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We study convergence of solutions of a space and time inhomogeneous fractional wave equation on the quarter-plane to the
stationary regime described by solutions of the Helmholtz equation.

1. Introduction and Main Result

Consider an inhomogeneous wave equation on the half-line
with a time-periodic forcing term

𝑢𝑡𝑡 (𝑥, 𝑡) − 𝑢𝑥𝑥 (𝑥, 𝑡) = 𝑒𝑖𝜆𝑡𝜓 (𝑥) , 𝑡 ≥ 0, 𝑥 ≥ 0, (1)

where 𝜓(𝑥) is, for simplicity, a 𝐶∞ function with com-
pact support. Closely related to it is the one-dimensional
Helmholtz equation

V𝑥𝑥 (𝑥) + 𝜆2V (𝑥) = −𝜓 (𝑥) . (2)

On the one hand, for any solution V(𝑥) of the Helmholtz
equation (2) the function V(𝑥)𝑒𝑖𝜆𝑡 solves the wave equation
(1); on the other, there are pairs of solutions 𝑢(𝑥, 𝑡) and V(𝑥)
of (1) and (2), respectively, such that 𝑢(𝑥, 𝑡) − V(𝑥)𝑒𝑖𝜆𝑡 󳨀→ 0
as 𝑡 󳨀→ ∞.

Results of this type go back at least to [1] (for the wave
equation in R3) and are known under the name of radiation
principles. For an extensive treatment see the classical work
[2]. The case of (1) will be recalled in Section 3.

In this paperwe study a very simple question that clarifies,
to us, the role of the fractional analogue, (5) below, of the
Helmholtz equation (2): to what extent does a similar result
hold in fractional settings? For concreteness, we chose an
inhomogeneous fractional wave equation on a half-line

𝐷𝛼𝑥𝑢 (𝑥, 𝑡) − 𝐶𝐷𝛽𝑡 𝑢 (𝑥, 𝑡) = 𝜀 (𝑡) 𝑓 (𝑥) , 𝑥, 𝑡 ≥ 0. (3)

Here𝐷𝛼𝑥 denotes the Riemann-Liouville fractional derivative,
𝐶𝐷𝛽𝑡 denotes the Caputo fractional derivative defined in
Section 2, and 𝜀(𝑡) is a fractional-harmonic function (see
below), and 1 < 𝛼, 𝛽 < 2. In various settings, (3) is a
subject of active research; see [3] and related literature. The
term fractional diffusion-wave equation is also used in the
literature.

By a fractional-harmonic function 𝜀(𝑡) we mean in this
context a solution of the fractional differential equation
(FDE)

𝐶𝐷𝛽𝑡 𝜀 (𝑡) = Ω𝜀 (𝑡) , (4)

whereΩ ∈ C \ 0 is a fixed constant. Taking a periodic 𝜀(𝑡), as
in [4], does not seem to lead to a nice result.

By [5, (3.1.34)], as 𝜀(𝑡)we can take any linear combination
ofMittag-Leffler functions𝐸𝛽(Ω𝑡𝛽) and 𝑡𝐸𝛽,2(Ω𝑡𝛽) defined in
(14) below.This is quite natural since in the limiting case 𝛽 =2, 𝐸2(−𝑡2) = cos 𝑡, and 𝑡𝐸𝛽,2(−𝑡2) = sin 𝑡. We will work out
only the case 𝜀(𝑡) = 𝐸𝛽(Ω𝑡𝛽); an arbitrary linear combination
leads to similar results.

Let now V(𝑥) be some function satisfying the fractional
Helmholtz equation

𝐷𝛼𝑥V (𝑥) − ΩV (𝑥) = 𝑓 (𝑥) , 𝑥 ≥ 0. (5)

The classically known solutions of (5) are given inTheorem 4
below. Note that more recently related multidimensional
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equations have been solved, e.g., in [6] by the spectral method
and in [7] in the form of an integral representation.

Then

𝐷𝛼𝑥 (V (𝑥) 𝜀 (𝑡)) − 𝐶𝐷𝛽𝑡 (V (𝑥) 𝜀 (𝑡))
= 𝜀 (𝑡) (𝐷𝛼𝑥V (𝑥) − ΩV (𝑥)) = 𝜀 (𝑡) 𝑓 (𝑥) , (6)

and so the function

𝑢 (𝑥, 𝑡) = V (𝑥) 𝐸𝛽 (Ω𝑡𝛽) (7)

satisfies the fractional inhomogeneous wave equation (3).
Conversely, do solutions 𝑢(𝑥, 𝑡) of (3) behave, for 𝑡 󳨀→∞, as V(𝑥)𝐸𝛽(Ω𝑡𝛽)? Our main result shows that the answer is

“not quite.”
Before formulating the results, notice that, depending on

the phase of the complex number Ω, the function 𝐸𝛽(Ω𝑡𝛽)
either is exponentially growing, or is bounded by a constant,
or behaves as 𝑂(𝑡−𝛽) as 𝑡 󳨀→ ∞; see [8, Theorems 1.3, 1.4].
Therefore any interesting result on the behavior of 𝑢(𝑥, 𝑡) −
V(𝑥)𝐸𝛽(Ω𝑡𝛽) for 𝑡 󳨀→ ∞ ought to include information on
asymptotic terms of order 𝑂(𝑡−𝛽) and smaller.

The main results of this paper are as follows.

Theorem 1. Let 1 < 𝛽 ≤ 𝛼 < 2,Ω ∈ C\0, and 𝜀(𝑡) = 𝐸𝛽(Ω𝑡𝛽),
and let𝑓(𝑥) be a𝐶∞ function with compact support on [0,∞).
Then there exist the following:

(a) A solution 𝑢(𝑥, 𝑡) of the fractional wave equation (3)
satisfying 𝑢(𝑥, 0) = 𝑢𝑡(𝑥, 0) = 0,𝐷𝛼−2𝑥 𝑢(0+, 𝑡) = 0

(b) A solution V(𝑥) of the fractional Helmholtz equation (5)
satisfying𝐷𝛼−2𝑥 V(0+) = 0,

such that, as 𝑡 󳨀→ +∞,

𝑢 (𝑥, 𝑡) − 𝐸𝛽 (Ω𝑡𝛽) V (𝑥)
= sin 𝛽𝜋𝜋 Γ (𝛽) 𝐶𝛽−1 (𝑥) 1𝑡𝛽
+ sin (𝛽 + 𝛽/𝛼) 𝜋

𝜋 Γ(𝛽 + 𝛽𝛼)𝐶𝛽−1+𝛽/𝛼 (𝑥) 1𝑡𝛽+𝛽/𝛼
+ sin 2𝛽𝜋𝜋 Γ (2𝛽)𝐶2𝛽−1 (𝑥) 1𝑡2𝛽 + 𝑂( 1𝑡𝛽+2𝛽/𝛼 ) ,

(8)

where the 𝑂 symbol should be understood pointwise with
respect to 𝑥 and the functions 𝐶𝛽−1, 𝐶𝛽−1+𝛽/𝛼, and 𝐶2𝛽−1 are
given in (66), (67), and (68).

Thus, if Ω is such that 𝐸𝛽(Ω𝑡𝛽) = 𝑂(𝑡−𝛽), the right-hand
side in (8) is of the same order as 𝑢(𝑥, 𝑡).

Theorem 1 is proven in Section 4. The proof follows, with
complications specific to fractional calculus, the outline of the
case of the wave equation, Section 3, and of the paper [1].

The case 𝛽 > 𝛼 is much less natural. Indeed, a prototype
for this case would be a heat equation with a space-harmonic
source term and the limit as the space variable tends to
infinity. We are not aware of any good result for such an
equation which we would want to generalize to the fractional
case. Nevertheless, if we impose a condition (3/2)𝛼 > 𝛽 > 𝛼,
we are able to prove the following statement; see Section 5.

Theorem 2. Let 1 < 𝛼 < 𝛽 < min{3𝛼/2, 2}, 𝛿 = 𝛼(1 − 𝛽−1),Ω ∈ C \ 0, and 𝜀(𝑡) = 𝐸𝛽(Ω𝑡𝛽), and let 𝑓(𝑥) be a 𝐶∞
function with compact support on [0,∞). Then there exist the
following:

(a) A solution 𝑢(𝑥, 𝑡) of the fractional wave equation (3)
satisfying 𝑢(𝑥, 0) = 𝑢𝑡(𝑥, 0) = 0,

𝑢 (𝑥, 0) = ∫𝑥
0
(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉,

𝑢𝑡 (𝑥, 0) = ∫𝑥
0
(𝑥 − 𝜉)𝛿−1 𝐸𝛼,𝛿 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉,

𝐷𝛼−2𝑥 𝑢 (0+, 𝑡) = 𝐷𝛼−1𝑥 𝑢 (0+, 𝑡) = 0;
(9)

(b) a solution V(𝑥) of the fractional Helmholtz equation (5)
satisfying 𝐷𝛼−2𝑥 V(0+) = 𝐷𝛼−1𝑥 V(0+) = 0,

such that, as 𝑡 󳨀→ +∞,

𝑢 (𝑥, 𝑡) − 𝐸𝛽 (Ω𝑡𝛽) V (𝑥)
= sin 𝛽𝜋𝜋 Γ (𝛽) 𝐵𝛽−1 (𝑥) 1𝑡𝛽
+ sin 2𝛽𝜋𝜋 Γ (2𝛽) 𝐵2𝛽−1 (𝑥) 1𝑡2𝛽 + 𝑂( 1𝑡3𝛽) ,

(10)

where the 𝑂 symbol should be understood pointwise with
respect to 𝑥 and the functions 𝐵𝛽−1, 𝐵2𝛽−1 are given in (89) and
(90).

The functions 𝑢 and V constructed in the proofs of the
above theorems are such that the corresponding fractional
derivatives exist in the sense of definitions (11) and (13)
below, in which the integral is the Lebesgue integral and the
derivatives are taken in the sense of elementary calculus. In
this paper we do not address the questions of uniqueness
of solutions and appropriate functional spaces where such
uniqueness would hold; therefore we phrase our results in
the language “there exists a solution...” rather than “the
solution....”

It would be curious to have an interpretation of the
functions 𝐶𝛽−1(𝑥) and 𝐵𝛽−1(𝑥).
2. Preliminaries

In this section we collect some definitions and results
from fractional calculus in order to make the paper
self-contained.

The Riemann-Liouville fractional derivative of order 𝛼 >−1, 𝛼 ∉ Z, of a function 𝑓(𝑥) is defined ([5, §2.1] for 𝛼 > 0
and, in different notation, [9] for −1 < 𝛼 < 0) as
(𝐷𝛼𝑓) (𝑥) = 1Γ (𝑛 − 𝛼) ( 𝑑𝑑𝑥)

𝑛 ∫𝑥
0

𝑓 (𝜉)
(𝑥 − 𝜉)𝛼−𝑛+1𝑑𝜉,
𝑛 = [𝛼] + 1, 𝑥 > 0.

(11)

An additional subscript 𝑥 in 𝐷𝛼𝑥 will emphasize that the
differentiation is with respect to 𝑥.
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Remark 3. Note that the usual formula for differentiation
under the integral sign

𝑑𝑑𝑥 (∫𝑥
0
𝜑 (𝑥, 𝜉) 𝑑𝜉) = 𝜑 (𝑥, 𝑥) + ∫𝑥

0

𝜕𝜕𝑥𝜑 (𝑥, 𝜉) 𝑑𝜉 (12)

is not applicable in (11) because the derivative of the integrand
is not integrable at zero.

The Caputo fractional derivative of order 𝛽 > 0, 𝛽 ∉ Z, of
a function 𝑓(𝑡) can be defined [5, §2.4] by
(𝐶𝐷𝛽𝑓) (𝑡) = 1Γ (𝑚 − 𝛽) ∫

𝑡

0

𝑓(𝑚) (𝜏)
(𝑡 − 𝜏)𝛽−𝑚+1𝑑𝜏,

𝑚 = [𝛽] + 1, 𝑡 > 0.
(13)

An additional subscript 𝑡 in 𝐶𝐷𝛽𝑡 will emphasize that the
differentiation is with respect to 𝑡.

Some analytical conditions need to be imposed on the
function 𝑓 to guarantee the existence of its fractional deriva-
tives; see [5].

The following Mittag-Leffler functions treated in detail in
[5, §1.8] and [8, §1.2] play the same role for FDEs as does
the function 𝑒𝑥 in the theory of integer-order differential
equations:

𝐸𝛼 (𝑥) = ∞∑
𝑘=0

𝑥𝑘Γ (𝛼𝑘 + 1) ,

𝐸𝛼,𝛽 (𝑥) = ∞∑
𝑘=0

𝑥𝑘Γ (𝛼𝑘 + 𝛽) .
(14)

There is the following result on FDEs with the Riemann-
Liouville derivative.

Theorem 4 (see [5, §3.1], [9]). If 𝛼 > 0, 𝛼 ∉ Z, 𝑛 = [𝛼] + 1,𝑓(𝑥) is an integrable function on [0, 𝑏) for some 𝑏, and 𝜆 ∈ C

is a constant, then the initial-value problem

(𝐷𝛼𝑦) (𝑥) − 𝜆𝑦 (𝑥) = 𝑓 (𝑥) ;
(𝐷𝛼−𝑘𝑦) (0+) = 𝑏𝑘, 𝑘 = 1, . . . , 𝑛, (15)

has a unique solution

𝑦 (𝑥) = 𝑛∑
𝑘=1

𝑏𝑘𝑥𝛼−𝑘𝐸𝛼,𝛼−𝑘+1 (𝜆𝑥𝛼)
+ ∫𝑥
0
(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝜆 (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉.

(16)

This theorem indicates the correct way to set up the
initial conditions for equations with the Riemann-Liouville
fractional derivative. By contrast, [5, §3.5], one sets up the
initial value problem for an FDE with Caputo derivative, say,(𝐶𝐷𝛽𝑦)(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) in the usual way: 𝑦(𝑘)(0) = 𝑏𝑘, 𝑘 =0, . . . , [𝛽].

3. Case of the Classical Inhomogeneous
Wave Equation

In this section we recall the case of the usual wave equation in
order to motivate the fractional version of the argument and
especially the formulas (30)-(31).

It is well-known (see, e.g., [10, Lecture 13]) that the
function

𝑢 (𝑥, 𝑡) = 12 ∫
𝑡

0
𝑑𝑠∫𝑥+(𝑡−𝑠)
𝑥−(𝑡−𝑠)

𝑑𝑦𝑓 (𝑦, 𝑠) (17)

is a solution of the initial value problem

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 𝑓 (𝑥, 𝑡) , 𝑡 ≥ 0, −∞ < 𝑥 < ∞;
𝑢 (𝑥, 0) = 0,
𝑢𝑡 (𝑥, 0) = 0.

(18)

Define the Laplace transforms with respect to 𝑡:
𝑢̃ (𝑥, 𝛾) = ∫∞

0
𝑒−𝑡𝛾𝑢 (𝑥, 𝑡) 𝑑𝑡;

𝑓 (𝑥, 𝛾) = ∫∞
0

𝑒−𝑡𝛾𝑓 (𝑥, 𝑡) 𝑑𝑡.
(19)

Then (17), after simple manipulations, yields

𝑢̃ (𝑥, 𝛾) = 12𝛾𝑒𝛾𝑥 ∫
∞

𝑥
𝑑𝜉𝑒−𝛾𝜉𝑓 (𝜉, 𝛾)

+ 12𝛾𝑒−𝛾𝑥 ∫
𝑥

−∞
𝑑𝜂𝑒𝛾𝜂𝑓 (𝜂, 𝛾) .

(20)

By the method of images we know that if 𝑓(𝑥, 𝑡) is
originally defined for 𝑥 ≥ 0 and extended to the negative
axis by 𝑓(−𝑥, 𝑡) = −𝑓(𝑥, 𝑡), then 𝑢(𝑥, 𝑡) from (17) solves the
boundary-value problem on the half-line:

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 𝑓 (𝑥, 𝑡) , 𝑡 ≥ 0, 𝑥 ≥ 0;
𝑢 (𝑥, 0) = 0,
𝑢𝑡 (𝑥, 0) = 0,
𝑢 (0, 𝑡) = 0.

(21)

In this case (20) becomes

𝑢̃ (𝑥, 𝛾) = 𝑒𝛾𝑥2𝛾 ∫∞
𝑥

𝑑𝜉𝑒−𝛾𝜉𝑓 (𝜉, 𝛾)
+ 𝑒−𝛾𝑥2𝛾 ∫𝑥

0
𝑑𝜉𝑒𝛾𝜉𝑓 (𝜉, 𝛾)

− 𝑒−𝛾𝑥2𝛾 ∫∞
0

𝑑𝜉𝑒−𝛾𝜉𝑓 (𝜉, 𝛾) .
(22)

If the forcing term 𝑓(𝑥, 𝑡) in (21) is periodic in time,

𝑓 (𝑥, 𝑡) = 𝜓 (𝑥) 𝑒𝑖𝜆𝑡,
𝑓 (𝑥, 𝛾) = 1𝛾 − 𝑖𝜆𝜓 (𝑥) ,

(23)
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we get

𝑢̃ (𝑥, 𝛾) = 12𝛾 (𝛾 − 𝑖𝜆) [𝑒𝛾𝑥 ∫
∞

𝑥
𝑑𝜉𝑒−𝛾𝜉𝜓 (𝜉)

+ 𝑒−𝛾𝑥 ∫𝑥
0
𝑑𝜉𝑒𝛾𝜉𝜓 (𝜉) − 𝑒−𝛾𝑥 ∫∞

0
𝑑𝜉𝑒−𝛾𝜉𝜓 (𝜉)] .

(24)

On the other hand, the Helmholtz equation on the half-
line

V𝑥𝑥 (𝑥) − 𝜔2V (𝑥) = 𝜑 (𝑥) , 𝑥 ≥ 0, V (0) = 0 (25)

has a solution

V (𝑥) = − 12𝜔𝑒𝜔𝑥 ∫
∞

𝑥
𝑑𝜉𝑒−𝜔𝜉𝜑 (𝜉)

− 12𝜔𝑒−𝜔𝑥 ∫
𝑥

0
𝑑𝜉𝑒𝜔𝜉𝜑 (𝜉)

+ 12𝜔𝑒−𝜔𝑥 ∫
∞

0
𝑑𝜉𝑒−𝜔𝜉𝜑 (𝜉) .

(26)

Now let us understand the behavior of 𝑢(𝑥, 𝑡) for large 𝑡,
pointwise with respect to 𝑥, assuming supp𝜓 ⊂ [0,𝑀]. If𝑡 > 𝑥 + 𝑀, the Bromwich integral that expresses 𝑢(𝑥, 𝑡) via
(24) can be closed on the left, yielding that 𝑢(𝑥, 𝑡) is simply a
sum of residues:

𝑢 (𝑥, 𝑡) = 𝑒𝛾𝑡 12 (−𝑖𝜆) [∫
∞

𝑥
𝑑𝜉𝜓 (𝜉) + ∫𝑥

0
𝑑𝜉𝜓 (𝜉)

− ∫∞
0

𝑑𝜉𝜓 (𝜉)] + 𝑒𝑖𝜆𝑡 12𝑖𝜆 [𝑒𝑖𝜆𝑥 ∫∞
𝑥

𝑑𝜉𝑒−𝑖𝜆𝜉𝜓 (𝜉)
+ 𝑒−𝑖𝜆𝑥 ∫𝑥

0
𝑑𝜉𝑒𝑖𝜆𝜉𝜓 (𝜉) − 𝑒−𝑖𝜆𝑥 ∫∞

0
𝑑𝜉𝑒−𝑖𝜆𝜉𝜓 (𝜉)] .

(27)

Looking at (26) we recognize that

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝜆𝑡V (𝑥) , 𝑡 > 𝑥 +𝑀, (28)

where V(𝑥) is a solution of theHelmholtz equation above with𝜔 = 𝑖𝜆 and 𝜑 = −𝜓:
V𝑥𝑥 (𝑥) + 𝜆2V (𝑥) = −𝜓 (𝑥) . (29)

4. Case 𝛽 ≤ 𝛼
This section contains the proof of Theorem 1. We begin by
constructing a solution 𝑢(𝑥, 𝑡) of the inhomogeneous frac-
tional wave equation using the method of Laplace transform.
Later on 𝑏(𝛾) in Lemma 5 will be specialized to the Laplace
transform of a Mittag-Leffler function.

Lemma 5. Let
(a) 𝑓(𝑥) be a continuous function with compact support
(b) 𝑏(𝛾) be an analytic function defined in C \ [𝐷(0, 𝑅) ∪(−∞,0]] estimated as𝑂(|𝛾|−1) as |𝛾| 󳨀→ ∞ in that region
(c) ∫𝑐+𝑖∞
𝑐−𝑖∞

𝑒𝛾𝑡𝑏(𝛾)𝑑𝛾 be defined for 𝑡 = 0 in the sense of
principal value

Then the function

𝑢 (𝑥, 𝑡) = 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝑡𝛾F (𝑥, 𝛾) 𝑑𝛾, 𝑡 ≥ 0, (30)

where

F (𝑥, 𝛾) = 𝑏 (𝛾) ∫𝑥
0
𝑑𝜉𝑓 (𝜉)

⋅ [(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼)
− 𝑒−𝜉𝛾𝛽/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼)] − 𝑏 (𝛾)
⋅ ∫∞
𝑥

𝑑𝜉𝑒−𝜉𝛾𝛽/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼) 𝑓 (𝜉)

(31)

for 𝑥 ≥ 0 solves the FDE
𝐷𝛼𝑥𝑢 (𝑥, 𝑡) − 𝐶𝐷𝛽𝑡 𝑢 (𝑥, 𝑡)

= 𝑓 (𝑥) 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝛾𝑡𝑏 (𝛾) 𝑑𝛾. (32)

Moreover, 𝑢(𝑥, 𝑡) satisfies the boundary condition
𝐷𝛼−2𝑥 𝑢 (0+, 𝑡) = 0 (33)

and

𝑢 (𝑥, 0) = 𝑢𝑡 (𝑥, 0) = 0. (34)

Remark that since 𝑥𝐸2,2(𝑥2) = sinh 𝑥, the function (31) is
a fractional generalization of (22). While the statement of the
lemma is quite natural on the algebraic level, various analytic
justifications need to be carried out.

Proof of the Lemma. Denote

F1 (𝑥, 𝛾) = ∫𝑥
0
𝑑𝜉𝑓 (𝜉) [(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼)

− 𝑒−𝜉𝛾𝛽/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼)] ,
(35)

F2 (𝑥, 𝛾) = ∫∞
𝑥

𝑑𝜉𝑒−𝜉𝛾𝛽/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼) 𝑓 (𝜉) . (36)

Let us first show that the integral (30) converges.
According to [8, Th.1.3], for |𝛾| 󳨀→ ∞,R𝛾 ≥ 0,
(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼)
∼ 1𝛼𝛾𝛽(1−𝛼)/𝛼𝑒𝛾

𝛽/𝛼(𝑥−𝜉) − ∞∑
𝑘=2

𝛾−𝛽𝑘 (𝑥 − 𝜉)(1−𝑘)𝛼−1Γ (𝛼 − 𝛼𝑘) ;
𝑒−𝜉𝛾𝛽/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼)

∼ 𝑒−𝜉𝛾𝛽/𝛼 1𝛼𝛾𝛽(1−𝛼)/𝛼𝑒𝛾
𝛽/𝛼𝑥 − 𝑒−𝜉𝛾𝛽/𝛼 ∞∑

𝑘=2

𝛾−𝑘𝛽𝑥(1−𝑘)𝛼−1Γ (𝛼 − 𝛼𝑘)

(37)
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Figure 1: The contour 𝜇 in the 𝛾-plane.

and so the bracket in (35) has an asymptotic expansion

[𝑒−𝜉𝛾𝛽/𝛼 ∞∑
𝑘=2

𝛾−𝑘𝛽𝑥(1−𝑘)𝛼−1Γ (𝛼 − 𝛼𝑘) − ∞∑
𝑘=2

𝛾−𝛽𝑘 (𝑥 − 𝜉)(1−𝑘)𝛼−1Γ (𝛼 − 𝛼𝑘) ] . (38)

Using that R𝛾𝛽/𝛼 > 0 for R𝛾 ≥ 0 and that 𝜉 ≥ 0, we see
that (38) is 𝑂(|𝛾|−2𝛽) as |𝛾| 󳨀→ ∞,R𝛾 ≥ 0. Thus the integral
∫𝑐+𝑖∞
𝑐−𝑖∞

𝑒𝛾𝑡𝑏(𝛾)F1(𝑥, 𝛾)𝑑𝛾 converges.
Concerning theF2 term, integrate (36) by parts to get

F2 (𝑥, 𝛾) = 𝛾−𝛽/𝛼𝐸𝛼,𝛼 (𝛾𝛽𝑥)
⋅ {−𝑒−𝑥𝛾𝛽/𝛼𝑓 (𝑥) + ∫∞

𝑥
𝑒−𝜉𝛾𝛽/𝛼𝑓󸀠 (𝜉) 𝑑𝜉} . (39)

Analogously to (37), we see that the right-hand side of (39)
is 𝑂(𝛾−𝛽/𝛼 ⋅ 𝛾𝛽(1−𝛼)/𝛼) = 𝑂(𝛾−𝛽) for |𝛾| 󳨀→ ∞, R𝛾 ≥ 0. As𝑏(𝛾) = 𝑂(|𝛾|−1) by assumptions of the lemma, the integral
∫𝑐+𝑖∞
𝑐−𝑖∞

𝑒𝛾𝑡𝑏(𝛾)F2(𝑥, 𝛾)𝑑𝛾 also converges.
Thus the definition of 𝑢(𝑥, 𝑡) by (30) makes sense.
If 𝑡 = 0, we can close the integration contour in (30)

on the right and obtain 𝑢(𝑥, 0) = 0. The decay of the
integrand in (30) for |𝛾| 󳨀→ ∞ is sufficiently fast to allow
the differentiation under the integral sign; putting 𝑡 = 0 in
the integral

𝑢𝑡 (𝑥, 𝑡) = 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝑡𝛾F (𝑥, 𝛾) ⋅ 𝛾 𝑑𝛾 (40)

and again closing the contour on the right, we obtain𝑢𝑡(𝑥, 0) = 0.
For 𝑡 > 0 the Bromwich integration contour in (30) can

be replaced with the integration contour 𝜇 shown on Figure 1:
𝑢 (𝑥, 𝑡) = 12𝜋𝑖 ∫𝜇 𝑒𝑡𝛾F (𝑥, 𝛾) 𝑑𝛾 (41)

where now
F (𝑥, 𝛾) = 𝑏 (𝛾)

⋅ [∫𝑥
0
𝑓 (𝜉) (𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) 𝑑𝜉

+ 𝑥𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼)∫∞
0

𝑒−𝜉𝛾𝛽/𝛼𝑓 (𝜉) 𝑑𝜉] .
(42)

By definition (11), since 1 < 𝛼 < 2,
𝐷𝛼𝑥𝑢 (𝑥, 𝑡) = 𝑑2𝑑𝑥2 [ 1Γ (2 − 𝛼)

⋅ ∫𝑥
0
𝑢 (𝜂, 𝑡) (𝑥 − 𝜂)1−𝛼 𝑑𝜂] = 𝑑2𝑑𝑥2 [ 1Γ (2 − 𝛼)

⋅ ∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡F (𝜂, 𝛾)] .

(43)

The assumptions of Fubini’s theorem are clearly satisfied for
interchanging the order of integration with respect to 𝑑𝜂 and𝑑𝛾 (while keeping 𝑥 fixed); thus

= 𝑑2𝑑𝑥2 [ 1Γ (2 − 𝛼) 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡

⋅ ∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼F (𝜂, 𝛾)] .

(44)

Claim

(44) = 1Γ (2 − 𝛼) 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡
𝑑2𝑑𝑥2

⋅ ∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼F (𝜂, 𝛾) .

(45)

Proof of the Claim. We have to work around the obstacle
mentioned inRemark 3.Weneed to show that the first and the
second 𝑥-derivatives in the integrand of (44) are integrable
with respect to 𝑑𝛾𝑒𝛾𝑡.
Step A.The function

𝑑2𝑑𝑥2 1Γ (2 − 𝛼) ∫
𝑥

0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼F (𝜂, 𝛾)

= 𝐷𝛼𝑥F (𝜂, 𝛾)
(46)

equals byTheorem 4

𝛾𝛽F (𝑥, 𝛾) + 𝑓 (𝑥) (47)

which is integrable along 𝜇with respect to the measure 𝑒𝛾𝑡𝑑𝛾,
uniformly for 𝑥 in compact sets.

Step B. Using the beta-integral, for 𝑥 > 𝜉 we find
∫𝜂=𝑥
𝜂=𝜉

(𝑥 − 𝜂)1−𝛼 (𝜂 − 𝜉)𝑘𝛼−1 𝑑𝜂
= Γ (2 − 𝛼) Γ (𝑘𝛼)Γ (2 + (𝑘 − 1) 𝛼) (𝑥 − 𝜉)(𝑘−1)𝛼+1 .

(48)
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Therefore, for each fixed value of 𝛾 ∈ C and 𝑥 ≥ 0,
∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼

⋅ ∫𝜂
0
𝑓 (𝜉) (𝜂 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝜂 − 𝜉)) 𝑑𝜉

= ∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼

⋅ ∫𝜂
0
𝑓 (𝜉) ∞∑
𝑘=0

𝛾𝛽𝑘 (𝜂 − 𝜉)(𝑘+1)𝛼−1
Γ (𝑘𝛼 + 𝛼) 𝑑𝜉

(49)

(since the series converges uniformly with respect to the
integration variables)

= ∫𝑥
0
𝑑𝜉𝑓 (𝜉) ∞∑

𝑘=0

Γ (2 − 𝛼) (𝑥 − 𝜉)𝑘𝛼+1 𝛾𝛽𝑘Γ (2 + 𝑘𝛼)
= Γ (2 − 𝛼) ∫𝑥

0
𝑑𝜉𝑓 (𝜉) ⋅ (𝑥 − 𝜉) 𝐸𝛼,2 (𝛾𝛽 (𝑥 − 𝜉)𝛼) .

(50)

The integrand is regular enough to differentiate under the
integral sign:

𝜕𝜕𝑥 (50) = ∫𝑥
0
𝑑𝜉𝑓 (𝜉) ∞∑

𝑘=0

Γ (2 − 𝛼) (𝑥 − 𝜉)𝑘𝛼 𝛾𝛽𝑘Γ (1 + 𝑘𝛼)
= Γ (2 − 𝛼) ∫𝑥

0
𝑑𝜉𝑓 (𝜉) 𝐸𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) ,

(51)

which is integrable along 𝜇 with respect to 𝑑𝛾𝑏(𝛾)𝑒𝛾𝑡.
Step C. Similarly, using (48),

∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼 𝜂𝛼−1𝐸𝛼,𝛼 (𝛾𝛽𝜂𝛼)
= ∫𝑥
0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼 ∞∑

𝑘=0

𝛾𝛽𝑘𝜂(𝑘+1)𝛼−1Γ (𝑘𝛼 + 𝛼)
= ∞∑
𝑘=0

Γ (2 − 𝛼) 𝑥𝑘𝛼+1𝛾𝛽𝑘Γ (2 + 𝑘𝛼) = Γ (2 − 𝛼) 𝑥𝐸𝛼,2 (𝛾𝛽𝑥𝛼) ,
(52)

and (𝜕/𝜕𝑥) (52) is also integrable along 𝜇 with respect to𝑑𝛾𝑏(𝛾)𝑒𝛾𝑡.
Step D. Adding the results of Steps B and C we conclude that
also 𝑑𝑑𝑥 ∫𝑥

0
𝑑𝜂 (𝑥 − 𝜂)1−𝛼F (𝜂, 𝑦) (53)

is integrable along 𝜇 with respect to 𝑒𝛾𝑡𝑑𝛾, uniformly with
respect to 𝑥 on compact sets. Therefore two consecutive
differentiations with respect to 𝑥 can be carried out under the
integral sign in (44) and the claim is proven.

Resuming the Proof of Lemma 5. By the result of the claim and
by Step A in its proof, we have

𝐷𝛼𝑥𝑢 (𝑥, 𝑡) = 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡 (𝛾𝛽F (𝑥, 𝛾) + 𝑓 (𝑥)) . (54)

By definition (13),

𝐶𝐷𝛽𝑡 𝑢 (𝑥, 𝑡)
= 1Γ (2 − 𝛽) ∫

𝑡

0
[ 𝑑2𝑑𝜏2 𝑢 (𝑥, 𝜏) (𝑡 − 𝜏)1−𝛽] 𝑑𝜏

(55)

and similarly to [5, (5.3.3)]
𝐶𝐷𝛽𝑡 ∫

𝜇
𝑑𝛾𝑒𝛾𝑡F (𝑥, 𝛾) = ∫

𝜇
𝑑𝛾𝛾𝛽𝑒𝛾𝑡F (𝑥, 𝛾) . (56)

Here we used the fact that convolutions interact with the
Laplace integral in the usual way even if the contour of the
Laplace integral is not rectilinear; see [11, Pré I.5].

Collecting the terms from (54) and (56), we obtain (32).
Finally, let us compute [𝐷𝛼−2𝑥 𝑢(𝑥, 𝑡)]𝑥=0+. With the same

analytical details as above,

[𝐷𝛼−2𝑥 𝑢 (𝑥, 𝑡)]
𝑥=0+

= ∫
𝜇
𝑒𝛾𝑡 [𝐷𝛼−2𝑥 F (𝑥, 𝛾)]

𝑥=0+
𝑑𝛾

= 0,
(57)

using Theorem 4.

Let us now subtract from the solution of the form (30) the
solution of the type (7) and estimate the difference. Since we
want 𝜀(𝑡) = 𝐸𝛽(Ω𝑡𝛽) in (3), we take in (32)

𝑏 (𝛾) = 𝐿.𝑇. (𝐸𝛽 (Ω𝑡𝛽)) = 𝛾𝛽−1
𝛾𝛽 − Ω. (58)

We will treat Ω as belonging to the cut complex plane
C \ (−∞, 0]; and let, for definiteness, Ω1/𝛼 be the principal
branch, i.e.,Ω1/𝛼 > 0 ifΩ > 0. If argΩ ∈ (−(2−𝛽)𝜋, (2−𝛽)𝜋)
then 𝑠𝛽 −Ω has only one root 𝑠 = 𝑟1 in the cut complex plane
C \ (−∞; 0]; otherwise it has two roots 𝑠 = 𝑟1 and 𝑠 = 𝑟2. If
argΩ ∈ [−𝜋𝛽/2, 𝜋𝛽/2], one of the roots 𝑟𝜅 is located in the
left half-planeR𝑠 > 0.

As a solution of the Helmholtz equation (5) satisfying𝐷𝛼−2V(0+) = 0 we take
V (𝑥) = ∫𝑥

0
𝑑𝜉𝑓 (𝜉) [(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼)

− 𝑒−𝜉Ω1/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (Ω𝑥𝛼)]
− ∫∞
𝑥

𝑑𝜉𝑒−𝜉Ω1/𝛼𝑥𝛼−1𝐸𝛼,𝛼 (Ω𝑥𝛼) 𝑓 (𝜉) .
(59)

The fact that V(𝑥) is indeed a solution follows from The-
orem 4; the form of V(𝑥) was derived similarly to (31) by
imitating (26) in the case of the wave equation. As 𝑢(𝑥, 𝑡) we
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take the solution of the fractional wave equation constructed
in Lemma 5. With these choices,

𝑢 (𝑥, 𝑡) − 𝐸𝛽 (Ω𝑡𝛽) V (𝑥) = 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡
𝛾𝛽−1
𝛾𝛽 − Ω

× [∫𝑥
0
(𝑥 − 𝜉)𝛼−1

⋅ {𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) − 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼)}
⋅ 𝑓 (𝜉) 𝑑𝜉
− ∫∞
0

{𝑒−𝜉𝛾𝛽/𝛼𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼) − 𝑒−𝜉Ω1/𝛼𝐸𝛼,𝛼 (Ω𝑥𝛼)}
⋅ 𝑓 (𝜉) 𝑥𝛼−1𝑑𝜉] .

(60)

The integrand of (60) is analytic at 𝑟𝜅, 𝜅 = 1 or 𝜅 = 1, 2, as the
case may be. Therefore the only contribution to the integral
comes from the discontinuity along the cut (−∞, 0]. To the
jump of the integrand along that cut we apply the following.

Lemma 6 (generalized Watson’s lemma, [12, p.22]). Consider
the integral

𝐺 (𝑧) = ∫∞𝑒𝑖𝑦
0

𝑔 (𝑡) 𝑒−𝑧𝑡𝑑𝑡 (61)

in the complex domain, where 𝑦 ∈ R, and the path of
integration is the straight line joining 𝑡 = 0 to 𝑡 = ∞𝑒𝑖𝑦.
Suppose that the integral 𝐺(𝑧) exists for some fixed 𝑧 = 𝑧0 and
that, as 𝑡 󳨀→ 0 along arg 𝑡 = 𝑦,

𝑔 (𝑡) ∼ ∞∑
𝑛=0

𝑎𝑛𝑡𝜆𝑛−1, (62)

where 𝜆0 > 0 and 𝜆𝑛+1 > 𝜆𝑛. Then

𝐺 (𝑧) ∼ ∞∑
𝑛=0

𝑎𝑛Γ (𝜆𝑛) 𝑧−𝜆𝑛 (63)

as 𝑧 󳨀→ ∞ in | arg(𝑧𝑒𝑖𝑦)| ≤ 𝜋/2 − Δ for any Δ in the interval0 < Δ ≤ 𝜋/2.
An elementary calculation with power series shows that

𝛾𝛽−1
𝛾𝛽 − Ω [∫𝑥

0
(𝑥 − 𝜉)𝛼−1

⋅ {𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) − 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼)}
⋅ 𝑓 (𝜉) 𝑑𝜉
− ∫∞
0

{𝑒−𝜉𝛾𝛽/𝛼𝐸𝛼,𝛼 (𝛾𝛽𝑥𝛼) − 𝑒−𝜉Ω1/𝛼𝐸𝛼,𝛼 (Ω𝑥𝛼)}
⋅ 𝑓 (𝜉) 𝑥𝛼−1𝑑𝜉] = 𝐶𝛽−1 (𝑥) 𝛾𝛽−1 + 𝐶𝛽−1+𝛽/𝛼 (𝑥)
⋅ 𝛾𝛽−1+𝛽/𝛼 + 𝐶2𝛽−1𝛾2𝛽−1 + 𝑂 (𝛾𝛽−1+2𝛽/𝛼) ,

(64)

where in the ordering of the terms we remembered that 1/2 <𝛽/𝛼 ≤ 1 and 1 < 𝛽 < 2 and where

𝐶𝛽−1 (𝑥) = ∫𝑥
0
(𝑥 − 𝜉)2𝛼−1 𝐸𝛼,2𝛼 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉 (65)

+ 𝑥𝛼−1Ω ∫∞
0

{ 1Γ (𝛼) − 𝑒−𝜉Ω
1/𝛼𝐸𝛼,𝛼 (Ω𝑥𝛼)}𝑓 (𝜉) 𝑑𝜉; (66)

𝐶𝛽−1+𝛽/𝛼 (𝑥) = − 𝑥𝛼−1ΩΓ (𝛼) ∫
∞

0
𝜉𝑓 (𝜉) 𝑑𝜉; (67)

𝐶2𝛽−1 (𝑥) = 1Ω𝐶𝛽−1
− 1ΩΓ (2𝛼) ∫

𝑥

0
[(𝑥 − 𝜉)2𝛼−1 − 𝑥2𝛼−1] 𝑓 (𝜉) 𝑑𝜉.

(68)

Now (8) follows from Lemma 6 and the formula

12𝜋𝑖 ∫𝜇 𝛾𝑞−1𝑒𝛾𝑡𝑑𝛾 =
sin 𝑞𝜋𝜋 Γ (𝑞) ⋅ 1𝑡𝑞 . (69)

The proof of Theorem 1 is complete.

5. Case (3/2)𝛼>𝛽>𝛼
In this section we prove Theorem 2, following the model of
the previous section. The condition (3/2)𝛼 > 𝛽 is imposed to
make the function 𝐸𝛼,𝛼(𝛾𝛽𝑐), for 𝑐 > 0, decrease as |𝛾| 󳨀→ ∞,𝜋 ≤ | arg 𝛾| ≤ 𝜋/2; see [8, Theorems 1.3, 1.4].
Lemma 7. Let 𝑓(𝑥) be a continuous function with compact
support.

Let 𝑏(𝛾) be an analytic function defined in
C \ [𝐷(0, 𝑅) ∪ (−∞, 0]] and bounded in that region;
moreover ∫𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝛾𝑡𝑏(𝛾)𝑑𝛾 is defined for 𝑡 = 0 in the sense of

principal value. Then the function

𝑢 (𝑥, 𝑡) = 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝑡𝛾H (𝑥, 𝛾) 𝑑𝛾, 𝑡 ≥ 0, (70)

where

H (𝑥, 𝛾)
= 𝑏 (𝛾)∫𝑥

0
𝑑𝜉𝑓 (𝜉) (𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) (71)

for 𝑥 ≥ 0, solves the FDE
𝐷𝛼𝑥𝑢 (𝑥, 𝑡) − 𝐶𝐷𝛽𝑡 𝑢 (𝑥, 𝑡)

= 𝑓 (𝑥) 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝛾𝑡𝑏 (𝛾) 𝑑𝛾. (72)

Moreover, 𝑢(𝑥, 𝑡) satisfies the boundary conditions
𝐷𝛼−2𝑥 𝑢 (0+, 𝑡) = 𝐷𝛼−1𝑥 𝑢 (0+, 𝑡) = 0. (73)
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arg=
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Figure 2: The contour 𝐿󸀠 in the 𝑠-plane.

Proof. Since 𝐸𝛼,𝛼(𝛾𝛽(𝑥 − 𝜉)𝛼) = 𝑂(|𝛾|−2𝛽) as 𝛾 󳨀→ ±𝑖∞ and𝛽 > 1, in the integral

𝑢 (𝑥, 𝑡) = 12𝜋𝑖 ∫
𝑐+𝑖∞

𝑐−𝑖∞
𝑑𝑡

⋅ ∫𝑥
0
𝑑𝜉𝑒𝑡𝛾𝑏 (𝛾) (𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 ( 𝛾𝛽 (𝑥 − 𝜉)𝛼 𝑓 (𝜉)

(74)

the integrations can be carried out in arbitrary order; also,
similarly to the proof of Lemma 5, one can perform fractional
differentiations under the integral sign even without modify-
ing the integration contour.

Next we assume that 𝑏(𝛾) = 𝐿.𝑇.(𝐸𝛽(Ω𝑡𝛽)) = 𝛾𝛽−1/(𝛾𝛽 −Ω) and work out the initial conditions of 𝑢(𝑥, 𝑡) from (70) for𝑡 = 0; namely, we compute

𝑢 (𝑥, 0) = 12𝜋𝑖 ∫
𝑥

0
𝑑𝜉∫𝑐+𝑖∞
𝑐−𝑖∞

𝑑𝛾 (𝑥 − 𝜉)𝛼−1

⋅ 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) ( 𝛾𝛽−1
𝛾𝛽 − Ω)𝑓 (𝜉)

(75)

and

𝑢𝑡 (𝑥, 0) = 12𝜋𝑖 ∫
𝑥

0
𝑑𝜉∫𝑐+𝑖∞
𝑐−𝑖∞

𝑑𝛾𝛾 (𝑥 − 𝜉)𝛼−1

⋅ 𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) ( 𝛾𝛽−1
𝛾𝛽 − Ω)𝑓 (𝜉) .

(76)

In the inner integral of (75) make the substitution 𝑠 = 𝛾𝛽
and obtain the integral

12𝜋𝑖 ∫𝐿󸀠 𝐸𝛼,𝛼 (𝑠 (𝑥 − 𝜉)𝛼)
𝑑𝑠𝑠 − Ω, (77)

where the integration contour 𝐿󸀠 is shown on Figure 2.
Since 𝐸𝛼,𝛼(𝑠(𝑥−𝜉)𝛼) = 𝑂(𝑠−2) as 𝑠 󳨀→ ∞, | arg 𝑠| > 𝜋𝛼/2,

we can close the contour 𝐿󸀠 and calculate the integral (77)
using the residue at 𝑠 = Ω:

12𝜋𝑖 ∮𝐸𝛼,𝛼 (𝑠 (𝑥 − 𝜉)𝛼) 𝑑𝑠𝑠 − 𝜔 = 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼) . (78)

Similarly, the inner integral of (76) becomes

12𝜋𝑖 ∫𝐿󸀠 𝑠1/𝛽𝐸𝛼,𝛼 (𝑠 (𝑥 − 𝜉)𝛼)
𝑑𝑠𝑠 − Ω, (79)

0

arg=


2

arg=
−

2

arg=

arg=−

Ω

ΓL

Figure 3: The contour Γ.

where we now introduce a cut (−∞; 0] in the 𝑠-plane. Let𝜋𝛼/2 < 𝜇 < 𝜋𝛽/2; then the integral representation [8,(1.126)] implies

(79) = 12𝜋𝑖 ∫𝐿󸀠 𝑑𝑠𝑠1/𝛽
12𝜋𝑖𝛼

⋅ ∫
Γ
𝑑𝜁exp (𝜁1/𝛼) 𝜁(1/𝛼)−1𝜁 − 𝑠 (𝑥 − 𝜉)𝛼 1𝑠 − Ω,

(80)

where the contour Γ is as on Figure 3 and avoids a
large enough circle around the origin so as not to inter-
sect the similarity image max{1, (𝑥 − 𝜉)𝛼} ⋅ 𝐿󸀠 of the
contour 𝐿󸀠.

Interchanging the order of integration in (80) (legal
because 𝛽 > 1), we obtain

1
(2𝜋𝑖)2 𝛼 ∫

Γ
𝑑𝜁 exp (𝜁1/𝛼) 𝜁(1/𝛼)−1

⋅ ∫
𝐿󸀠
𝑑𝑠 𝑠1/𝛽(𝜁 − 𝑠 (𝑥 − 𝜉)𝛼) (𝑠 − Ω) .

(81)

Closing the contour 𝐿󸀠 on the right (which is possible for𝛽 > 1) we pick up the residue at 𝑠 = 𝜁/(𝑥 − 𝜉)𝛼, and (76)
becomes

− 1
(2𝜋𝑖) 𝛼 (𝑥 − 𝜉)𝛼/𝛽 ∫Γ 𝑑𝜁

exp (𝜁1/𝛼) 𝜁(1/𝛽)+(1/𝛼)−1
𝜁 − Ω (𝑥 − 𝜉)𝛼 . (82)

Let 𝛿 = 𝛼−𝛼/𝛽; then in the numerator 𝜁(1/𝛽)+(1/𝛼)−1 = 𝜁(1−𝛿)/𝛼,
and the integral equals (see [8, (1.130)])

− 1
(𝑥 − 𝜉)𝛼/𝛽𝐸𝛼,𝛿 (Ω (𝑥 − 𝜉)𝛼) . (83)

Coming back to (76), we obtain

(76) = −∫𝑥
0
𝑑𝜉 (𝑥 − 𝜉)𝛿−1 𝐸𝛼,𝛿 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) . (84)

Putting together (78) and (84), we have proven the
following.
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Lemma 8. If 𝑓(𝑥) is a smooth function with compact support,
the solution 𝑢(𝑥, 𝑡) from Lemma 7 with 𝛽(𝛾) = 𝛾𝛽−1/(𝛾𝛽 −Ω)
satisfies

𝑢 (𝑥, 0) = ∫𝑥
0
(𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉,

𝑢𝑡 (𝑥, 0) = ∫𝑥
0
(𝑥 − 𝜉)𝛿−1 𝐸𝛼,𝛿 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉,

(85)

where 𝛿 = 𝛼(1 − 𝛽−1).
Let

V (𝑥) = ∫𝑥
0
𝑑𝜉𝑓 (𝜉) (𝑥 − 𝜉)𝛼−1 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼) . (86)

By Theorem 4, V(𝑥) satisfies the Helmholtz equation (5) and
the boundary conditions 𝐷𝛼−2V(0+) = 𝐷𝛼−1V(0+) = 0. With
the same choice of the contour 𝜇 as in the previous section,

𝑢 (𝑥, 𝑡) − 𝐸𝛽 (Ω𝑡𝛽) V (𝑥) = 12𝜋𝑖 ∫𝜇 𝑑𝛾𝑒𝛾𝑡
𝛾𝛽−1
𝛾𝛽 − Ω

× ∫𝑥
0
(𝑥 − 𝜉)𝛼−1

⋅ {𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) − 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼)}
⋅ 𝑓 (𝜉) 𝑑𝜉,

(87)

and the only contribution to the integral on the right-hand
side of (87) comes from the cut (−∞, 0]. We compute that

𝛾𝛽−1
𝛾𝛽 − Ω ∫𝑥

0
(𝑥 − 𝜉)𝛼−1

⋅ {𝐸𝛼,𝛼 (𝛾𝛽 (𝑥 − 𝜉)𝛼) − 𝐸𝛼,𝛼 (Ω (𝑥 − 𝜉)𝛼)}
⋅ 𝑓 (𝜉) 𝑑𝜉 = 𝐵𝛽−1 (𝑥) 𝛾𝛽−1 + 𝐵2𝛽−1 (𝑥) 𝛾𝛽−2
+ 𝑂 (𝛾3𝛽−3) ,

(88)

where

𝐵𝛾−1 = ∫𝑥
0
(𝑥 − 𝜉)2𝛼−1 𝐸𝛼,2𝛼 (Ω (𝑥 − 𝜉)𝛼) 𝑓 (𝜉) 𝑑𝜉; (89)

𝐵2𝛾−1 = 1Ω𝐵𝛾−1 − 1Γ (2𝛼)Ω ∫𝑥
0
(𝑥 − 𝜉)2𝛼−1 𝑓 (𝜉) 𝑑𝜉. (90)

Using Lemma 6 and formula (69), we obtain (10). The proof
of Theorem 2 is complete.
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