. Recall that
𝜕𝑛𝑢 fl ∇𝑢 𝑛. The tangential differential operators which will
be noted by the subscript Γ are defined on 𝜕Ω as follows:

∇Γ𝑤 fl ∇𝑤 − (∇𝑤𝑛) ⊗ 𝑛 ∀𝑤 ∈ W1,1 (𝜕Ω) (1)

where ⊗ denotes the tensor product. For more details on
tangential differential operators, we refer to [4, Section 5.4.3].

Finally, for a nonempty open subset 𝑂 of 𝜕Ω, we recall
that

𝐻1/200 (𝑂) fl {𝑢|O, 𝑢 ∈ 𝐻1/2 (𝜕Ω) , 𝑢|𝜕Ω\𝑂 = 0} . (2)

2. The Problem Setting

Let Ω be a bounded, connected and Lipschitz open subset
of R𝑑 (𝑑 = 2 or 3). Given 𝛿 > 0, consider O𝛿 as the set of
admissible geometries such that

O𝛿

fl {𝜔 ⊂ Ω be an open set with a 𝐶2,1 boundary such that 𝑑 (𝑥, 𝜕Ω)
> 𝛿 ∀𝑥 ∈ 𝜔} .

(3)
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Take now Ω𝛿 as an open set with a 𝐶∞ boundary and satisfy
the following assumption:

{𝑥 ∈ Ω : 𝑑 (𝑥, 𝜕Ω) > 𝛿
2 } ⊂ Ω𝛿

⊂ {𝑥 ∈ Ω : 𝑑 (𝑥, 𝜕Ω) > 𝛿
3 } .

(4)

For 𝜔 ∈ O𝛿, we consider the overdetermined Stokes
boundary values problem:

−𝜇Δu + ∇𝑝 = 0 in Ω \ 𝜔
div u = 0 in Ω \ 𝜔

u = f on 𝜕Ω
−𝜇𝜕𝑛u + 𝑝n = 0 on 𝜕𝜔
−𝜇𝜕𝑛u + 𝑝n = g on 𝑂

(5)

where f ∈ H1/2(𝜕Ω) such that f ̸= 0 and the compatibility
condition is fulfilled; that is,

∫
𝜕Ω

f.n = 0, (6)

and g ∈ [𝐻1/200 ]󸀠(𝑂) is an admissible boundary measurement.
Here [𝐻1/200 ]󸀠(𝑂) stands for the classical dual space of𝐻1/200 (𝑂).
The constant 𝜇 > 0 represents the kinematic viscosity of the
fluid, the vectorial function u represents the velocity of the
fluid, and the scalar function 𝑝 represents the pressure.

Note that we assume that there exists an admissible
geometry 𝜔∗ ∈ O𝛿 such that (5) has a solution. So that, the
geometric inverse problem under consideration reads

Find 𝜔 ∈ O𝛿 and (u, 𝑝)
which satisfies the overdetermined system (5) . (7)

Our purpose here is to solve the inverse problem of
reconstructing 𝜔 using shape optimization techniques. The
reader will find all the ingredients for shape differentiation in
the papers of Jacques Simon ([5, 6]) and the books of Henrot
and Pierre [4] and of Sokolowski and Zolesio [7].

To recover the shape of the inclusion 𝜔, we adopt the
usual approach by minimizing a shape functional. We follow
the classical technique of optimization; that is, we evaluate
an explicit formula of the gradient of the shape functional
which can be used in numerical experiments. Many choices
of shape functionals are possible. For instance in [2], Badra et
al. investigate the problem of the detection of an obstacle in a
fluid by boundary measurement, using the least-squares cost
functional.

In this paper, following previous works by Caubet et al.
in [3], we will solve the inverse problem by using the Kohn-
Vogelius cost functional

𝐽𝐾𝑉 (𝜔) = 1
2 ∫
Ω\𝜔

𝜇 󵄨󵄨󵄨󵄨∇ (u𝐷 − u𝑁)󵄨󵄨󵄨󵄨2 (8)

where (u𝐷, 𝑝𝐷) ∈ H1(Ω\𝜔)×L2(Ω\𝜔) is the unique solution
of the Stokes problemwith mixed boundary conditions given
by

−𝜇Δu𝐷 + ∇𝑝𝐷 = 0 in Ω \ 𝜔
div u𝐷 = 0 in Ω \ 𝜔

u𝐷 = f on 𝜕Ω
−𝜇𝜕𝑛u𝐷 + 𝑝𝐷n = 0 on 𝜕𝜔

(9)

and (u𝑁, 𝑝𝑁) ∈ H1(Ω \ 𝜔) × L2(Ω \ 𝜔) is the unique solution
of the following Stokes problem with Neumann boundary
conditions:

−𝜇Δu𝑁 + ∇𝑝𝑁 = 0 in Ω \ 𝜔
div u𝑁 = 0 in Ω \ 𝜔

−𝜇𝜕𝑛u𝑁 + 𝑝𝑁n = g on 𝑂
u𝑁 = f on 𝜕Ω \ 𝑂

−𝜇𝜕𝑛u𝑁 + 𝑝𝑁n = 0 on 𝜕𝜔.

(10)

For the results of existence, uniqueness, and regularity of
the solutions of the Stokes problemwith Neumann boundary
conditions, one can refer to [2]. Also the existence result for
the mixed boundary conditions is well known. For the sake
of clarity, we will recall that result in Appendix.

In order to determine the shape of 𝜔, we try to minimize
the Kohn-Vogelius cost functional 𝐽𝐾𝑉(𝜔):

𝜔∗ = argmin
𝜔∈O𝛿

𝐽𝐾𝑉 (𝜔) . (11)

Indeed, if 𝜔∗ solves (11) with 𝐽𝐾𝑉(𝜔∗) = 0, then
this domain 𝜔∗ is a solution of the inverse problem (7).
Conversely, if 𝜔∗. is solution of the inverse problem (7), then
𝐽𝐾𝑉(𝜔∗) = 0 and (11) holds.

The Needed Functional Tools. The velocity method is used to
define the shape derivatives. For this purpose, we introduce
the following space of admissible deformations:

𝑈 fl {𝜃 ∈ W3,∞ (R𝑑) ; Supp 𝜃 ⊂ Ω𝛿} . (12)

Then consider for any V ∈ 𝑈 the following application:

𝜙 : 𝑡 ∈ [0, 𝑇) 󳨀→
𝐼 + 𝑡V ∈ 𝑊3,∞ (R𝑑) (13)

with 𝑇 > 0 being a fixed and small number. Let us notice
that, for 𝑡 small enough, 𝜙(𝑡) is a diffeomorphism of R𝑑 and
𝜙󸀠(0) = V vanishes on 𝜕Ω. Now for 𝑡 ∈ [0, 𝑇), we define

Ω𝑡 fl 𝜙 (𝑡) (Ω) ,
𝑉𝑛 fl V ⋅ n (14)

where V is a perturbation direction.
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For 𝑢 ∈ H1(Ω), we recall that the shape derivative is
defined by

𝑢󸀠 = 𝑢̇ − ∇𝑢 ⋅ 𝑉 (15)

where

𝑢̇ (𝑥) = lim
𝑡󳨀→0

𝑢𝑡 ∘ 𝜙𝑡 (𝑥) − 𝑢 (𝑥)
𝑡

∀𝑥 ∈ Ω, 𝑢𝑡 ∈ 𝐻1 (Ω𝑡) .
(16)

For more details on the differentiation with respect to the
domain, see [4–7].

3. Identifiability Result

This section is devoted to new identifiability result for the
mixed case.

Theorem 1 (identifiability result). Let Ω ⊆ R𝑑, (𝑑 = 2 or 𝑑 =
3) be a bounded Lipschitz domain and 𝑂 be a nonempty open
subset of 𝜕Ω. Let 𝜔0, 𝜔1 ∈ O𝛿 and f ∈ H1/2(𝜕Ω) with f ̸= 0
satisfying the flux condition∫

𝜕Ω
f ⋅n = 0.Let (𝑢𝑗, 𝑝𝑗) for 𝑗 = 0, 1

be a solution of

−𝜇Δu𝑗 + ∇𝑝𝑗 = 0 in Ω \ 𝜔𝑗,
div 𝑢𝑗 = 0 in Ω \ 𝜔𝑗,
𝑢𝑗 = 𝑓 on 𝜕Ω,

−𝜇𝜕𝑛𝑗u𝑗 + 𝑝𝑗n𝑗 = 0 on 𝜕𝜔𝑗.

(17)

Assume that (𝑢𝑗, 𝑝𝑗) are such that
−𝜇𝜕𝑛0u0 + 𝑝0n0 = −𝜇𝜕𝑛1u1 + 𝑝1n1 on 𝑂. (18)

Then 𝜔0 ≡ 𝜔1.
This result is directly adapted from Theorem 2.2 given in

[2] to our problem.
Hence the solution of problem (7) is unique since, for a

fixed 𝑓, the same measure 𝑔 yields the same geometry 𝜔 in
O𝛿.

4. Shape Derivatives of the States

The following proposition states that the solutions (u𝐷, 𝑝𝐷)
and (u𝑁, 𝑝𝑁) are differentiable with respect to the domain.
Moreover, we obtain a characterization of the shape deriva-
tives of these solutions. This result is based on [2, Proposition
2.5].

Proposition 2 (first-order shape derivatives of the states). Let
V ∈ 𝑈 be an admissible deformation. The solutions (u𝐷, 𝑝𝐷)
and (u𝑁, 𝑝𝑁) are differentiable with respect to the domain and
the shape derivatives (u󸀠𝐷, 𝑝󸀠𝐷) and (u󸀠𝑁, 𝑝󸀠𝑁) belong toH2(Ω𝛿 \𝜔) ×H1(Ω𝛿 \ 𝜔). The couples (u󸀠𝐷, 𝑝󸀠𝐷) and (u󸀠𝑁, 𝑝󸀠𝑁) ∈ H1(Ω \

𝜔)×L2(Ω\𝜔) are, respectively, the only solutions of the following
boundary value problems:

−𝜇Δu󸀠𝐷 + ∇𝑝󸀠𝐷 = 0 in Ω \ 𝜔
div u󸀠𝐷 = 0 in Ω \ 𝜔

u󸀠𝐷 = 0 on 𝜕Ω
−𝜇𝜕𝑛u󸀠𝐷 + 𝑝󸀠𝐷n = (𝜇𝜕2𝑛𝑛u𝐷 − 𝜕𝑛𝑝𝐷n) (V.n)

+ 𝑝𝐷∇Γ (V.n) − 𝜇∇u𝐷∇Γ (V.n)
on 𝜕𝜔

(19)

and

−𝜇Δu󸀠𝑁 + ∇𝑝󸀠𝑁 = 0 in Ω \ 𝜔
div (u󸀠𝑁) = 0 in Ω \ 𝜔

−𝜇𝜕𝑛u󸀠𝑁 + 𝑝󸀠𝑁n = 0 on 𝑂
u󸀠𝑁 = 0 on 𝜕Ω \ 𝑂

−𝜇𝜕𝑛u󸀠𝑁 + 𝑝󸀠𝑁n = (𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n)
+ 𝑝𝑁∇Γ (V.n) − 𝜇∇u𝑁∇Γ (V.n)

on 𝜕𝜔.

(20)

We aim to compute the gradient of the Kohn-Vogelius
functional.

5. Shape Derivative of the Kohn-Vogelius
Cost Functional

We consider for 𝜔 ∈ O𝛿, the Kohn-Vogelius cost functional

𝐽𝐾𝑉 (𝜔) = 1
2 ∫
Ω\𝜔

𝜇 󵄨󵄨󵄨󵄨∇ (u𝐷 − u𝑁)󵄨󵄨󵄨󵄨2 . (21)

To simplify the expressions, we use the following notations:

𝑤 fl u𝐷 − u𝑁,
𝑞 fl 𝑝𝐷 − 𝑝𝑁

(22)

where (u𝐷, 𝑝𝐷) solves (9) and (u𝑁, 𝑝𝑁) solves (10).
Proposition 3 (first-order shape derivative of the functional).
For V ∈ 𝑈, the Kohn-Vogelius cost functional 𝐽𝐾𝑉 is
differentiable at 𝜔 in the direction V with

𝐷𝐽𝐾𝑉 (𝜔) .V = 1
2 ∫
𝜕𝜔

𝜇 |∇𝑤|2V𝑛
+ ∫
𝜕𝜔

[(𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n) + 𝑝𝑁∇Γ (V.n)
− 𝜇∇u𝑁∇Γ (V.n)] .𝑤

(23)

where (𝑤, 𝑞) is defined by (22).
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Proof. FromHadamard’s formula (see [4, Theorem5.2.2]), we
have

𝐷𝐽𝐾𝑉 (𝜔) .V
= ∫
Ω\𝜔

[𝜇∇𝑤 : ∇𝑤󸀠 + 1
2𝜇div (|∇𝑤|2 V)]

= ∫
Ω\𝜔

𝜇∇𝑤 : ∇𝑤󸀠 + 1
2 ∫
𝜕(Ω\𝜔)

𝜇 |∇𝑤|2 V𝑛

= ∫
Ω\𝜔

𝜇∇𝑤 : ∇ (u󸀠𝐷 − u󸀠𝑁) + 1
2 ∫
𝜕𝜔

𝜇 |∇𝑤|2V𝑛

(24)

because V = 0 on 𝜕Ω. As
∫
Ω\𝜔

𝜇∇𝑤 : ∇ (u󸀠𝐷 − u󸀠𝑁)

= ∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝐷 − ∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝑁
(25)

we apply Green Formula for ∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝐷 :

∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝐷 = − ∫
Ω\𝜔

𝜇Δ𝑤.u󸀠𝐷

+ ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛𝑤.u󸀠𝐷

= − ∫
Ω\𝜔

∇𝑞.u󸀠𝐷 + ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛𝑤.u󸀠𝐷

= ∫
Ω\𝜔

𝑞 div u󸀠𝐷 − ∫
𝜕(Ω\𝜔)

𝑞u󸀠𝐷n

+ ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛𝑤.u󸀠𝐷

= ∫
𝜕(Ω\𝜔)

[𝜇𝜕𝑛𝑤 − 𝑞n] .u󸀠𝐷

= ∫
𝜕Ω

[𝜇𝜕𝑛𝑤 − 𝑞n] .u󸀠𝐷
+ ∫
𝜕𝜔

[𝜇𝜕𝑛𝑤 − 𝑞n] .u󸀠𝐷.

(26)

Since div u󸀠𝐷 = 0 in Ω \ 𝜔 with u󸀠𝐷 = 0 on 𝜕Ω and
−𝜇𝜕𝑛u𝑁 + 𝑝𝑁n = −𝜇𝜕𝑛u𝐷 + 𝑝𝐷n = 0 on 𝜕𝜔,

∫
Ω\𝜔

𝜇∇ (u𝐷 − u𝑁) : ∇u󸀠𝐷 = 0. (27)

Apply now Green Formula for ∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝑁 to get

∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝑁 = − ∫
Ω\𝜔

𝜇Δu󸀠𝑁.𝑤 + ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛u󸀠𝑁.

𝑤 = − ∫
Ω\𝜔

∇𝑝󸀠𝑁.𝑤 + ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛u󸀠𝑁.𝑤 = ∫
Ω\𝜔

𝑝󸀠𝑁

⋅ div𝑤 − ∫
𝜕(Ω\𝜔)

𝑝󸀠𝑁𝑤.n + ∫
𝜕(Ω\𝜔)

𝜇𝜕𝑛u󸀠𝑁.𝑤

= ∫
𝜕(Ω\𝜔)

(𝜇𝜕𝑛u󸀠𝑁 − 𝑝󸀠𝑁n) .𝑤 = ∫
𝜕Ω

(𝜇𝜕𝑛u󸀠𝑁

− 𝑝󸀠𝑁n) .𝑤 + ∫
𝜕𝜔

(𝜇𝜕𝑛u󸀠𝑁 − 𝑝󸀠𝑁n) .𝑤

= − ∫
𝜕𝜔

[(𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n) + 𝑝𝑁∇Γ (V.n)
− 𝜇∇uN∇Γ (V.n)] .𝑤.

(28)

Since div𝑤 = 0 in Ω \ 𝜔 with −𝜇𝜕𝑛u󸀠𝑁 + 𝑝󸀠𝑁n = 0 on 𝜕Ω
and from (20)

−𝜇𝜕𝑛u󸀠𝑁 + 𝑝󸀠𝑁n = (𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n)
+ 𝑝𝑁∇Γ (V.n) − 𝜇∇u𝑁∇Γ (V.n)

on 𝜕𝜔
(29)

thus we get

∫
Ω\𝜔

𝜇∇𝑤 : ∇u󸀠𝑁 = − ∫
𝜕𝜔

[(𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n)
+ 𝑝𝑁∇Γ (V.n) − 𝜇∇u𝑁∇Γ (V.n)] .𝑤.

(30)

From (27)-(30), we get

∫
Ω\𝜔

𝜇∇𝑤 : ∇𝑤󸀠 = ∫
𝜕𝜔

[(𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n)
+ 𝑝𝑁∇Γ (V.n) − 𝜇∇u𝑁∇Γ (V.n)] .𝑤

(31)

Hence the first-order shape derivative of the functional is

𝐷𝐽𝐾𝑉 (𝜔) .V = 1
2 ∫
𝜕𝜔

𝜇 |∇𝑤|2V𝑛
+ ∫
𝜕𝜔

[(𝜇𝜕2𝑛𝑛u𝑁 − 𝜕𝑛𝑝𝑁n) (V.n) + 𝑝𝑁∇Γ (V.n)
− 𝜇∇u𝑁∇Γ (V.n)] .𝑤.

(32)

To recover the shape of the inclusion 𝜔, we adopt the
usual approach by minimizing a shape functional. We follow
the classical technique of optimization; that is, we evaluate
an explicit formula of the gradient of the shape functional
which can be used in numerical experiments. The gradient
is computed component by component using its character-
ization (see Proposition 3, formula (23). The optimization
method used for the numerical simulations is the classical
gradient algorithm which is the descent method: For a given
initial shape 𝜔0, we can compute the following iteration by
the algorithm 𝜔𝑖+1 = 𝜔𝑖 − 𝛼𝑖∇𝐽𝐾𝑉(𝜔𝑖) where 𝛼𝑖 is a satisfying
step length, until obtaining the stopped criterion. For more
details see [3].
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6. Conclusion

We solved our inverse problem using shape optimization
methods to detect an inclusion immersed in a fluid. We
use here the functional Kohn-Vogelius; we compute the first
shape derivative of this functional which can be used in
numerical experiments.

Appendix

Result on the Stokes Problem with
Mixed Conditions

Define

S𝑂 (Ω \ 𝜔) fl {𝑢 ∈ 𝐻1 (Ω \ 𝜔) ; div u = 0 in Ω \ 𝜔, u
= 0 on 𝜕Ω \ 𝑂 and − 𝜇𝜕n𝑢 + 𝑝n = 0 on 𝜕𝜔}

(A.1)

and denote, respectively, by ⟨⋅, ⋅⟩Ω\𝜔 and ⟨⋅, ⋅⟩𝑂 the duality
product between [H1(Ω \ 𝜔)]󸀠 andH1(Ω \ 𝜔) and the duality
product between H−1/2(𝑂) and H1/2(𝑂).
TheoremA.1 (existence and uniqueness of the solution). Let
Ω be a bounded Lipschitz open set ofR𝑑 (𝑑 ∈ N∗) and let𝜔 ⊂⊂
Ω be a Lipschitz open subset of Ω such that Ω \ 𝜔 is connected.
Let𝑂 be an open subset of the exterior boundary 𝜕Ω and 𝜇 > 0.
Let 𝑓 ∈ L2(Ω \ 𝜔), ℎ𝑂 ∈ H−1/2(𝑂), h𝑒𝑥𝑡 ∈ H1/2(𝜕Ω \ 𝑂), and
h𝑖𝑛𝑡 ∈ H−1/2(𝜕𝜔). Then, the problem.

−𝜇Δ𝑢 + ∇𝑝 = f in Ω \ 𝜔
div u = 0 in Ω \ 𝜔

−𝜇𝜕n𝑢 + 𝑝n = ℎ𝑂 on 𝑂
u = hext on 𝜕Ω \ 𝑂

−𝜇𝜕nu + 𝑝n = hint on 𝜕𝜔

(A.2)

admits a unique solution (𝑢, 𝑝) ∈ H1(Ω \ 𝜔) × L2(Ω \ 𝜔).
Proof. According to [8, Lemma 3.3], considerH ∈ H1(Ω \ 𝜔)
such that divH = 0, −𝜇𝜕nH = hint on 𝜕𝜔, and H = hext
on 𝜕Ω \ 𝑂 such that ∫

𝜕Ω∪𝜕𝜔
H.n = 0. Then the couple (U fl

𝑢 − H, 𝑝) ∈ H1(Ω \ 𝜔) × L2(Ω \ 𝜔) satisfies
−𝜇ΔU + ∇𝑝 = 𝑓 + 𝜇ΔH in Ω \ 𝜔

divU = 0 in Ω \ 𝜔
−𝜇𝜕nU + 𝑝n = h𝑂 + 𝜇𝜕nH on 𝑂

U = 0 on 𝜕Ω \ 𝑂
−𝜇𝜕nU + 𝑝n = 0 on 𝜕𝜔.

(A.3)

From the first equation we obtain, for k ∈ S𝑂(Ω \ 𝜔),
∫
Ω\𝜔

(−𝜇ΔU + ∇𝑝) k = ∫
Ω\𝜔

(𝑓 + 𝜇ΔH) k (A.4)

Apply now Green Formula to get

𝜇 ∫
Ω\𝜔

∇U : ∇k − 𝜇 ∫
𝜕(Ω\𝜔)

𝜕nU.k + ∫
Ω\𝜔

∇𝑝.k

= ⟨f, k⟩Ω\𝜔 − 𝜇 ∫
Ω\𝜔

∇H : ∇k + 𝜇 ∫
𝜕(Ω\𝜔)

𝜕nH.k
(A.5)

Since we have

∫
Ω\𝜔

∇𝑝.k = − ∫
Ω\𝜔

𝑝. div k + ∫
𝜕(Ω\𝜔)

𝑝𝑛.k (A.6)

then we obtain

𝜇 ∫
Ω\𝜔

∇U : ∇k + ∫
𝜕(Ω\𝜔)

(−𝜇𝜕nU + 𝑝𝑛) .k

= ⟨f, k⟩Ω\𝜔 − 𝜇 ∫
Ω\𝜔

∇H : ∇k + 𝜇 ∫
𝜕(Ω\𝜔)

𝜕nH.k
(A.7)

From the conditions on the boundary we get

𝜇 ∫
Ω\𝜔

∇U : ∇k = ⟨f, k⟩Ω\𝜔 − 𝜇 ∫
Ω\𝜔

∇H : ∇k
− ⟨h𝑂 + 𝜇𝜕nH, k⟩𝑂

(A.8)

From Lax-Milgram’s Theorem, there exists a unique U ∈
S𝑂(Ω \ 𝜔) such that, for all k ∈ S𝑂(Ω \ 𝜔), one has

𝜇 ∫
Ω\𝜔

∇U : ∇k = ⟨f, k⟩Ω\𝜔 − 𝜇 ∫
Ω\𝜔

∇H : ∇k
− ⟨h𝑂 + 𝜇𝜕nH, k⟩𝑂

(A.9)

In particular (A.9) is true for all k ∈ S𝑂(Ω \ 𝜔) ∩ H10(Ω \
𝜔). Then using De Rham’s theorem (see [9]), there exists 𝑝 ∈
L2(Ω \ 𝜔), up to an additive constant, such that, for all k ∈
H10(Ω \ 𝜔),

𝜇 ∫
Ω\𝜔

∇U : ∇k − ∫
Ω\𝜔

𝑝 div k

= ⟨f|H10(Ω\𝜔), k⟩
H−1(Ω\𝜔),H10(Ω\𝜔)

− 𝜇 ∫
Ω\𝜔

∇H : ∇k.
(A.10)

Using [8, Lemma 3.3] (or [10, Théorème 3.2]), we define 𝜑𝑁 ∈
H1(Ω \ 𝜔) such that div 𝜑𝑁 = 1 in Ω \ 𝜔, 𝜑𝑁 = 0 on 𝜕Ω \ 𝑂,
and 𝜑𝑁 = 0 on 𝜕𝜔 with ∫

𝑂
𝜑𝑁.n ̸= 0. Let k ∈ H1(Ω \ 𝜔) such

that k = 0 on 𝜕Ω \ 𝑂 and −𝜇𝜕nk + 𝑝n = 0 on 𝜕𝜔 and define

𝑐𝑏 (k) = 1
∫
𝜕(Ω\𝜔)
𝜑𝑁.n ∫

𝜕(Ω\𝜔)
k ⋅ n. (A.11)

From [8, Lemma 3.3] (see also [10, Théorème 3.2]), we define
𝑣2 ∈ 𝑆𝑂(Ω \ 𝜔) such that 𝑣 = 𝑣1 + 𝑣2 + 𝑐𝑏(𝑣)𝜑𝑁, where 𝑣1 ∈
H10(Ω \ 𝜔) satisfies the following equality:

div 𝑣1 = div (𝑣 − 𝑐𝑏 (𝑣)𝜑𝑁) . (A.12)
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Then, using (A.9) and (A.10), it yields

𝜇 ∫
Ω\𝜔

∇U : ∇k − ∫
Ω\𝜔

𝑝 div k

= ⟨f, k⟩Ω\𝜔 − 𝜇 ∫
Ω\𝜔

∇H : ∇k
− ⟨h𝑂 + 𝜇𝜕nH, k⟩𝑂
+ ∫
Ω\𝜔

𝜇∇U : ∇ (𝑐𝑏 (k)𝜑𝑁)

− ∫
Ω\𝜔

𝑝 div (𝑐𝑏 (k)𝜑𝑁) − ⟨f, 𝑐𝑏 (k)𝜑𝑁⟩Ω\𝜔
+ 𝜇 ∫
Ω\𝜔

∇H : ∇ (𝑐𝑏 (k)𝜑𝑁)
+ ⟨hO + 𝜇𝜕nH, 𝑐𝑏 (k)𝜑𝑁⟩𝑂 .

(A.13)

Choose the additive constant for 𝑝 such that

∫
Ω\𝜔

𝑝 = 𝜇 ∫
Ω\𝜔

∇U : ∇𝜑𝑁 − ⟨f, 𝑐𝑏 (k)𝜑𝑁⟩Ω\𝜔
+ 𝜇 ∫
Ω\𝜔

∇H : ∇𝜑𝑁
+ ⟨h𝑂 + 𝜇𝜕nH, 𝑐𝑏 (k)𝜑𝑁⟩𝑂 .

(A.14)

Hence, we prove that there exists a unique pair (U, 𝑝) ∈
S𝑂(Ω \ 𝜔) × L2(Ω \ 𝜔) such that, for all k ∈ H1(Ω \ 𝜔) with
k = 0 on 𝜕Ω \ 𝑂 and −𝜇𝜕nk + 𝑝n = 0 on 𝜕𝜔,

∫
Ω\𝜔

𝜇∇U : ∇k − ∫
Ω\𝜔

𝑝 div k = ⟨f, k⟩Ω\𝜔

−𝜇 ∫
Ω\𝜔

∇H : ∇k − ⟨hO + 𝜇𝜕nH, k⟩𝑂
(A.15)

which complete the proof.
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