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This study developed a newmethod of hypothesis testing of model conformity between truncated spline nonparametric regression
influenced by spatial heterogeneity and truncated spline nonparametric regression.This hypothesis test aims to determine the most
appropriate model used in the analysis of spatial data. The test statistic for model conformity hypothesis testing was constructed
based on the likelihood ratio of the parameter set underH0 whose components consisted of parameters that were not influenced by
the geographical factor and the set under the population parameter whose components consisted of parameters influenced by the
geographical factor. We have proven the distribution of test statistics𝑉 and verified that each of the numerators and denominators
in the statistic test 𝑉 followed a distribution of 𝜒2. Since there was a symmetric and idempotent matrix S, it could be proved that
ỸT𝑆 Ỹ/𝜎2 ∼ 𝜒2(𝑛−𝑙𝑚−1) .Matrix𝐷(𝑢𝑖, V𝑖)was positive semidefinite and containedweightingmatrixW(𝑢𝑖, V𝑖)which had different values
in every location; therefore matrix 𝐷(𝑢𝑖, V𝑖) was not idempotent. If ỸT𝐷(𝑢𝑖, V𝑖)Ỹ ≥ 0 and 𝐷(𝑢𝑖, V𝑖) was not idempotent and also Ỹ
was a𝑁(0, 𝐼) distributed random vector, then there were constants 𝑘 and 𝑟; hence ỸT𝐷(𝑢𝑖, V𝑖)Ỹ ∼ 𝑘𝜒2𝑟 ; therefore it was concluded
that test statistic 𝑉 followed an F distribution. The modeling is implemented to find factors that influence the unemployment rate
in 38 areas in Java in Indonesia.

1. Introduction

This study examines theoretically the multivariate nonpara-
metric regression influenced by spatial heterogeneity with
truncated spline approach. The model is the development
of truncated spline nonparametric regression that takes into
account geographic or spatial factors. Truncated spline is a
function constructed on the basis of polynomial components
and truncated components; i.e., polynomial pieces that have
knot points, which can overcome the pattern of changes in
data behavior. Truncated spline approach is used as a solution
to solve the problem of spatial data analysis modeling; that
is, the relationship between the response variable and the
predictor variable does not follow a certain pattern and there
is a changing pattern in certain subintervals. The response

variable in the model contains the predictor variables whose
respective regression coefficients depend on the location
where the data is observed, due to differences in environmen-
tal and geographic characteristics between the observation
sites; therefore each observation has different variations
(spatial heterogeneity). Spatial is one type of dependent data,
where data at a location is influenced by the measurement of
data at another location (spatial dependency).

This study determines the model conformity hypothesis
test between multivariable nonparametric regression that is
influenced by spatial heterogeneity with truncated spline
approach and multivariable nonparametric regression in
general. This hypothesis test aims to determine the model
that is most suitable for spatial data analysis. The test statistic
was derived using themaximum likelihood ratio test (MLRT)
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method. The first step in this study was formulating the
hypothesis to be tested and then defining the set of param-
eters under H0 whose components consist of parameters
that are not influenced by geographical factors and the set
under population parameters whose components consist of
parameters influenced by geographical factors. Likelihood
ratio Λ was constructed based on the maximum ratio of
the likelihood function under H0 as the numerator and
set under the population as a denominator. Based on the
likelihood ratio test statistic 𝑉 was obtained. Furthermore,
the distribution of test statistic 𝑉 was determined. To prove
the distribution of test statistic 𝑉, we first proved that each
numerator and denominator are chi square distributed.

The purpose of this study is to obtain a new method for
the determination of hypothesis test of model conformity
between multivariate nonparametric truncated spline regres-
sion influenced by spatial heterogeneity versus multivariate
nonparametric truncated spline regression in general. This
hypothesis test aims to determinewhatmodel ismost suitable
for spatial data analysis.

2. Truncated Spline Nonparametric Regression
Influenced by Heterogeneity Spatial

Truncated spline nonparametric regression influenced by
spatial heterogeneity is the development of nonparametric
regression for spatial data with parameter estimators local
to each location of observation. Truncated spline approach
is used to solve spatial analysis problems whose regression
curve is unknown [1]. The assumption of the regression
model used is the normal distributed error with mean zero
and variance 𝜎2(𝑢𝑖, V𝑖) at each location (𝑢𝑖, V𝑖). Location
coordinates (𝑢𝑖, V𝑖) are an important factor in determining
the weights used to estimate the parameters of the model.
Given data (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖, 𝑦𝑖) and relationship between(𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖) and 𝑦𝑖, it is assumed to follow multivariate
nonparametric regression model as follows:𝑦𝑖 = 𝑓 (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖) + 𝜀𝑖, 𝑖 = 1, 2, . . . , 𝑛 (1)𝑦𝑖 is response variable and 𝑓(𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖) is
unknown regression curve and assumed to be additive.
If 𝑓(𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖) is approached with a truncated spline
function. Mathematically, the relation between response
variable 𝑦𝑖 and the predictor variable (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑙𝑖) at i-th
location for the multivariate nonparametric truncated spline
regression model can be expressed as follows [2]:

𝑦𝑖 = 𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑖
+ 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+ + 𝜀𝑖 (2)

with truncated function:

(𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+ = {(𝑥𝑝𝑖 − 𝐾𝑝ℎ) , 𝑥𝑝𝑖 ≥ 𝐾𝑝ℎ0, 𝑥𝑝𝑖 < 𝐾𝑝ℎ (3)

Equation (2) is amultivariate nonparametric truncated spline
regressionmodel of degreemwith n area.The components in
(2) are described as follows:

𝑦𝑖 is a response variable at i-th location, where 𝑖 =1, 2, . . . , 𝑛.𝑥𝑝𝑖 is a p-th predictor variable at i-th location with 𝑝 =1, 2, . . . , 𝑙.𝐾𝑝ℎ is an h-th knot point in p-th predictor variable
component with ℎ = 1, 2, . . . , 𝑟.𝛽𝑝𝑘(𝑢𝑖, V𝑖) is a polynomial component parameter of
a multivariate nonparametric truncated spline regression.𝛽𝑝𝑘(𝑢𝑖, V𝑖) is a k-th parameter from p-th predictor variable
at i-th location. 𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) is a truncated component
frommultivariate nonparametric truncated spline regression.𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) is an 𝑙 + ℎ-th parameter in h-th knot point and
p-th predictor variable at i-th location.

Multivariate nonparametric truncated spline regression
in (2) is described as follows:𝑦𝑖 = (𝛽0 (𝑢𝑖, V𝑖) + 𝛽11 (𝑢𝑖, V𝑖) 𝑥1𝑖 + 𝛽12 (𝑢𝑖, V𝑖) 𝑥21𝑖 + ⋅ ⋅ ⋅+ 𝛽1𝑚 (𝑢𝑖, V𝑖) 𝑥𝑚1𝑖 + 𝛽21 (𝑢𝑖, V𝑖) 𝑥2𝑖+ 𝛽22 (𝑢𝑖, V𝑖) 𝑥22𝑖 + 𝛽23 (𝑢𝑖, V𝑖) 𝑥32𝑖 + ⋅ ⋅ ⋅+ 𝛽2𝑚 (𝑢𝑖, V𝑖) 𝑥𝑚2𝑖 + ⋅ ⋅ ⋅ + 𝛽𝑙1 (𝑢𝑖, V𝑖) 𝑥𝑙𝑖+ 𝛽𝑙2 (𝑢𝑖, V𝑖) 𝑥2𝑙𝑖 + 𝛽𝑙3 (𝑢𝑖, V𝑖) 𝑥3𝑙𝑖 + ⋅ ⋅ ⋅+ 𝛽𝑙𝑚 (𝑢𝑖, V𝑖) 𝑥𝑚𝑙𝑖 ) + 𝛿1,𝑚+1 (𝑢𝑖, V𝑖) (𝑥1𝑖 − 𝐾11)𝑚++ ⋅ ⋅ ⋅ + 𝛿1,𝑚+𝑟 (𝑢𝑖, V𝑖) (𝑥1𝑖 − 𝐾1𝑟)𝑚++ 𝛿2,𝑚+1 (𝑢𝑖, V𝑖) (𝑥2𝑖 − 𝐾21)𝑚+ + ⋅ ⋅ ⋅+ 𝛿2,𝑚+𝑟 (𝑢𝑖, V𝑖) (𝑥2𝑖 − 𝐾2𝑟)𝑚+ + ⋅ ⋅ ⋅+ 𝛿𝑙,𝑚+1 (𝑢𝑖, V𝑖) (𝑥𝑙𝑖 − 𝐾𝑙1)𝑚+ + ⋅ ⋅ ⋅+ 𝛿𝑙,𝑚+𝑟 (𝑢𝑖, V𝑖) (𝑥𝑙𝑖 − 𝐾𝑙𝑟)𝑚+ + 𝜀𝑖,

(4)

Equation (4) can also be expressed as follows:

[[[[[
𝑦1𝑦2...𝑦𝑛

]]]]]
=
[[[[[[[[[[[[[[[

𝛽0 (𝑢1, V1) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢1, V1) 𝑥𝑘𝑝𝑛
𝛽0 (𝑢2, V2) + 𝑙∑

𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢2, V2) 𝑥𝑘𝑝𝑛...
𝛽0 (𝑢𝑛, V𝑛) + 𝑙∑

𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑛, V𝑛) 𝑥𝑘𝑝𝑛

]]]]]]]]]]]]]]]

+
[[[[[[[[[[[[[[[

𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢1, V1) (𝑥𝑝𝑛 − 𝐾𝑝ℎ)𝑚+
𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢2, V2) (𝑥𝑝𝑛 − 𝐾𝑝ℎ)𝑚+...
𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑛, V𝑛) (𝑥𝑝𝑛 − 𝐾𝑝ℎ)𝑚+

]]]]]]]]]]]]]]]
+ [[[[[

𝜀1𝜀2...𝜀𝑛
]]]]]

(5)
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Thus (5) can be expressed by

Ỹ = 𝑓 + �̃� = X𝛽 (𝑢𝑖,V𝑖) + P𝛿 (𝑢𝑖,V𝑖) + �̃� (6)

whose vector 𝑓 contains of truncated spline function with
geographical weighting sized 𝑛 × 1; response variable and
error, respectively, are given by vectors as follows:

�̃� = [[[[[
𝑦1𝑦2...𝑦𝑛

]]]]]
,

𝜀 = [[[[[[[[

𝜀1𝜀2...𝜀𝑛

]]]]]]]]
.

(7)

Vectors Ỹ and �̃� are, respectively, sized 𝑛 × 1.
Meanwhile matrices X and P are, respectively, given

by

X =
[[[[[[[[[

1 𝑥11 𝑥211 𝑥311 ⋅ ⋅ ⋅ 𝑥𝑚11 𝑥21 𝑥221 ⋅ ⋅ ⋅ 𝑥𝑚21 ⋅ ⋅ ⋅ 𝑥𝑙1 𝑥2𝑙1 ⋅ ⋅ ⋅ 𝑥𝑚𝑙11 𝑥12 𝑥212 𝑥312 ⋅ ⋅ ⋅ 𝑥𝑚12 𝑥22 𝑥222 ⋅ ⋅ ⋅ 𝑥𝑚22 ⋅ ⋅ ⋅ 𝑥𝑙2 𝑥2𝑙2 ⋅ ⋅ ⋅ 𝑥𝑚𝑙2... ... ... ... d
... ... ... d

... d
... ... d

...1 𝑥1𝑛 𝑥21𝑛 𝑥31𝑛 ⋅ ⋅ ⋅ 𝑥𝑚1𝑛 𝑥2𝑛 𝑥22𝑛 ⋅ ⋅ ⋅ 𝑥𝑚22 ⋅ ⋅ ⋅ 𝑥𝑙𝑛 𝑥2𝑙𝑛 ⋅ ⋅ ⋅ 𝑥𝑚𝑙𝑛

]]]]]]]]]
,

P =
[[[[[[[[[

(𝑥11 − 𝐾11)𝑚+ ⋅ ⋅ ⋅ (𝑥11 − 𝐾1𝑟)𝑚+ (𝑥21 − 𝐾21)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙1 − 𝐾𝑙1)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙1 − 𝐾𝑙𝑟)𝑚+(𝑥12 − 𝐾11)𝑚+ ⋅ ⋅ ⋅ (𝑥12 − 𝐾1𝑟)𝑚+ (𝑥22 − 𝐾21)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙2 − 𝐾𝑙1)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙2 − 𝐾𝑙𝑟)𝑚+... d
... ... d

... d
...(𝑥1𝑛 − 𝐾11)𝑚+ ⋅ ⋅ ⋅ (𝑥1𝑛 − 𝐾1𝑟)𝑚+ (𝑥2𝑛 − 𝐾21)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙𝑛 − 𝐾𝑙1)𝑚+ ⋅ ⋅ ⋅ (𝑥𝑙𝑛 − 𝐾𝑙𝑟)𝑚+

]]]]]]]]]

(8)

Vectors 𝛽(𝑢𝑖, V𝑖) and 𝛿(𝑢𝑖, V𝑖) are, respectively, given by

𝛽 (𝑢𝑖, V𝑖) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

𝛽0 (𝑢𝑖, V𝑖)𝛽11 (𝑢𝑖, V𝑖)𝛽12 (𝑢𝑖, V𝑖)𝛽13 (𝑢𝑖, V𝑖)...𝛽1𝑚 (𝑢𝑖, V𝑖)𝛽21 (𝑢𝑖, V𝑖)𝛽22 (𝑢𝑖, V𝑖)...𝛽2𝑚 (𝑢𝑖, V𝑖)...𝛽𝑙1 (𝑢𝑖, V𝑖)𝛽𝑙2 (𝑢𝑖, V𝑖)...𝛽𝑙𝑚 (𝑢𝑖, V𝑖)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

,

𝛿 (𝑢𝑖, V𝑖) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

𝛿1,𝑚+1 (𝑢𝑖, V𝑖)𝛿1,𝑚+2 (𝑢𝑖, V𝑖)...𝛿1,𝑚+𝑟 (𝑢𝑖, V𝑖)𝛿2,𝑚+1 (𝑢𝑖, V𝑖)𝛿2,𝑚+2 (𝑢𝑖, V𝑖)...𝛿2,𝑚+𝑟 (𝑢𝑖, V𝑖)...𝛿𝑙,𝑚+1 (𝑢𝑖, V𝑖)𝛿𝑙,𝑚+2 (𝑢𝑖, V𝑖)...𝛿𝑙,𝑚+𝑟 (𝑢𝑖, V𝑖)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
(9)

Matrix X is sized 𝑛 × (1 + 𝑙𝑚); matrix P contains predictor
variable of truncated function sized 𝑛 × 𝑙𝑟. Vector 𝛽(𝑢𝑖, V𝑖)
is a parameter vector sized (1 + 𝑙𝑚) × 1. Vector 𝛿(𝑢𝑖, V𝑖) is a
parameter vector containing truncated function sized 𝑙𝑟 × 1.



4 Abstract and Applied Analysis

The estimator forms ̂̃𝛽(𝑢𝑖, V𝑖), ̂̃𝛿(𝑢𝑖, V𝑖), and ̂̃𝑓 are complete in
Theorem 1 and Corollary 2 [2].

Theorem 1. If the regression model (2) with an error 𝜀𝑖
normally distributed with zero mean and variance 𝜎2(𝑢𝑖, V𝑖)
was given Maximum Likelihood Estimator (MLE), it is used
to obtain estimator ̂̃𝛽(𝑢𝑖, V𝑖) and ̂̃𝛿(𝑢𝑖, V𝑖) as follows.̂̃𝛽 (𝑢𝑖, V𝑖) = A (K) Ỹ̂̃𝛿 (𝑢𝑖, V𝑖) = B (K) Ỹ (10)

where

A (K) = S (XTW (𝑢𝑖, V𝑖)X)−1 [XT

− XTW (𝑢𝑖, V𝑖)P (PTW (𝑢𝑖, V𝑖)P)−1 PT]W (𝑢𝑖, V𝑖)
B (K) = R (PTW (𝑢𝑖, V𝑖)P)−1 [PT

− PTW (𝑢𝑖, V𝑖)X (XTW (𝑢𝑖, V𝑖)X)−1 XT]W (𝑢𝑖, V𝑖)
(11)

Corollary 2. If ̂̃𝛽(𝑢𝑖, V𝑖) and ̂̃𝛿(𝑢𝑖, V𝑖) are given by Theorem 1,
then the estimator for the regression curve ̂̃𝑓 is given bŷ̃𝑓 = X̂̃𝛽 (𝑢𝑖, V𝑖) + P̂̃𝛿 (𝑢𝑖, V𝑖) = C (K) Ỹ, (12)

where
C (K) = XA (K) + PB (K) (13)

Estimator of regression curve ̂̃𝑓 contains the polynomial
components represented by matrix X and truncated com-
ponents represented by matrix P [3]. If the matrix P = 0,
then the estimator multivariable of nonparametric regression
curve in the Geographically Weighted Regression (GWR)
models with truncated spline approach, ̂̃𝑓, will change to
estimator polynomial parametric regression curve in the
GWR model. Furthermore, if P = 0 and matrix X contains
a linear function, the estimator of the multivariable spline
nonparametric regression curve in the GWR model, ̂̃𝑓, will
change to estimator of linear parametric regression curves in
the GWR model or multiple linear regression in the GWR
model developed by many researchers such as Brusdon and
Fotheringham [4], Fotheringham, Brunsdon, and Charlton
(2003), Demsar, Fotheringham, and Charlton [5], Yan Li, Yan
Jiao, and Joan A. Browder [6], Shan-shan Wu, Hao Yang, Fei
Guo, and Rui -Ming Han [7], and Benassi and Naccarato [8].

This study continued the previous research [2]; in this
study the test statistics thatwill be used in the truncated spline
nonparametric regression influenced by spatial heterogeneity
modeling will be found; further research continued the
distribution of test statistics and rejection areas.

3. Method
The hypothesis test for model conformity between multi-
variate nonparametric truncated spline regression influenced
by spatial heterogeneity with nonparametric truncated spline
regression is derived.

Step 1. Formulating hypothetical model:𝐻0: 𝛽𝑝𝑘(𝑢𝑖, V𝑖) = 𝛽𝑝𝑘 and 𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) = 𝛿𝑝,𝑚+ℎ,𝑝 = 1, 2, . . . , 𝑙; 𝑘 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑟;𝑖 = 1, 2, . . . , 𝑛
𝐻1: at least, there is one of 𝛽𝑝𝑘(𝑢𝑖, V𝑖) ̸= 𝛽𝑝𝑘 or𝛿𝑝𝑚+ℎ(𝑢𝑖, V𝑖) ̸= 𝛿𝑝,𝑚+ℎ,𝑝 = 1, 2, . . . , 𝑙; 𝑘 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑟;𝑖 = 1, 2, . . . , 𝑛.

Step 2. Defining the set of parameters under population Ω.

Step 3. Determining estimators ̂̃𝜂Ω(𝑢𝑖, V𝑖) and 𝜎2Ω(𝑢𝑖, V𝑖)
which are parameters in the space under population (Ω).
Step 4. Obtaining maximum likelihood function under pop-
ulation (Ω).
Step 5. Defining parameter space under H0, i.e., 𝜔.
Step 6. Determining estimators 𝜂𝜔 and 𝜎2𝜔 which are param-
eters under H0.

Step 7. Obtaining maximum likelihood function under space
H0.

Step 8. Obtaining likelihood ratio Λ.
Step 9. Obtaining test statistic 𝑉 from model conformity
testing.

Step 10. Specifying the distribution of numerator 𝜏 from test
statistic 𝑉.
Step 11. Specifying the distribution of denominator 𝜏∗ from
test statistic 𝑉.
Step 12. Specifying the distribution of test statistic 𝑉.
Step 13. Deciding the rejection area of 𝐻0 and writing the
conclusion.

4. Parameter Estimation under Space H0 and
Space Population in the Model

A hypothesis testing of model conformity for nonparametric
spline regression with spatial heterogeneity was designed by
using hypothesis formulation:𝐻0: 𝛽𝑝𝑘(𝑢𝑖, V𝑖) = 𝛽𝑝𝑘 and 𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) = 𝛿𝑝,𝑚+ℎ,𝐻1: at least, there is one of 𝛽𝑝𝑘(𝑢𝑖, V𝑖) ̸= 𝛽𝑝𝑘 or𝛿𝑝𝑚+ℎ(𝑢𝑖, V𝑖) ̸= 𝛿𝑝,𝑚+ℎ.
This hypothesis test was derived using maximum likelihood
ratio test method by defining the parameter spaces under
H0(𝜔) and under population (Ω).The parameter space under
H0(𝜔) is given by

𝜔 = {𝛽11, 𝛽21, . . . , 𝛽𝑙𝑚, 𝛿1,𝑚+1, 𝛿1,𝑚+2, . . . , 𝛿1,𝑚+𝑟, . . . , 𝛿𝑙,𝑚+1,. . . , 𝛿𝑙,𝑚+𝑟, 𝜎2𝜔} = {𝛽, 𝛿, 𝜎2𝜔} = {𝜂𝜔, 𝜎2𝜔} (14)

where 𝜂𝜔 = [ 𝛽
𝛿
].
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𝛽 = [𝛽11 𝛽12 . . . 𝛽1𝑚 𝛽21 . . . 𝛽2𝑚 . . . 𝛽𝑙𝑚]T
𝛿 = [𝛿1,𝑚+1 𝛿1,𝑚+2 . . . 𝛿1,𝑚+𝑟 𝛿2,𝑚+1 𝛿2,𝑚+2 . . . 𝛿2,𝑚+𝑟 . . . 𝛿𝑙,𝑚+𝑟]T . (15)

While the parameter space under the population (Ω) is given
by

Ω = {𝛽0 (𝑢𝑖, V𝑖) , 𝛽11 (𝑢𝑖, V𝑖) , 𝛽21 (𝑢𝑖, V𝑖) , ⋅ ⋅ ⋅ , 𝛽𝑙𝑚 (𝑢𝑖, V𝑖) ,
𝛿1,𝑚+1 (𝑢𝑖, V𝑖) , ⋅ ⋅ ⋅ , 𝛿𝑙,𝑚+𝑟 (𝑢𝑖, V𝑖) , 𝜎2Ω (𝑢𝑖, V𝑖)}
= {𝛽 (𝑢𝑖, V𝑖) , 𝛿 (𝑢𝑖, V𝑖) ; i = 1, 2, . . . , 𝑛, 𝜎2Ω (𝑢𝑖, V𝑖)}
= {𝜂Ω (𝑢𝑖, V𝑖) ; 𝑖 = 1, 2, . . . , 𝑛, 𝜎2Ω (𝑢𝑖, V𝑖)}

(16)

Obtaining the test statistic of hypothesis above required some
lemmas as follows.

Lemma 3. If 𝜂Ω(𝑢𝑖, V𝑖) is a parameter under population (Ω)
fromnonparametric spline regressionwith spatial heterogeneity
(2), then estimator ̂̃𝜂Ω(𝑢𝑖, V𝑖) is given by

̂̃𝜂Ω (𝑢𝑖, V𝑖) = (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ (17)

Proof. To obtain estimator ̂̃𝜂Ω(𝑢𝑖, V𝑖) we form likelihood
function under population parameter space 𝐿(Ω). Therefore𝑦𝑖 has normal distribution with mean

𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑖
+ 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+
(18)

and variance 𝜎2Ω(𝑢𝑖, V𝑖); then probability functions𝑦1, 𝑦2, . . . , 𝑦𝑛 are given by

𝑓 (𝑦1, 𝑦2, . . . , 𝑦𝑛) = 𝑛∏
𝑗=1

{{{{{
1√2𝜋𝜎2Ω (𝑢𝑖, V𝑖)

⋅ exp(− 12𝜎2Ω (𝑢𝑖, V𝑖)𝑤𝑖(𝑗) [𝑦𝑗 − (𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑗 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑗 − 𝐾𝑝ℎ)𝑚+)]2)}}}}}
(19)

Obtained likelihood function is as follows:

𝐿 (Ω) = (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖, V𝑖))−𝑛/2
⋅ exp(− 12𝜎2Ω (𝑢𝑖, V𝑖)

𝑛∑
𝑗=1

𝑤𝑗(𝑖) [𝑦𝑗 − (𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑖 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+)]2) (20)

Equation (20) in matrix form is𝐿 (Ω) = (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖, V𝑖))−𝑛/2
⋅ exp(− 12𝜎2Ω (𝑢𝑖, V𝑖) (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖))TW (𝑢𝑖, V𝑖)
⋅ (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖))) .

(21)

Estimator ̂̃𝜂Ω(𝑢𝑖, V𝑖) is obtained on the basis of the following
derivative results: 𝜕 ln𝐿 (Ω)𝜕𝜂Ω (𝑢𝑖, V𝑖) = 0 (22)

Then the following is obtained:

𝜕 ln𝐿 (Ω)𝜕𝜂Ω (𝑢𝑖, V𝑖)
= 𝜕 (−2𝜂Ω (𝑢𝑖, V𝑖)T 𝑄TW (𝑢𝑖, V𝑖) Ỹ)𝜕𝜂Ω (𝑢𝑖, V𝑖)

+ 𝜕 (𝜂Ω (𝑢𝑖, V𝑖)T 𝑄TW (𝑢𝑖, V𝑖)𝑄𝜂Ω (𝑢𝑖, V𝑖)))𝜕𝜂Ω (𝑢𝑖, V𝑖)= −2𝑄TW (𝑢𝑖, V𝑖) Ỹ + 2𝑄TW (𝑢𝑖, V𝑖) 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖)

(23)
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Therefore,̂̃𝜂Ω (𝑢𝑖, V𝑖) = (𝑄TW (𝑢𝑖, V𝑖)𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ (24)

Furthermore, estimator 𝜎2Ω(𝑢𝑖, V𝑖) is shown in Lemma 4.

Lemma 4. If 𝜎2Ω(𝑢𝑖, V𝑖) is a parameter in space under popu-
lation (Ω) from nonparametric spline regression with spatial
heterogeneity spatial (2), then estimator �̂�2Ω(𝑢𝑖, V𝑖) which is
obtained from likelihood function:

𝐿 (Ω) = (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖, V𝑖))−𝑛/2
⋅ exp(− 12𝜎2Ω (𝑢𝑖, V𝑖)

𝑛∑
𝑗=1

[𝑦𝑗 − (𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑖 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+)]2) (25)

is given by

�̂�2Ω (𝑢𝑖, V𝑖) = (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))𝑛 (26)

Proof. Estimator 𝜎2Ω(𝑢𝑖, V𝑖) is obtained using likelihood func-
tion:

𝐿 (Ω) = (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖, V𝑖))−𝑛/2
⋅ exp(− 12𝜎2Ω (𝑢𝑖, V𝑖)

𝑛∑
𝑗=1

[𝑦𝑗 − (𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑗 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑗 − 𝐾𝑝ℎ)𝑚+)]2) (27)

The ln likelihood function is given by

ln𝐿 (Ω) = −𝑛2 ln (2𝜋) − 𝑛2𝜎2Ω (𝑢𝑖, V𝑖)
+ − 12𝜎2Ω (𝑢𝑖, V𝑖) (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖))T
⋅ (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖))

(28)

Furthermore, estimator �̂�2Ω(𝑢𝑖, V𝑖) is obtained on the basis of
the following derivative results:

𝜕 ln𝐿 (Ω)𝜕𝜎2Ω (𝑢𝑖, V𝑖) = 0 (29)

Then the following was obtained:

𝜕 ln𝐿 (Ω)𝜕𝜎2Ω (𝑢𝑖, V𝑖) = 𝜕 (− (𝑛/2) ln (2𝜋) − (𝑛/2) (𝜎2Ω (𝑢𝑖, V𝑖)) − (1/2𝜎2Ω (𝑢𝑖, V𝑖)) (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ − 𝑄𝜂Ω (𝑢𝑖, V𝑖)))𝜕𝜎2Ω (𝑢𝑖, V𝑖)
= − 𝑛2𝜎2Ω (𝑢𝑖, V𝑖) + 12 (𝜎2Ω (𝑢𝑖, V𝑖))2 (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))

(30)

Therefore,

𝜎2Ω (𝑢𝑖, V𝑖) = (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))𝑛 (31)

Based on estimators ̂̃𝜂Ω(𝑢𝑖, V𝑖) and �̂�2Ω(𝑢𝑖, V𝑖) which are
given by Lemmas 3 and 4 the following is obtained:

𝐿 (Ω̂) = 𝐿 (̂̃𝜂Ω (𝑢𝑖, V𝑖) , 𝜎2Ω (𝑢𝑖, V𝑖)) = (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖,
V𝑖))−𝑛/2 exp(− 12𝜎2Ω (𝑢𝑖, V𝑖) (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ

− 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖)))
= (2𝜋)−𝑛/2 (𝜎2Ω (𝑢𝑖, V𝑖))−𝑛/2 exp(− 12𝜎2Ω (𝑢𝑖, V𝑖) (Ỹ
− 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ)T (Ỹ
− 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ))

(32)
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Lemma 5. If 𝜂𝜔 and 𝜎2𝜔 are parameters under H0 from
multivariate nonparametric truncated spline influenced by
spatial heterogeneity model (2), then estimator for ̂̃𝜂𝜔 is given
by

̂̃𝜂𝜔 = (𝑄T𝑄)−1𝑄TỸ (33)

and estimator for 𝜎2𝜔 is given by

𝜎2𝜔 = (Ỹ − 𝑄𝜂𝜔)T (Ỹ − 𝑄𝜂𝜔)𝑛 (34)

Proof. To obtain estimators ̂̃𝜂𝜔 and �̂�2𝜔 we form likelihood
function under parameter space H0𝐿(𝜔). Therefore 𝑦𝑖 has
normal distribution with mean

𝛽0 + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘𝑥𝑘𝑝𝑖 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑥𝑝𝑖 − 𝐾𝑝ℎ) (35)

and variance 𝜎2𝜔; then probability functions 𝑦1, 𝑦2, . . . , 𝑦𝑛 are
given by

𝑓 (𝑦1, 𝑦2, . . . , 𝑦𝑛) = 𝑛∏
𝑗=1

{{{{{
1√2𝜋𝜎2𝜔 exp(− 12𝜎2𝜔 [𝑦𝑗 − (𝛽0 + 𝑙∑

𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘𝑥𝑘𝑝𝑖 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+)]2)}}}}} (36)

The following likelihood functions were obtained:

𝐿 (𝜔) = (2𝜋)−𝑛/2 (𝜎2𝜔)−𝑛/2 exp(− 12𝜎2𝜔
𝑛∑
𝑗=1

[𝑦𝑗
− (𝛽0 + 𝑙∑

𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘𝑥𝑘𝑝𝑖 + 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+)]2)
(37)

The equation is in the form of a matrix

𝐿 (𝜔) = (2𝜋)−𝑛/2 (𝜎2𝜔)−𝑛/2
⋅ exp(− 12𝜎2𝜔 (Ỹ − 𝑄𝜂𝜔)T (Ỹ − 𝑄𝜂𝜔)) . (38)

Estimators ̂̃𝜂𝜔 and �̂�2𝜔 are obtained:̂̃𝜂𝜔 = (𝑄T𝑄)−1𝑄TỸ

𝜎2𝜔 = (Ỹ − 𝑄̂̃𝜂𝜔)T (Ỹ − 𝑄̂̃𝜂𝜔)𝑛
(39)

Based on Lemma 5, maximum likelihood function is
obtained as follows:𝐿 (�̂�) = 𝐿 (̂̃𝜂𝜔, 𝜎2𝜔) = (2𝜋)−𝑛/2 (𝜎2𝜔)−𝑛/2

⋅ exp(− 12𝜎2𝜔 (Ỹ − 𝑄̂̃𝜂𝜔)T (Ỹ − 𝑄̂̃𝜂𝜔)) (40)

̂̃𝜂𝜔 and �̂�2𝜔 are parameters estimator of under H0 from
multivariate nonparametric regression with truncated spline
approach.

5. Statistics Test for Truncated
Spline Nonparametric Regression with
Spatial Heterogeneity

The test statistic for the model conformity hypothesis test can
be obtained by using Lemmas 3, 4, and 5. In the next step,

we show the likelihood ratio for test statistic presented in
Lemma 6.

Lemma6. If𝐿(Ω̂) and 𝐿(�̂�), respectively, are given by (32) and
(40), then the likelihood ratio Λ is given by

Λ = ỸT𝑆Ỹ
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ (41)

where

𝑆 = (𝐼 − 𝑄(𝑄𝑇𝑄)−1𝑄𝑇)
𝐷 (𝑢𝑖, V𝑖)

= (𝐼 −W (𝑢𝑖, V𝑖) 𝑄 (𝑄𝑇W (𝑢𝑖, V𝑖) 𝑄)−1𝑄𝑇)
⋅ (𝐼 − 𝑄 (𝑄𝑇W (𝑢𝑖, V𝑖) 𝑄)−1𝑄𝑇W (𝑢𝑖, V𝑖))

(42)

Proof. Based on Lemmas 3, 4, and 5, and also (32) and (40),
the likelihood ratio is obtained:

Λ = 𝐿 (�̂�)𝐿 (Ω̂) = (2𝜋)−𝑛/2 (�̂�2𝜔)−𝑛/2 exp (−𝑛/2)(2𝜋)−𝑛/2 (�̂�2Ω (𝑢𝑖, V𝑖))−𝑛/2 exp (−𝑛/2)
= ( 𝜎2𝜔𝜎2Ω (𝑢𝑖, V𝑖))

−𝑛/2

= ( (Ỹ − 𝑄̂̃𝜂𝜔)T (Ỹ − 𝑄̂̃𝜂𝜔)(Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖))T (Ỹ − 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖)))
−𝑛/2

(43)
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Based on (3) and (5), the likelihood ratio

= ( (Ỹ − 𝑄 (𝑄T𝑄)−1𝑄TỸ)T (Ỹ − 𝑄 (𝑄T𝑄)−1𝑄TỸ)
(Ỹ − 𝑄 (𝑄TW (𝑢𝑖, V𝑖)𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ)T (Ỹ − 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ))

−𝑛/2

= ( ỸT (I − 𝑄 (𝑄T𝑄)−1𝑄T)T (I − 𝑄 (𝑄T𝑄)−1𝑄T) Ỹ
ỸT (I − 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖))T (I − 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖)) Ỹ)

−𝑛/2

= ( ỸT (I − 𝑄 (𝑄T𝑄)−1𝑄T) Ỹ
ỸT (I −W (𝑢𝑖, V𝑖) 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄T) (I − 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖)) Ỹ)

−𝑛/2

= ( ỸT𝑆Ỹ
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ)

−𝑛/2

(44)

Given test statistic for model conformity hypothesis is
presented byTheorem 7.

Theorem7. If likelihood ratioΛ is given by Lemma 6, then test
statistic for H0 versus H1 in (2) is given by

𝑉 = ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉)) (45)

Proof. Based on Lemma 6, the likelihood ratio is as follows:

Λ = ( ỸT𝑆Ỹ
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ)

−𝑛/2

(46)

Based on MLRT method, H0 is rejected if

Λ = ( ỸT𝑆Ỹ
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ)

−𝑛/2 < 𝑐 (47)

For a constant 𝑐, (43) is equivalent to
( ỸT𝑆Ỹ
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ) > 𝑐−2/𝑛 (48)

In the two sections of the inequality above, each numerator
is divided by 𝑛 − 𝑙𝑚 − 1 and each denominator is divided by
tr((I − 𝜉)T(I − 𝜉)); then the following inequality is obtained:

ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉))

> 𝑐−2/𝑛( tr ((I − 𝜉)T (I − 𝜉))𝑛 − 𝑙𝑚 − 1 ) = 𝑐∗ (49)

Based on (44), the test statistic for H0 versus H1 is given by

𝑉 = ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉)) (50)

Furthermore, the distribution of statistics test 𝑉 will be
found.

The statistics test given in Theorem 7 is test statistics
developed from the spline truncated approach in the GWR
model, different from the one developed by Leung, Mei, and
Zhang [9], Leung, Mei, and Zhang [10], and Mennis and
Jordan [11] using GWR without using the Truncated Spine
approach.

6. Distribution of Test Statistic and Critical
Area of Hypothesis

To prove the distribution of test statistic 𝑉, we first prove𝜏 = ỸT𝑆Ỹ/𝜎2 ∼ 𝜒2(𝑛−𝑙𝑚−1) and ỸT𝐷(𝑢𝑖, V𝑖)Ỹ/𝜎2(∑𝑛𝑖=1 𝜆2𝑖 /tr((I−𝜉)T(I−𝜉))) ∼ 𝜒2((tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
).The proofs are presented

inTheorems 8 and 9 as follows.

Theorem 8. If 𝑆 is a matrix given by Lemma 6 then statistic is

𝜏 = ỸT𝑆Ỹ𝜎2 ∼ 𝜒2(𝑛−𝑙𝑚−1). (51)

Proof. To prove this Lemma, the following steps are taken.
Matrix 𝑆 is shown which is a symmetric and idempotent

matrix as follows:

𝑆𝑇 = (𝐼 − 𝑄(𝑄𝑇𝑄)−1𝑄𝑇)𝑇 = (𝐼 − 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇) (52)

Based on equation above, it is proved that matrix 𝑆 is
symmetric.

𝑆𝑇𝑆 = (𝐼 − 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇)𝑇 (𝐼 − 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇)
= 𝐼 − 2𝑄 (𝑄𝑇𝑄)−1𝑄𝑇

+ 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇𝑄(𝑄𝑇𝑄)−1𝑄𝑇
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= 𝐼 − 2𝑄 (𝑄𝑇𝑄)−1𝑄𝑇 + 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇
= 𝐼 − 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇

(53)

It is proved that matrix 𝑆 is idempotent. Furthermore, tr(𝑆) is
calculated as follows:

tr (𝑆) = tr (𝐼 − 𝑄 (𝑄𝑇𝑄)−1𝑄𝑇) = 𝑛 − 𝑙𝑚 − 1 (54)

Therefore, it is proved that

𝜏 = ỸT𝑆Ỹ𝜎2 ∼ 𝜒2(𝑛−𝑙𝑚−1) (55)

Theorem 9. If 𝐷(𝑢𝑖, V𝑖) is a matrix given by Lemma 6 then
statistic is

𝜏∗ = ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ𝜎2 ((∑𝑛𝑖=1 𝜆2𝑖 ) /tr ((I − 𝜉)T (I − 𝜉)))
∼ 𝜒2((tr((I−𝜉)T(I−𝜉)))2/∑𝑛

𝑖=1
𝜆2
𝑖
)

(56)

Proof. Based on (24), we obtain̂̃𝜂Ω (𝑢𝑖, V𝑖) = (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ (57)

And estimator is obtained:̂̃Y = 𝑄̂̃𝜂Ω (𝑢𝑖, V𝑖)
= 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) Ỹ = 𝜉Ỹ (58)

in which𝜉 = 𝑄 (𝑄TW (𝑢𝑖, V𝑖) 𝑄)−1𝑄TW (𝑢𝑖, V𝑖) .

=
[[[[[[[[[

𝑞𝑇1 (𝑄TW (𝑢1, V1) 𝑄)−1𝑄TW (𝑢1, V1)𝑞𝑇2 (𝑄TW (𝑢2, V2) 𝑄)−1𝑄TW (𝑢2, V2)...
𝑞𝑇𝑛 (𝑄TW (𝑢𝑛, V𝑛) 𝑄)−1𝑄TW (𝑢𝑛, V𝑛)

]]]]]]]]]
𝑞𝑇𝑖 = [1 𝑥1𝑖 𝑥21𝑖 ⋅ ⋅ ⋅ 𝑥𝑚1𝑖 𝑥2𝑖 ⋅ ⋅ ⋅ (𝑥𝑙𝑖 − 𝐾𝑙𝑟)𝑚+ ]

(59)

Further, error vector is given as follows:̂̃𝜀 = Ỹ − ̂̃Y = (I − 𝜉) Ỹ (60)

Sum Square of Error (SSE) of model is obtained by squaring
the following error vectors:

SSE = ỸT (I − 𝜉)T (I − 𝜉) Ỹ = (Ỹ − 𝜉Ỹ)T (Ỹ − 𝜉Ỹ)
= ((I − 𝜉) (Ỹ − 𝐸 (Ỹ)))T ((I − 𝜉) (Ỹ − 𝐸 (Ỹ)))
= (Ỹ − 𝐸 (Ỹ))T (I − 𝜉)T (I − 𝜉) (Ỹ − 𝐸 (Ỹ))
= 𝜀T (I − 𝜉)T (I − 𝜉) 𝜀

(61)

Furthermore,𝐸 (SSE) = 𝐸 (𝜀T (I − 𝜉)T (I − 𝜉) 𝜀)
= 𝜎2tr ((I − 𝜉)T (I − 𝜉)) (62)

Since SSE is a quadratic form from random variable:

ỸT (I − 𝜉)T (I − 𝜉) Ỹ ≥ 0, (63)

hence, matrix (I − 𝜉)T(I − 𝜉) is positive semidefinite but not
idempotent. Next, we obtain

SSE𝜎2 = 𝜀∗T (I − 𝜉)T (I − 𝜉) 𝜀∗, 𝜀∗ = 𝜀𝜎 (64)

Since 𝜀 ∼ 𝑁(0̃, 𝜎2I), hence 𝜀∗ ∼ 𝑁(0̃, I), and since matrix(I−𝜉)T(I−𝜉) is not idempotent, the distribution of statistic is

SSE𝜎2 ∼ 𝑘𝜒2𝑟 (65)

For constants k and r, based on (55), we obtain

𝐸 (SSE) = 𝜎2tr ((I − 𝜉)T (I − 𝜉))
𝐸 (SSE𝜎2 ) = tr ((I − 𝜉)T (I − 𝜉)) (66)

Since (I − 𝜉)T(I − 𝜉) is symmetric and positive semidefinite,
hence there is an orthogonal matrix Θ; therefore,

Θ (I − 𝜉)T (I − 𝜉)ΘT = Λ = diag (𝜆1, 𝜆2, . . . , 𝜆𝑛) (67)Λ is a diagonal matrix in which 𝜆1, 𝜆2, . . . , 𝜆𝑛 are eigenvalues
from matrix (I − 𝜉)T(I − 𝜉). Hence

SSE𝜎2 = 𝜀∗T (I − 𝜉)T (I − 𝜉) 𝜀∗
= 𝜀∗TΘT (I − 𝜉)T (I − 𝜉)Θ𝜀∗
= 𝜀∗TΛ𝜀∗
= 𝑛∑
𝑖=1

𝜆𝑖𝜀∗2𝑖
(68)

in which 𝜀∗ = [𝜀∗1 𝜀∗2 ⋅ ⋅ ⋅ 𝜀∗𝑛 ]T. Random variables𝜀∗1 , 𝜀∗2 , . . . , 𝜀∗𝑛 are independent, identical, and normal dis-
tributed; therefore 𝜀∗2𝑖 ∼ 𝜒21 (69)

with mean 1 and variance 2; therefore

var (SSE𝜎2 ) = var( 𝑛∑
𝑖=1

𝜆𝑖𝜀∗2𝑖 )
= 𝑛∑
𝑖=1

𝜆2𝑖 var (𝜀∗2𝑖 )
= 2 𝑛∑
𝑖=1

𝜆2𝑖
(70)
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Since SSE/𝜎2 ∼ 𝑘𝜒2𝑟 ,
𝐸(SSE𝜎2 ) = tr ((I − 𝜉)T (I − 𝜉)) = 𝑘𝑟

var (SSE𝜎2 ) = 2 𝑛∑
𝑖=1

𝜆2𝑖 = 2𝑘2𝑟 (71)

Hence the values of k and r are as follows: 𝑟 = (tr((I − 𝜉)T(I −𝜉)))2/∑𝑛𝑖=1 𝜆2𝑖 and 𝑘 = (∑𝑛𝑖=1 𝜆2𝑖 )/tr((I − 𝜉)T(I− 𝜉)); as a result,
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ𝜎2

∼ ( ∑𝑛𝑖=1 𝜆2𝑖
tr ((I − 𝜉)T (I − 𝜉)))𝜒2((tr((I−𝜉)T(I−𝜉)))2/∑𝑛

𝑖=1
𝜆2
𝑖
)

(72)

Hence

𝜏∗ = ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ𝜎2 ((∑𝑛𝑖=1 𝜆2𝑖 ) /tr ((I − 𝜉)T (I − 𝜉)))
∼ 𝜒2((tr((I−𝜉)T(I−𝜉)))2/∑𝑛

𝑖=1
𝜆2
𝑖
)

(73)

Corollary 10. If statistic V is given by Theorem 7, then

𝑉 = ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉))

∼ 𝐹((𝑛−𝑙𝑚−1),(tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
)

(74)

Proof. Based onTheorem 8, statistic is obtained:

𝜏 = ỸT𝑆Ỹ𝜎2 ∼ 𝜒2(𝑛−𝑙𝑚−1) (75)

Based onTheorem 9, statistic is obtained:

𝜏∗ = ỸT𝐷(𝑢𝑖, V𝑖) Ỹ𝜎2 ((∑𝑛𝑖=1 𝜆2𝑖 ) /tr ((I − 𝜉)T (I − 𝜉)))
∼ 𝜒2((tr((I−𝜉)T(I−𝜉)))2/∑𝑛

𝑖=1
𝜆2
𝑖
)

(76)

Hence

𝑉 = (ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1))(ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/ ((∑𝑛𝑖=1 𝜆2𝑖 ) /tr ((I − 𝜉)T (I − 𝜉)))) / ((tr ((I − 𝜉)T (I − 𝜉)))2 /∑𝑛𝑖=1 𝜆2𝑖)
= (ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1))(ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉)))
= (ỸT𝑆Ỹ/𝜎2) / (𝑛 − 𝑙𝑚 − 1)(ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/𝜎2 ((∑𝑛𝑖=1 𝜆2𝑖 ) /tr ((I − 𝜉)T (I − 𝜉)))) / ((tr ((I − 𝜉)T (I − 𝜉)))2 /∑𝑛𝑖=1 𝜆2𝑖 )∼ 𝐹((𝑛−𝑙𝑚−1),((tr((I−𝜉)T(I−𝜉)))2/∑𝑛

𝑖=1
𝜆2
𝑖
))

(77)

The critical area for the model conformity hypothesis is
derived which is given by Lemma 11.

Lemma 11. If given test statistic V is as inTheorem 7, then the
critical area for H0 is given by

𝐶 (𝑦, 𝑥1, 𝑥2, . . . , 𝑥𝑙) = {(𝑦, 𝑥1, 𝑥2, . . . , 𝑥𝑙) ; 𝑉 > 𝑐} (78)

A constant c is obtained according to

𝑃 (𝑉 > 𝑐) = 𝛼, 0 < 𝛼 < 1 (79)

in which 𝛼 is a determined level of significance and

𝑉 ∼ 𝐹(𝑛−𝑙𝑚−1,((tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
)). (80)

Proof. Based on Theorem 7, the following relationship is
obtained:

ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ/ ((tr ((I − 𝜉)T (I − 𝜉)))2 /∑𝑛𝑖=1 𝜆2𝑖)

> 𝑐−2/𝑛 𝑛 − 𝑙𝑚 − 1((tr ((I − 𝜉)T (I − 𝜉)))2 /∑𝑛𝑖=1 𝜆2𝑖) = 𝑐∗ (81)

for a constant 𝑐∗. According to Corollary 10, statistic is
obtained:

𝑉
= ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/ ((tr ((I − 𝜉)T (I − 𝜉)))2 /∑𝑛𝑖=1 𝜆2𝑖)

∼ 𝐹((𝑛−𝑙𝑚−1),(tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
)

(82)
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Table 1: Description of our research data and the predictor variables.

Variable Data Minimum Maximum Rata-rata Standard Deviation
Y 38 0,61 8,59 4,3939 1,81385
X1 38 4,59 25,80 12,0963 4,99263
X2 38 0,2105 7,6445 2,631579 1,6160512
X3 38 0,07 7,19 5,5747 1,22772
X4 38 35,10 33.548,70 3.378,7658 6.497,23435
X5 38 851582 2507632 1516816.21 420415.074
X6 38 0,0074281 0,1640892 0,052024430 0,0474488599
X7 38 0,0405726 12,4704588 2,631578947 2,8535682531
X8 38 474 85122 28730,32 22372,865
Source: BPS (2017a, 2017b, and 2017c).

Figure 1: Open Unemployment Mapping in province of Java, Indonesia.

for a level of significance 𝛼 given by H0 which is rejected if𝑉 > 𝐹𝛼((𝑛−𝑙𝑚−1),(tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
) (83)

After finding the hypothesis test formulation, the suitabil-
ity of the model between the truncated spline nonparametric
regressionmodel which is influenced by spatial heterogeneity
and nonparametric regression (global) will then be imple-
mented on unemployment rate data in 38 regions in Java
Indonesia.

7. Empirical Study on Unemployment Rate in
Java Indonesia

7.1. Description of Research Data. In this study, the non-
parametric truncated spline regression model influenced

by spatial heterogeneity was applied to Open Unemploy-
ment Rate (OUR) data in province of Java, Indonesia, and
some predictor variables that were suspected to affect it,
i.e., population density (X1), percentage of the poor (X2),
percentage of populationwith low education (X3 ), percentage
of population working in agriculture sector (X4), area of
agricultural land (X5), economic growth rate (X6), regional
minimum wage (X7), and ratio number of large industries
being number of labor force (X8). The amount of data used
is 382 from 38 provinces and 8 predictor variables. Table 1
shows the description of our research data and the predictor
variables.

The spread of Open Unemployment Rate in East Java
is shown by Figure 1. It shows the percentage of East Java
unemployment rate in 2015.
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Table 2: Breusch-Pagan test.

Test Significance Value Decision
Breusch-Pagan 0.002414 Reject H0

7.2. Spatial Heterogeneity Test. Each region has different
characteristics and different parameters, as well as different
functional forms; this is what proves spatial aspect. Breusch-
Pagan testing is used to see the spatial heterogeneity of each
location. Table 2 shows the Breusch-Pagan test.

Since spatial effect testing is fulfilled, i.e., there are effects
of spatial heterogeneity, then the case can be solved by
using the point approach. Furthermore, an analysis was
performed using nonparametric truncated spline regression
model influenced by spatial heterogeneity.

7.3. Model Conformity Test. Hypotheses for model con-
formity test between multivariate nonparametric truncated
spline regression model influenced by heterogeneity spatial
and multivariate nonparametric truncated spline regression
model (global) are as follows:𝐻0: 𝛽𝑝𝑘(𝑢𝑖, V𝑖) = 𝛽𝑝𝑘 and 𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) = 𝛿𝑝,𝑚+ℎ,

𝑝 = 1, 2, . . . , 8; 𝑘 = 1; ℎ = 1, 2, 3; 𝑖 = 1, 2, . . . , 38
𝐻1: at least, there is one of 𝛽𝑝𝑘(𝑢𝑖, V𝑖) ̸= 𝛽𝑝𝑘 or𝛿𝑝𝑚+ℎ(𝑢𝑖, V𝑖) ̸= 𝛿𝑝,𝑚+ℎ,

𝑝 = 1, 2, . . . , 8; 𝑘 = 1; ℎ = 1, 2, 3; 𝑖 = 1, 2, . . . , 38
The test statistic is given byTheorem 7 as follows:

𝑉 = ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷(𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉)) (84)

Matrix 𝑆 was constructed by multivariate nonparametric
truncated spline. Matrix 𝐷(𝑢𝑖, V𝑖) was constructed by mul-
tivariate nonparametric truncated spline regression. Hence,
the numerator is obtained:

ỸT𝑆Ỹ𝑛 − 𝑙𝑚 − 1 = 3,7814 (85)

with degree of freedom 𝑛 − 𝑙𝑚 − 1 = 29. Meanwhile the
denominator is obtained:

ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ
tr ((I − 𝜉)T (I − 𝜉)) = 1,8356 (86)

with degree of freedom tr((I − 𝜉)T(I − 𝜉)) = 27,0762. Test
statistic 𝑉 = 2,06 with level of significance 𝛼 = 0,05 was
obtained and concluded to reject H0 since 𝑉 > F(0,05;29,27) =
1,88.Therefore, there is a significant difference betweenmulti-
variate nonparametric truncated spline regression influenced
by spatial heterogeneity and nonparametric truncated spline
regression. Due to the influence of geographical factors
on the model, the appropriate model used is multivariate

nonparametric truncated spline regression influenced by
spatial heterogeneity.

The modeling application used Open Unemployment
Rate (OUR) data in 38 districts/cities in East Java.The results
of the empirical study showed that the OUR data has a
geographical influence, namely, spatial heterogeneity, and
based on the results of the model conformity hypothesis test,
the appropriate model used is a multivariable nonparametric
truncated spline regression model influenced by spatial het-
erogeneity with the weighted Gaussian kernel function. The
modeling produced a coefficient of determination of 80.42%.

8. Conclusion

Multivariate nonparametric regression with truncated spline
approach influenced by spatial heterogeneity is given as
follows:

𝑦𝑖 = 𝛽0 (𝑢𝑖, V𝑖) + 𝑙∑
𝑝=1

𝑚∑
𝑘=1

𝛽𝑝𝑘 (𝑢𝑖, V𝑖) 𝑥𝑘𝑝𝑖
+ 𝑙∑
𝑝=1

𝑟∑
ℎ=1

𝛿𝑝,𝑚+ℎ (𝑢𝑖, V𝑖) (𝑥𝑝𝑖 − 𝐾𝑝ℎ)𝑚+ + 𝜀𝑖
(87)

Based on the results of the discussion and data analysis, some
conclusions can be drawn as follows:

(1) The hypotheses for model conformity between mul-
tivariate nonparametric truncated spline regression
model influenced by spatial heterogeneity and non-
parametric truncated spline regression (global) are as
follows:

𝐻0: 𝛽𝑝𝑘(𝑢𝑖, V𝑖) = 𝛽𝑝𝑘 and 𝛿𝑝,𝑚+ℎ(𝑢𝑖, V𝑖) = 𝛿𝑝,𝑚+ℎ,𝑝 = 1, 2, . . . , 𝑙; 𝑘 = 1, 2, . . . , 𝑚;ℎ =1, 2, . . . , 𝑟; 𝑖 = 1, 2, . . . , 𝑛𝐻1: at least, there is one of 𝛽𝑝𝑘(𝑢𝑖, V𝑖) ̸= 𝛽𝑝𝑘 or𝛿𝑝𝑚+ℎ(𝑢𝑖, V𝑖) ̸= 𝛿𝑝,𝑚+ℎ,𝑝 = 1, 2, . . . , 𝑙; 𝑘 = 1, 2, . . . , 𝑚;ℎ =1, 2, . . . , 𝑟; 𝑖 = 1, 2, . . . , 𝑛
Test statistic derived using Maximum Likelihood
Ratio Test (MLRT) is obtained as follows:

𝑉 = ỸT𝑆Ỹ/ (𝑛 − 𝑙𝑚 − 1)
ỸT𝐷 (𝑢𝑖, V𝑖) Ỹ/tr ((I − 𝜉)T (I − 𝜉)) (88)

(2) The distribution of multivariate nonparametric trun-
cated spline regression model influenced by spatial
heterogeneity is as follows:

𝑉 ∼ 𝐹((𝑛−𝑙𝑚−1),(tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
) (89)

with level of significance 𝛼; therefore H0 is rejected if

𝑉 > 𝐹𝛼((𝑛−𝑙𝑚−1),(tr((I−𝜉)T(I−𝜉)))2/∑𝑛
𝑖=1
𝜆2
𝑖
). (90)
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Data Availability

The data of 38 districts/cities in East Java used to sup-
port the findings of this study have been deposited in
https://www.bps.go.id/.
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