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In recent years, the two-dimensional (2D) quaternion Fourier and quaternion linear canonical transforms have been the focus of
many research papers. In the present paper, based on the relationship between the quaternion Fourier transform (QFT) and the
quaternion linear canonical transform (QLCT), we derive a version of the uncertainty principle associated with the QLCT.We also
discuss the generalization of the Hausdorff-Young inequality in the QLCT domain.

1. Introduction

The quaternion Fourier transform (QFT) is an extension
of the classical two-dimensional Fourier transform (FT)
[1–4] in the framework of quaternion algebra. It plays an
important role in the representation of the two-dimensional
quaternion signals. A number of useful properties of the
extended transform are generalizations of the corresponding
properties of the FT with some modifications (see, e.g., [5–
15]). The QFT has found many applications in color image
processing and signal analysis; we refer the reader to [16–
19] and the references mentioned therein. An extension of
the QFT in the framework of the classical linear canonical
transform (LCT) (see [20–22]), known as the quaternion
linear canonical transform, has received much attention in
recent years. Due to the several definitions of the QFT,
there are basically three ways of obtaining the quaternion
linear canonical transform (QLCT): the right-sided quater-
nion linear canonical transform, the left-sided quaternion
linear canonical transform, and the two-sided quaternion
linear canonical transform.The right-sided quaternion linear
canonical transform is obtained by substituting the Fourier
kernel with the right-sided QFT kernel in the LCT definition,
and so on. Recent works related to some important properties
of the QLCT such as Parseval’s theorem, reconstruction
formula, and component-wise uncertainty principles were

also published [18, 23–25]. It was found that the properties
of the QLCT are extensions of the corresponding version of
the QFT with some modifications.

On the other hand, the uncertainty principle plays one
important role in signal processing. It describes a function
and its FT, which cannot both be simultaneously sharply
localized. One example of this is the Heisenberg uncertainty
principle concerning position and momentum wave func-
tions in quantumphysics. In signal processing, an uncertainty
principle states that the product of the variances of the signal
in the time and frequency domains has a lower bound. Up
till now, several attempts have been made to extend the
uncertainty principles associated with the QFT and QLCT
domains. The component-wise and directional uncertainty
principles associated with the QFT were proposed in [11]. In
[26, 27], the authors established a component-wise uncer-
tainty principle for the QLCT and proved that the equality is
achieved for optimal quaternionGaussian function. Recently,
the authors [23] proposed the logarithmic uncertainty prin-
ciple associated with the QLCT which is the generalization of
the logarithmic uncertainty principle for the QFT.

Therefore, the main objective of the present paper is to
establish full uncertainty principle for the two-sided QLCT,
which is a new general form of component-wise uncertainty
principle for the two-sided QLCT. This uncertainty principle
is derived using the connection between the QFT and QLCT.
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We also obtain full uncertainty principle for the right-
sided QLCT using a relation between the right-sided QLCT
and two-sided QLCT. We also derive the Hausdorff-Young
inequality associated with the two-sided QLCT.

This paper is organized as follows. In Section 2, we briefly
review the basic knowledge of quaternion and its split used
in the next section. In Section 3, we introduce the definition
of the QFT and the QLCT.The relationship between the QFT
and the QLCT is also discussed in this section. In Section 4,
we derive a new version uncertainty principle associated with
the QLCT, which shows that the spread of a quaternion-
valued function and its QLCT are inversely proportional.
Section 5 concludes this paper.

2. Preliminaries

In this section, let us briefly recall some basic definitions and
properties of the quaternions (for more details, see [28]).

2.1. Quaternions. The quaternions, a generalization of com-
plex numbers, are members of a noncommutative division
algebra.The set of quaternions is denoted byH. Every element
of H can be written in the following form:

H = {𝑞 = 𝑞0 + i𝑞1 + j𝑞2 + k𝑞3; 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ R} , (1)

with the units i, j, k, which obey the following:

ij = −ji = k,
jk = −kj = i,
ki = −ik = j,
i2 = j2 = k2 = ijk = −1.

(2)

For a quaternion 𝑞 = 𝑞0+i𝑞1+j𝑞2+k𝑞3 ∈ H, 𝑞0 is simply called
the scalar part of 𝑞 denoted by Sc(𝑞) and q = i𝑞1 + j𝑞2 + k𝑞3
is called the vector part of 𝑞 denoted by Vec(𝑞).

Let 𝑝, 𝑞 ∈ H and p, q be their vector parts, respectively.
Equation (2) yields the quaternionic multiplication 𝑞𝑝 as

𝑞𝑝 = 𝑞0𝑝0 + q ⋅ p + 𝑞0p + 𝑝0q + q × p, (3)

where

q ⋅ p = − (𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3) ,
q × p = i (𝑞2𝑝3 − 𝑞3𝑝2) + j (𝑞3𝑝1 − 𝑞1𝑝3)

+ k (𝑞1𝑝2 − 𝑞2𝑝1) .
(4)

Analogously to the complex case, a quaternionic conjugation𝑞 is given by

𝑞 = 𝑞0 − i𝑞1 − j𝑞2 − k𝑞3, (5)

which leads to the anti-involution; that is,

𝑞𝑝 = 𝑝𝑞. (6)

With the help of (5), we get the norm or modulus of 𝑞 ∈ H as

𝑞 = √𝑞𝑞 = √𝑞20 + 𝑞21 + 𝑞22 + 𝑞23. (7)

One can easily verify that
𝑞𝑝 = 𝑞 𝑝 ,𝑞 + 𝑝 ≤ 𝑞 + 𝑝 ,

∀𝑝, 𝑞 ∈ H.
(8)

Using conjugate (5) and the modulus of q, we can define the
inverse of 𝑞 ∈ H\{0} as

𝑞−1 = 𝑞𝑞2 , (9)

which shows that H is a normed division algebra.
In quaternionic notation, wemay define an inner product

for quaternion-valued functions 𝑓, 𝑔 : R2 → H as follows:

(𝑓, 𝑔) = ∫
R2
𝑓 (x) 𝑔 (x)𝑑x, 𝑑x = 𝑑𝑥1𝑑𝑥2 (10)

with symmetric real scalar part

⟨𝑓, 𝑔⟩ = (𝑓, 𝑔)0 = 12 [(𝑓, 𝑔) + (𝑔, 𝑓)]
= ∫

R2
Sc (𝑓 (x) 𝑔 (x)) 𝑑x.

(11)

In particular, for 𝑓 = 𝑔, we obtain the 𝐿2(R2;H)-norm
𝑓 = √⟨𝑓, 𝑓⟩ = (∫

R2

𝑓 (x)2 𝑑x)1/2 . (12)

A quaternion module 𝐿2(R2;H) is then defined as

𝐿2 (R2;H) = {𝑓 | 𝑓 : R2 → H, 𝑓 < ∞} . (13)

2.2. Split Quaternion and Properties. In this section, we study
some of the basic formulas of split quaternion (see [9]), which
will be used to prove the fundamental results in the sequel.

Definition 1. For two quaternion square roots 𝜇, ] such that𝜇2 = ]2 = −1, one may express a quaternion 𝑞 as
𝑞 = 𝑞− + 𝑞+, 𝑞± = 12 (𝑞 ± 𝜇𝑞]) . (14)

For the special case of𝜇 = ], any quaternion 𝑞may be split
up into commuting and anticommuting parts with respect to𝜇; that is,

𝜇𝑞− = 𝑞−𝜇
𝜇𝑞+ = −𝑞+𝜇. (15)

It easily seems that the commuting and anticommuting
parts satisfy the interesting properties:

𝜇2 = 𝜇2− + 𝜇2+ = −1
𝜇+𝜇− + 𝜇−𝜇+ = 0. (16)
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We learn from the above equation that

𝑞±𝑒𝜇𝜃 = 𝑒∓𝜇𝜃𝑞±, (17)

where

cos 𝜃 = 𝑞0𝑞 ,

sin 𝜃 = √𝑞21 + 𝑞22 + 𝑞23𝑞 .
(18)

In particular, taking 𝜇 = i and ] = j, (14) becomes

𝑞 = 𝑞+ + 𝑞−, 𝑞± = 12 (𝑞 ± i𝑞j) . (19)

The above gives

𝑞± = {(𝑞0 ± 𝑞3) + i (𝑞1 ∓ 𝑞2)} 1 ± k2
= 1 ± k2 {(𝑞0 ± 𝑞3) + j (𝑞2 ∓ 𝑞1)} .

(20)

This leads to the following modulus identity:

𝑞2 = 𝑞−2 + 𝑞+2 . (21)

Furthermore, one can obtain

Sc (𝑝+𝑞−) = 0. (22)

3. Relationship between Quaternion Fourier
Transform (QFT) and Quaternion Linear
Canonical Transform (QLCT)

In this section, we introduce the QFT and its relationship
to the QLCT. We begin by introducing different types of the
QFT.

Definition 2 (two-sided, right-sided, and left-sided QFTs).
The two-sided, right-sided, and left-sided quaternion Fourier
transforms (QFTs) of𝑓 ∈ 𝐿1(R2;H) are given by, respectively,

F𝑞 {𝑓} (𝜔) = ∫
R2
𝑒−i𝜔1𝑥1𝑓 (x) 𝑒−j𝜔2𝑥2𝑑x (23)

F
𝑟
𝑞 {𝑓} (𝜔) = ∫

R2
𝑓 (x) 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑑x (24)

F
𝑙
𝑞 {𝑓} (𝜔) = ∫

R2
𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2𝑓 (x) 𝑑x, (25)

where x = 𝑥1e1 + 𝑥2e2, 𝜔 = 𝜔1e1 + 𝜔2e2, and the quaternion
exponential product 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2 is the quaternion Fourier
kernel. From (24), we get the partial right-sided QFT:

F
𝑟,i
𝑞 {𝑓} (𝜔1, 𝑥2) = ∫

R2
𝑓 (x) 𝑒−i𝜔1𝑥1𝑑𝑥1

F
𝑟,j
𝑞 {𝑓} (𝑥1, 𝜔2) = ∫

R2
𝑓 (x) 𝑒−j𝜔2𝑥2𝑑𝑥2.

(26)

It is not difficult to check that the relationship between the
two-sided QFT and the right-sided QFT takes the form

F𝑞 {𝑓} (𝜔) = F𝑟𝑞 {𝑓0 + i𝑓1} (𝜔)
+F𝑟𝑞 {j𝑓2 + k𝑓3} (−𝜔1, 𝜔2) . (27)

Definition 3 (left-sided, right-sided, and two-sided QLCTs).
Suppose that 𝐴1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2) are
real matrix parameters satisfying det(𝐴1) = det(𝐴2) = 1.The
left-sided, right-sided, and two-sided QLCTs of a quaternion
signal 𝑓 ∈ 𝐿1(R2;H) are defined by, respectively,

𝐿(𝑙),H𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2
𝐾𝐴
1

(𝑥1, 𝜔1)𝐾𝐴
2

(𝑥2, 𝜔2) 𝑓 (x) 𝑑x (28)

𝐿(𝑟),H𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2
𝑓 (x) 𝐾𝐴

1

(𝑥1, 𝜔1)𝐾𝐴
2

(𝑥2, 𝜔2) 𝑑x (29)

𝐿H𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2
𝐾𝐴
1

(𝑥1, 𝜔1) 𝑓 (x) 𝐾𝐴
2

(𝑥2, 𝜔2) 𝑑x, (30)

where the kernel functions of the QLCT above are given by

𝐾𝐴
1

(𝑥1, 𝜔1)

= {{{{{
1

√2𝜋𝑏1 𝑒
(i/2)((𝑎

1
/𝑏
1
)𝑥2
1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2), for 𝑏1 ̸= 0

√𝑑1𝑒i(𝑐1𝑑1/2)𝜔21 , for 𝑏1 = 0,
𝐾𝐴
2

(𝑥2, 𝜔2)

= {{{{{
1

√2𝜋𝑏2 𝑒
(j/2)((𝑎

2
/𝑏
2
)𝑥2
2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2), for 𝑏2 ̸= 0

√𝑑2𝑒j(𝑐2𝑑2/2)𝜔22 , for 𝑏2 = 0.

(31)

From the definition of the QLCT, we can easily see that
when 𝑏1𝑏2 = 0 and 𝑏1 = 𝑏2 = 0, the QLCT of a signal
is essentially a quaternion chirp multiplication. Therefore, in
this work, we always assume 𝑏1𝑏2 ̸= 0. As a special case, when𝐴1 = 𝐴2 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖) = (0, 1, −1, 0), for 𝑖 = 1, 2, the QLCT
definition (30) will lead to the QFT definition; that is,

𝐿H𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2

𝑒−i(𝜋/4)√2𝜋 𝑒−i𝜔1𝑥1𝑓 (x) 𝑒−j𝜔2𝑥2
𝑒−j(𝜋/4)√2𝜋 𝑑x

= 𝑒−i(𝜋/4)√2𝜋 F𝑞 {𝑓} (𝜔) 𝑒−j(𝜋/4)√2𝜋 .
(32)

The following lemma describes the general relationship
between the two-sided QFT and the two-sided QLCT of 2D
quaternion-valued signals.
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Lemma 4. The QLCT of a signal 𝑓 with matrix parameters𝐴1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2) can be seen as the
QFT of the signal 𝑓 in the following form:

𝐿H𝐴
1
,𝐴
2

{𝑓} (𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒(id1/2𝑏1)𝜔21F𝑞 {𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22}
⋅ (𝜔1𝑏1 ,

𝜔2𝑏2 )
𝑒−j(𝜋/4)
√2𝜋𝑏2 𝑒

(j𝑑
2
/2𝑏
2
)𝜔2
2 .

(33)

We introduce

ℎ (x) = 𝑒i(𝑎1/2𝑏1)𝑥21 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑓 (x)
𝑒−j(𝜋/4)
√2𝜋𝑏2 𝑒

j(𝑎
2
/2𝑏
2
)𝑥2
2 . (34)

This implies that (33) can be rewritten in the form

F𝑞 {ℎ} (𝜔1𝑏1 ,
𝜔2𝑏2 )

= 𝑒−(i𝑑1/2𝑏1)𝜔21𝐿H𝐴
1
,𝐴
2

{ℎ} (𝜔) 𝑒−(j𝑑2/2𝑏2)𝜔22 .
(35)

Further, we have the following lemma which describes
a relation between the right-sided QLCT and the two-sided
QLCT of 2D quaternion-valued signals.

Lemma 5. For 𝑓 ∈ 𝐿1(R2;H), one has
𝐿(𝑟),H𝐴
1
,𝐴
2

{𝑓} (𝜔) = 𝐿H𝐴
1
,𝐴
2

{𝑓0 + i𝑓1} (𝜔)
+ 𝐿H𝐴∗

1
,𝐴∗
2

{j𝑓2 + k𝑓3} (−𝜔1, 𝜔2) , (36)

𝐿H𝐴
1
,𝐴
2

{𝑓} (𝜔) = 𝐿(𝑟),H𝐴
1
,𝐴
2

{𝑓0 + i𝑓1} (𝜔)
+ 𝐿(𝑟),H𝐴∗

1
,𝐴∗
2

{j𝑓2 + k𝑓3} (−𝜔1, 𝜔2) , (37)

where the matrix parameters 𝐴∗1 = (𝑎1, −𝑏1, 𝑐1, 𝑑1) and 𝐴∗2 =(𝑎2, −𝑏2, 𝑐2, 𝑑2).
The following lemma allows us to represent the right-

sided QLCT to the single right-sided QFT of 2D quaternion-
valued signals.

Lemma 6. For 𝑓 ∈ 𝐿1(R2;H), one has
𝐿(𝑟),H𝐴
1
,𝐴
2

{𝑓} (𝜔) = F𝑟,j𝑞 {F𝑟,i𝑞 {𝑔 (x)} (𝜔1𝑏1 , 𝑥2)

⋅ 𝑒i(𝑑1/2𝑏1)𝜔21 𝑒j((𝑎2/2𝑏2)𝑥
2

2
−𝜋/4)

√2𝜋𝑏2 }(𝜔1𝑏1 ,
𝜔2𝑏2 ) .

(38)

Proof. Proofs of Lemmas 4, 5, and 6 are straightforward and
are therefore omitted for brevity.

4. A Version of Uncertainty Principle
Associated with QLCT

The classical uncertainty principle of harmonic analysis
describes that a nontrivial function and its Fourier transform

cannot be sharply localized simultaneously. In quantum
mechanics, the uncertainty principle asserts that one cannot
at the same time be certain of the position and of the
velocity of an electron (or any particle). Let us now establish
a version of the uncertainty principle associated with the
QLCT. However, before proceeding the statement of this
main result, we need to introduce a modified uncertainty
principle for the QFT as follows (see [29] for more details).

Theorem 7 (the two-sided QFT uncertainty principle). Let
S(R2;H) be the quaternion Schwartz space. If the quaternion-
valued function 𝑓 ∈ S(R2;H), then the following inequality
holds:

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 F𝑞 {𝑓} (𝜔)2 𝜔22𝑑𝜔

≥ (2𝜋)2

⋅ 
12 ∫R2 𝑓 (x)2 𝑑x − ∫R2

𝑥1𝑥2
𝜕𝑓 (x)𝜕𝑥2

𝜕𝑓 (x)𝜕𝑥1
 𝑑x

2 .

(39)

It is shown that the quaternionic Gabor filters minimize
the above uncertainty. Analogously, we get the uncertainty
principle associatedwith the right-sidedQFT in the following
lemma.

Lemma 8 (the right-sided QFT uncertainty principle).
Under the hypotheses of Theorem 7, one has the following
inequality:

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 F𝑟𝑞 {𝑓0 + i𝑓1} (𝜔)

+F𝑟𝑞 {j𝑓2 + k𝑓3} (−𝜔1, 𝜔2)2 𝜔22𝑑𝜔 ≥ (2𝜋)2

12

⋅ ∫
R2

𝑓 (x)2 𝑑x − ∫
R2

𝑥1𝑥2
𝜕𝑓 (x)𝜕𝑥2

𝜕𝑓 (x)𝜕𝑥1
 𝑑x

2 .

(40)

Theorem 7 has been recently generalized in the context of
the QLCT by the authors of [30]. Our generalization is given
by the following theorem.

Theorem 9 (the two-sided QLCT uncertainty principle).
Under the assumptions of Theorem 7, one has

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 𝐿H𝐴1 ,𝐴2 {𝑓} (𝜔)2 𝜔22𝑑𝜔

≥ 𝑏1𝑏22

12 ∫R2 𝑓 (x)2 𝑑x

− ∫
R2

𝑥1𝑥2
𝜕𝑓 (x)𝜕𝑥2

𝜕𝑓 (x)𝜕𝑥1
 𝑑x

2

,

(41)

where 𝑓(x) is defined by
𝑓 (x) = 𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22 . (42)
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It is worth noting here that if ∫
R2
|𝑥1𝑥2𝜕𝑓(x)/𝜕𝑥2(𝜕𝑓(x)/𝜕𝑥1)|𝑑x = 0, (41) can be reduced to

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 𝐿H𝐴1 ,𝐴2 {𝑓} (𝜔)2 𝜔22𝑑𝜔

≥ 𝑏1𝑏224 (∫
R2

𝑓 (x)2 𝑑x)2 .
(43)

Proof. By replacing 𝑓 by ℎ defined by (34) on both sides of
(39), we immediately get

∫
R2
𝑥21 |ℎ (x)|2 𝑥22𝑑x∫

R2
𝜔21 F𝑞 {ℎ} (𝜔)2 𝜔22𝑑𝜔

≥ (2𝜋)2

⋅ 
12 ∫R2 |ℎ (x)|2 𝑑x − ∫R2

𝑥1𝑥2
𝜕ℎ (x)𝜕𝑥2

𝜕ℎ (x)𝜕𝑥1
 𝑑x

2 .
(44)

Let 𝜔 = 𝜔/b; then, (44) becomes

∫
R2
𝑥21 |ℎ (x)|2 𝑥22𝑑x∫

R2

𝜔21𝑏21
F𝑞 {ℎ} (𝜔b )


2 𝜔22𝑏22 𝑑
𝜔

b

≥ (2𝜋)2

⋅ 
12 ∫R2 |ℎ (x)|2 𝑑x − ∫R2

𝑥1𝑥2
𝜕ℎ (x)𝜕𝑥2

𝜕ℎ (x)𝜕𝑥1
 𝑑x

2 .

(45)

In view of (34), we obtain

∫
R2

𝑥21(2𝜋)2 𝑏1𝑏22
𝑓 (x)2 𝑥22𝑑x∫

R2

𝜔21𝑏21
F𝑞 {ℎ} (𝜔b )


2 𝜔22𝑏22 𝑑𝜔

≥ 1(2𝜋)2 𝑏1𝑏22

12 ∫R2 𝑓 (x)2 𝑑x − ∫R2


𝑥1𝑥2 𝜕 (𝑒

i(𝑎
1
/2𝑏
1
)𝑥2
1𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥2

𝜕 (𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥1


𝑑x


2

.
(46)

This leads to

∫
R2

𝑥21𝑏1𝑏24
𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 F𝑞 {ℎ} (𝜔b )


2 𝜔22𝑑𝜔

≥ 1𝑏1𝑏22

12 ∫R2 𝑓 (x)2 𝑑x − ∫R2


𝑥1𝑥2 𝜕 (𝑒

i(𝑎
1
/2𝑏
1
)𝑥2
1𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥2

𝜕 (𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥1


𝑑x


2

.
(47)

Inserting (35) into (47), we easily obtain

∫
R2

𝑥21𝑏1𝑏24
𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 𝑒−i(𝑑1/2𝑏1)𝜔21𝐿H𝐴1 ,𝐴2 {𝑓} (𝜔) 𝑒−j(𝑑2/2𝑏2)𝜔22 

2 𝜔22𝑑𝜔

≥ 1𝑏1𝑏22

12 ∫R2 𝑓 (x)2 𝑑x − ∫R2


𝑥1𝑥2 𝜕 (𝑒

i(𝑎
1
/2𝑏
1
)𝑥2
1𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥2

𝜕 (𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22)
𝜕𝑥1


𝑑x


2

.
(48)

The above identity can be further simplified to

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 𝐿H𝐴1,𝐴2 {𝑓} (𝜔)2 𝜔22𝑑𝜔

≥ 𝑏1𝑏22

12 ∫R2 𝑓 (x)2 𝑑x

− ∫
R2

𝑥1𝑥2
𝜕𝑓 (x)𝜕𝑥2

𝜕𝑓 (x)𝜕𝑥1
 𝑑x

2

,
(49)

where𝑓(x) is defined in (42).Therefore, the proof is complete.
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The above theorem is also valid for the right-sided QLCT
as described in the following lemma.

Lemma 10 (the right-sided QLCT uncertainty principle).
Under the assumptions of Theorem 7, one has

∫
R2
𝑥21 𝑓 (x)2 𝑥22𝑑x∫

R2
𝜔21 𝐿(𝑟),H𝐴1 ,𝐴2 {𝑓0 + i𝑓1} (𝜔)

+ 𝐿(𝑟),H𝐴∗
1
,𝐴∗
2

{j𝑓2 + k𝑓3} (−𝜔1, 𝜔2)
2 𝜔22𝑑𝜔 ≥ 𝑏1𝑏22


12

⋅ ∫
R2

𝑓 (x)2 𝑑x − ∫
R2

𝑥1𝑥2
𝜕𝑓 (x)𝜕𝑥2

𝜕𝑓 (x)𝜕𝑥1
 𝑑x

2

.

(50)

Proof. The proof follows directly from (37).

Now, we define a module ofF𝑞{𝑓}(𝜔) as
F𝑞 {𝑓} (𝜔)𝑞 = (F𝑞 {𝑓0} (𝜔)2 + F𝑞 {𝑓1} (𝜔)2

+ F𝑞 {𝑓2} (𝜔)2 + F𝑞 {𝑓3} (𝜔)2)1/2 ,
(51)

where

F𝑞 {𝑓𝑖} (𝜔) = ∫
R2
𝑒−i𝜔1𝑥1𝑓𝑖 (x) 𝑒−j𝜔2𝑥2𝑑x,

𝑖 = 0, 1, 2, 3.
(52)

Furthermore, we obtain the 𝐿𝑝(R2;H)-norm
F𝑞 {𝑓}𝑞,𝑝 = (∫

R2

F𝑞 {𝑓} (𝜔)𝑝𝑞 𝑑x)
1/𝑝 . (53)

It should be noticed that if F𝑞{𝑓𝑖}, 𝑖 = 0, 2, 3, is real-
valued function, then (53) reduces toF𝑞 {𝑓}𝑞,𝑝 = F𝑞 {𝑓}𝑝 , (54)

where
F𝑞 {𝑓}𝑝 = (∫

R2

F𝑞 {𝑓} (𝜔)𝑝 𝑑x)
1/𝑝 . (55)

By Riesz’s interpolation theorem, one can get the
Hausdorff-Young inequality related to the QFT (see [10]):F𝑞 {𝑓}𝑞,𝑝 ≤ 𝑓𝑝 (56)

holds for 1 ≤ 𝑝 ≤ 2 with 1/𝑝 + 1/𝑝. This gives the following
important theorem.

Theorem 11 (Hausdorff-Young inequality). If 1 ≤ 𝑝 ≤ 2
and letting 𝑝 be such that 1/𝑝 + 1/𝑝 = 1, then, for all𝑓 ∈ 𝐿𝑝(R2;H), it holds that

𝐿H𝐴1 ,𝐴2 {𝑓}𝑞,𝑝 ≤
𝑏1𝑏2−1/2+1/𝑝2𝜋 𝑓𝑝 , (57)

where

𝐿H𝐴1,𝐴2 {𝑓}𝑞,𝑝 = (∫
R2

𝐿H𝐴1,𝐴2 {𝑓} (𝜔)𝑝


𝑞
𝑑𝜔)1/𝑝 . (58)

Proof. From the Hausdorff-Young inequality for the QFT, we
have

(∫
R2

F𝑞 {𝑓} (𝜔)𝑝


𝑞
𝑑𝜔)1/𝑝 ≤ (∫

R2

𝑓 (x)𝑝 𝑑x)1/𝑝 . (59)

Based on the arguments used in the proof of Theorem 9, we
immediately get

(∫
R2

F𝑞 {ℎ} (𝜔)𝑝


𝑞
𝑑𝜔)1/𝑝 ≤ (∫

R2
|ℎ (x)|𝑝 𝑑x)1/𝑝

⋅ (∫
R2

1𝑏1𝑏2
F𝑞 {ℎ} (𝜔b )


𝑝

𝑞
𝑑𝜔)1/𝑝



≤ (∫
R2


𝑒−i(𝜋/4)
√2𝜋𝑏1 𝑒

(i𝑎
1
/2𝑏
1
)𝑥2
1𝑓 (x) 𝑒−j(𝜋/4)√2𝜋𝑏2

⋅ 𝑒(j𝑎2/2𝑏2)𝑥22 
𝑝 𝑑x)

1/𝑝 1𝑏1𝑏21/𝑝 (∫R2
F𝑞 {ℎ}

⋅ (𝜔
b
)
𝑝

𝑞
𝑑𝜔)1/𝑝



≤ 1
2𝜋 𝑏1𝑏21/2 (∫R2

𝑓 (x)𝑝 𝑑x)1/𝑝 .

(60)

Hence,

(∫
R2

𝑒−(i𝑑1/2𝑏1)𝜔21𝐿H𝐴1 ,𝐴2 {𝑓} (𝜔) 𝑒−(j𝑑2/2𝑏2)𝜔22 
𝑝

𝑞
𝑑𝜔)1/𝑝



≤ 𝑏1𝑏2−1/2+1/𝑝


2𝜋 (∫
R2

𝑓 (x)𝑝 𝑑x)1/𝑝 .
(61)

Or, equivalently,

(∫
R2

𝐿H𝐴1 ,𝐴2 {𝑓} (𝜔)𝑝


𝑞
𝑑𝜔)1/𝑝

≤ 𝑏1𝑏2−1/2+1/𝑝


2𝜋 (∫
R2

𝑓 (x)𝑝 𝑑x)1/𝑝 .
(62)

Thus, the theorem is completely proved.

5. Conclusion

In this paper, we derived a version of the uncertainty principle
for the QLCT using a relation between the QFT and the
QLCT. We presented Hausdorff-Young inequality associated
with the QLCT.This inequality is very useful for establishing
a variation on Heisenberg’s uncertainty principle related to
the QLCT.
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