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Vaccine-induced protection is substantial to control, prevent, and reduce the spread of infectious diseases and to get rid of infectious
diseases. In this paper, we propose an SVEIR epidemic model with age-dependent vaccination, latency, and infection. The model
also considers that the waning vaccine-induced immunity depends on vaccination age and the vaccinated individuals fall back
to the susceptible class after losing immunity. The model is a coupled system of (hyperbolic) partial differential equations with
ordinary differential equations. The global dynamics of the model is established through construction of appropriate Lyapunov
functionals and application of Lasalle’s invariance principle. As a result, the global stability of the infection-free equilibrium and
endemic equilibrium is obtained and is fully determined by the basic reproduction numberR0.

1. Introduction

Protection induced by vaccines plays a significant role in
preventing and reducing the transmission of infectious dis-
eases. One of the greatest successful events of vaccination
is illustrated through the eradication of small-pox. It is
reported in [1] that the case of small-pox was last recorded
in 1977. Immunity conveyed by vaccination depends on
different vaccines and vaccination policies—lifelong immu-
nity occurs for certain vaccines while immunization period
is induced by some vaccines. However, waning vaccine-
induced immunity takes place (naturally) after immunization
process. It is reported in [2] that a significant decay in
the proportion of chicken pox took place in US in 1995
after conducting a universal vaccination campaign. But,
surprisingly new cases of chicken pox appeared mainly in
highly vaccinated school communities in US. Some stud-
ies were conducted and revealed waning vaccine-induced
immunity in children under protection induced by vaccine.

Moreover, this was also investigated in [3–5] and it was
proved that such waning of immunity is attached to the
time since vaccination and the age at vaccination. In this
regard, it was published in [6, 7] that the time of vaccine-
induced immunity depends on individuals features and
vaccine age.

From the abovementioned statements and citations, we
see that it is necessary to associate waning vaccine-induced
immunity with vaccination in infectious disease models and
it is interesting to investigate the impact of waning vaccine-
induced immunity on the dynamics of infectious diseases.
Manymathematicalmodels on vaccination have been already
investigated and, to cite a few of them, see [2, 8–16]. Some
of the above-cited model considered either age-dependent
vaccination, while some did not.

Despite vaccination age-structure being the main and
appropriate feature required in the dynamics of infectious
diseases with waning induced-vaccine immunity, most of
epidemiological models with vaccination including waning
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induced-vaccine immunity were studied after assuming a
constant rate of immunity loss (to name a few, see [9, 10,
15]). Age-dependent vaccination was considered in some
epidemiological models studied recently in [1, 2, 17–20].
However, some of these works considered either wan-
ing vaccine-induced immunity or not, either vaccine-age-
dependent waning vaccine-induced immunity or not, either
age-dependent latency or not, either age-dependent relapse
or not, and either age-dependent infection or not. In [17]
an SVIR epidemic model with continuous age-dependent
vaccination was formulated to establish the global stability
of equilibria. In [18] an SVIJS epidemic model with age-
dependent vaccination was considered to study the asymp-
totical behavior of the equilibria, after assuming that age-
dependent vaccine-induced immunity decays with time after
vaccination. In [19] an SVIS epidemic model with age-
dependent vaccination and vaccine-age-dependent waning
vaccine-induced immunity and treatment was formulated to
investigate backward bifurcations. In [2] an SVIR epidemic
model with vaccination agewas considered to establish global
stability of equilibria, after assuming that vaccine-induced
immunity decays with time after vaccination. In [20] an
SVEIR epidemic model with age-dependence vaccination,
latency, and relapse was formulated to establish the global
stability of the equilibria. In [1] amultigroup SVEIR epidemic
model with latent class and vaccination age was formulated
to study global stability of equilibria, after assuming that
vaccine-induced immunity decays with time after vaccina-
tion and likewise in [17–19].

Recently, in [14] an SVEIR epidemic model with con-
tinuous age-structure in the latent and infectious classes
and without continuous age-structure in the vaccinated class
was formulated to prove the global stability of equilibria,
while in [20] an SVEIR epidemic model with continuous
age-structure in the latent, infectious, and recovered classes
and with vaccine-age-dependent waning vaccine-induced
immunity was formulated. Moreover, in [14] the latency and
infection ages are denoted by the same variable 𝑎. Similarly,
in [20] the latency, relapse, and vaccination ages are denoted
by the same variable 𝑎. In spite of this, to the best of
our knowledge, the global dynamics of an SVEIR epidemic
model with continuous age-structure in latency, infection,
vaccination, and vaccine-age-dependence waning vaccine-
induced immunity has not yet been neither considered nor
investigated using the approach of Lyapunov functionals.The
aim of this work is to fill this gap by investigating the global
dynamics of an SVEIR epidemic model as above defined.
Motivated by [14, 20], we propose a new SVEIR epidemic
model originated from an existing SVEIR formulated in
[1], by considering continuous age-structure in latency and
infection in addition to age-dependence vaccination and
vaccine-age-dependence waning vaccine-induced immunity
(which the authors took into account in [1]). However, the
latency, infection, and vaccination ages are all denoted by 𝑎,
as in [14, 20].Moreover, in this paper, we also consider amore
significant incidence rate (taking into account transmission
by both age-mates infective individuals and infective individ-
uals of any age) of the form

𝑆 (𝑡) ∫∞
0

(𝐾0 (𝑎) 𝑖 (𝑎, 𝑡)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎,
(1)

where 𝐾0(𝑎) and 𝐾(𝑎, 𝑎) are defined below, instead of the
classical incidence rate of the form

𝑆 (𝑡) ∫∞
0

𝛽 (𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎, (2)

where 𝛽(𝑎) denotes the coefficient of disease transmission
from infective individual, with infection age 𝑎, to susceptible
individual. The latter is considered in the references therein
where continuous age-structure in infection is taken into
account.

The model splits the total population into five epidemi-
ological compartments, namely, the susceptible compart-
ment, the vaccinated compartment, the latent compartment,
infected compartment, and the removed compartment. Let𝑆(𝑡) and 𝑅(𝑡) be the number of individuals in the susceptible
and removed compartments at time 𝑡, respectively. Let V(𝑎, 𝑡),𝑒(𝑎, 𝑡), and 𝑖(𝑎, 𝑡) be the density of vaccinated, (latently)
infected, and (actively) infected individuals with vaccination,
latency, and infection age 𝑎 at time 𝑡, respectively. It follows
that 𝑉(𝑡), 𝐸(𝑡), and 𝐼(𝑡) defined by

𝑉 (𝑡) = ∫∞
0

V (𝑎, 𝑡) 𝑑𝑎,
𝐸 (𝑡) = ∫∞

0
𝑒 (𝑎, 𝑡) 𝑑𝑎,

𝐼 (𝑡) = ∫∞
0

𝑖 (𝑎, 𝑡) 𝑑𝑎,
(3)

are the number of individuals in the vaccinated, latent, and
infected compartments, respectively.

Themodel to be investigated consists of a hybrid systemof
nonlinear coupled ordinary differential equations and partial
differential equations of the form

d
d𝑡𝑆 (𝑡) = Λ − (] + 𝜇0) 𝑆 (𝑡) + ∫∞

0
𝛼 (𝑎) V (𝑎, 𝑡) 𝑑𝑎

− 𝑆 (𝑡) ∫∞
0

(𝐾0 (𝑎) 𝑖 (𝑎, 𝑡)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎
𝜕𝜕𝑡V (𝑎, 𝑡) = − 𝜕𝜕𝑎V (𝑎, 𝑡) − 𝜂 (𝑎) V (𝑎, 𝑡)
𝜕𝜕𝑡𝑒 (𝑎, 𝑡) = − 𝜕𝜕𝑎𝑒 (𝑎, 𝑡) −  (𝑎) 𝑒 (𝑎, 𝑡)
𝜕𝜕𝑡 𝑖 (𝑎, 𝑡) = − 𝜕𝜕𝑎 𝑖 (𝑎, 𝑡) − 𝜎 (𝑎) 𝑖 (𝑎, 𝑡)
d
d𝑡𝑅 (𝑡) = ∫∞

0
𝛾 (𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎 − 𝜇0𝑅 (𝑡) ,

(4)
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where 𝜂(𝑎) = 𝛼(𝑎) + 𝜇(𝑎), (𝑎) = 𝜀(𝑎) + 𝜇(𝑎), and 𝜎(𝑎) =𝛾(𝑎) + 𝜇(𝑎), with boundary conditions

V (0, 𝑡) = ]𝑆 (𝑡)
𝑒 (0, 𝑡) = 𝑆 (𝑡) ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎, 𝑡)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎
𝑖 (0, 𝑡) = ∫∞

0
𝜀 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎.

(5)

And initial conditions

𝑆 (0) = 𝑆0 > 0,
V (𝑎, 0) = V0 (𝑎) ,
𝑒 (𝑎, 0) = 𝑒0 (𝑎) > 0,
𝑖 (𝑎, 0) = 𝑖0 (𝑎) > 0,
𝑅 (0) = 𝑅0 > 0,

(6)

where 𝑆0 and 𝑅0 are initial size of susceptible and removed
individuals, respectively, and V0(𝑎), 𝑒0(𝑎), and 𝑖0(𝑎) are initial
age-density of vaccinated, latent, and infective individuals,
respectively. Moreover, V0, 𝑒0, and 𝑖0 are Lebesgue integrable
functions, and it is assumed that the recruitment of newly
vaccinated individuals in the vaccinated compartment is
done at age zero.

The meaning of parameters in (4)-(5) is given below:

Λ: constant recruitment rate of susceptible individu-
als
]: rate of vaccination of susceptible individuals
𝜇0: natural mortality rate of individuals
𝛼(𝑎): age-specific rate of waning vaccine-induced
immunity
𝜇(𝑎): age-specific natural mortality rate
𝛾(𝑎): age-specific removal rate
𝜀(𝑎): age-specific rate moving from latent to infective
𝐾0(𝑎): age-specific infection rate of susceptible

individuals by infective individuals (of the same
age–intracohort contagion)
𝐾(𝑎, 𝑎): probability that an infective individual of
age 𝑎 will successfully infect a susceptible individual
of age 𝑎, after contact

In the sequel, we make following assumptions on param-
eters in (4)–(5):

A1

(i) Λ, ], 𝜇0 > 0 with ] < 𝜇0.
(ii) 𝛼, 𝜂, , 𝜎, 𝛾, 𝜀, 𝐾0 ∈ L∞+ (0,∞) and 𝐾 ∈

L1((0,∞), L∞+ (0,∞)) with essential upper bounds𝛼, 𝜂, , 𝜎, 𝛾, 𝜀, 𝐾0 and𝐾(𝑎, ⋅), respectively.

(iii) 𝐾0(𝑎), 𝐾(⋅, 𝑎), 𝛼(𝑎), 𝛾(𝑎), 𝜀(𝑎) are Lipschitz continu-
ous on R+ with coefficients 𝑀𝐾0 ,𝑀𝐾,𝑀𝛼,𝑀𝛾, and𝑀𝜀, respectively.

(iv) There exists 𝜇 ∈ (0, 𝜇0] such that 𝜂(𝑎) − 𝛼(𝑎), (𝑎) −𝜀(𝑎), 𝜎(𝑎) − 𝛾(𝑎) > 𝜇.
A2.𝑅(⋅) is a decreasing function of 𝑡 for any constant removal
rate 𝛾0 such that 𝛾0 ≥ 𝛾.
A3. 𝜂(𝑎)Λ < (𝜂(𝑎)−𝛼(𝑎))(1−∫∞0 𝛼(𝑎)𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎), for every𝑎.

This paper is composed sections, in addition to the
introduction, which are structured as follows. In Section 2,
we present some preliminary result on compactness property
of the semiflow generated by (4)-(5) and we discuss its
asymptotic smoothness property. The uniform persistence
property of (4)-(5) is addressed in Section 4. Section 3 deals
with the existence of equilibria and the formulation of the
threshold parameter R0 (the basic reproduction number).
Local stability of equilibria for (4) is established in Section 5,
while global stability of equilibria for (4) is examined in
Section 6.

2. Preliminaries

We consider the Banach space

X = R × L1 (0,∞) × L1 (0,∞) × L1 (0,∞) ×R (7)

endowed with the norm
(𝑥, 𝜑, 𝜓, 𝜙, 𝑦)X = |𝑥| + 𝜑1 + 𝜓1 + 𝜙1 + 𝑦 , (8)

where ‖ ⋅ ‖1 = ‖ ⋅ ‖L1 , for any (𝑥, 𝜑, 𝜓, 𝜙, 𝑦) ∈ X. Let us denote
byX+ the positive cone of the Banach spaceX such that

X+ = R+ × L1+ (0,∞) × L1+ (0,∞) × L1+ (0,∞) ×R+. (9)

For any initial value X0 = (𝑆0, V0(⋅), 𝑒0(⋅), 𝑖0(⋅), 𝑅0) ∈ X+
satisfying the conditions

V0 (0) = ]𝑆0
𝑒0 (0) = 𝑆0 ∫∞

0
(𝐾0 (𝑎) 𝑖0 (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖0 (𝑎) 𝑑𝑎)𝑑𝑎
𝑖0 (0) = ∫∞

0
𝜀 (𝑎) 𝑒0 (𝑎) 𝑑𝑎

(10)

system (4) is well-posed, under assumption A1, due to [21].
Thus, a continuous semiflowΦ : R+ ×X+ → X+ is obtained
and it is defined by (4) such that

Φ(𝑡,X0) = Φ𝑡 (X0)
= (𝑆 (𝑡) , V (⋅, 𝑡) , 𝑒 (⋅, 𝑡) , 𝑖 (⋅, 𝑡) , 𝑅 (𝑡)) ,

𝑡 ∈ R+, X0 ∈ X+.
(11)
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Now, we introduce the functions

𝜒 (𝑎) = 𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠,
𝜗 (𝑎) = 𝑒−∫𝑎0 (𝑠)𝑑𝑠,
𝜁 (𝑎) = 𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠.

(12)

By integrating the second, third, and fourth equations of (4)
along the characteristic line 𝑡 − 𝑎 = constant, respectively, we
get

V (𝑎, 𝑡) = {{{{{
V (0, 𝑡 − 𝑎) 𝜒 (𝑎) , 0 ≤ 𝑎 ≤ 𝑡,
V0 (𝑎 − 𝑡) 𝜒 (𝑎)𝜒 (𝑎 − 𝑡) , 0 ≤ 𝑡 ≤ 𝑎,

𝑒 (𝑎, 𝑡) = {{{{{
𝑒 (0, 𝑡 − 𝑎) 𝜗 (𝑎) , 0 ≤ 𝑎 ≤ 𝑡,
𝑒0 (𝑎 − 𝑡) 𝜗 (𝑎)𝜗 (𝑎 − 𝑡) 0 ≤ 𝑡 ≤ 𝑎,

𝑖 (𝑎, 𝑡) = {{{{{
𝑖 (0, 𝑡 − 𝑎) 𝜁 (𝑎) , 0 ≤ 𝑎 ≤ 𝑡,
𝑖0 (𝑎 − 𝑡) 𝜁 (𝑎)𝜁 (𝑎 − 𝑡) 0 ≤ 𝑡 ≤ 𝑎,

(13)

where

V (0, 𝑡 − 𝑎) = ]𝑆 (𝑡 − 𝑎)
𝑒 (0, 𝑡 − 𝑎) = 𝑆 (𝑡 − 𝑎) ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎, 𝑡 − 𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, 𝑡 − 𝑎) 𝑑𝑎)𝑑𝑎
𝑖 (0, 𝑡 − 𝑎) = ∫∞

0
𝜀 (𝑎) 𝑒 (𝑎, 𝑡 − 𝑎) 𝑑𝑎.

(14)

Taking the norm of Φ𝑡(X0) and using the positiveness of the
components ofΦ𝑡(X0), we get

Φ𝑡 (X0)X = 𝑆 (𝑡) + ‖V (⋅, 𝑡)‖1 + ‖𝑒 (⋅, 𝑡)‖1 + ‖𝑖 (⋅, 𝑡)‖1
+ 𝑅 (𝑡) . (15)

Differentiating (15) with respect to 𝑡 leads to
d
d𝑡 Φ𝑡 (X0)X = d𝑆 (𝑡)

d𝑡 + d
d𝑡 ‖V (⋅, 𝑡)‖1 + d

d𝑡 ‖𝑒 (⋅, 𝑡)‖1
+ d
d𝑡 ‖𝑖 (⋅, 𝑡)‖1 + d𝑅 (𝑡)

d𝑡 .
(16)

Next, we seek for the estimates of each time-derivative on the
right hand side (16). First, we have

d
d𝑡 ‖V (⋅, 𝑡)‖1 = d

d𝑡 (∫
𝑡

0
V (0, 𝑡 − 𝑎) 𝜒 (𝑎) 𝑑𝑎

+ ∫∞
𝑡

V0 (𝑎 − 𝑡) 𝜒 (𝑎)𝜒 (𝑎 − 𝑡)𝑑𝑎) = d
d𝑡

⋅ ∫𝑡
0
V (0, 𝑠) 𝜒 (𝑡 − 𝑠) 𝑑𝑠

+ ∫∞
0

V0 (𝜍)𝜒 (𝜍) d
d𝑡𝜒 (𝑡 + 𝜍) 𝑑𝜍.

(17)

Applying the Leibniz Integral Rule to the first integral in (17)
yields

d
d𝑡 ‖V (⋅, 𝑡)‖1 = 𝜒 (0) V (0, 𝑡) + ∫𝑡

0
V (0, 𝑠) d

d𝑡𝜒 (𝑡 − 𝑠) 𝑑𝑠
+ ∫∞
0

V0 (𝜍)𝜒 (𝜍) d
d𝑡𝜒 (𝑡 + 𝜍) 𝑑𝜍

= V (0, 𝑡) − ∫𝑡
0
V (0, 𝑠) 𝜂 (𝑡 − 𝑠) 𝜒 (𝑡 − 𝑠) 𝑑𝑠

− ∫∞
0

V0 (𝜍) 𝜂 (𝑡 + 𝜍) 𝜒 (𝑡 + 𝜍)𝜒 (𝜍) 𝑑𝜍
= ]𝑆 (𝑡) − ∫∞

0
𝜂 (𝑎) V (𝑎, 𝑡) 𝑑𝑎.

(18)

Likewise, we also have

d
d𝑡 ‖𝑒 (⋅, 𝑡)‖1 = 𝑒 (0, 𝑡) − ∫∞

0
 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎 (19)

and

d
d𝑡 ‖𝑖 (⋅, 𝑡)‖1 = ∫∞

0
𝜀 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎

− ∫∞
0

𝜎 (𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎.
(20)

Therefore, we get

d
d𝑡 (𝑆 (𝑡) + ‖V (⋅, 𝑡)‖1 + ‖𝑒 (⋅, 𝑡)‖1 + ‖𝑖 (⋅, 𝑡)‖1 + 𝑅 (𝑡))

= Λ − 𝜇0 (𝑆 (𝑡) + 𝑅 (𝑡))
− ∫∞
0

(𝜂 (𝑎) − 𝛼 (𝑎)) V (𝑎, 𝑡) 𝑑𝑎
− ∫∞
0

( (𝑎) − 𝜀 (𝑎)) V (𝑎, 𝑡) 𝑑𝑎
− ∫∞
0

(𝜎 (𝑎) − 𝛾 (𝑎)) 𝑖 (𝑎, 𝑡) 𝑑𝑎.

(21)
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Using (iv) of A1, (21) yields

d
d𝑡 (𝑆 (𝑡) + ‖V (⋅, 𝑡)‖1 + ‖𝑒 (⋅, 𝑡)‖1 + ‖𝑖 (⋅, 𝑡)‖1 + 𝑅 (𝑡))

≤ Λ − 𝜇 (𝑆 (𝑡) + ‖V (⋅, 𝑡)‖1 + ‖𝑒 (⋅, 𝑡)‖1 + ‖𝑖 (⋅, 𝑡)‖1
+ 𝑅 (𝑡)) ,

(22)

that is,

d
d𝑡 Φ𝑡 (X0)X ≤ Λ − 𝜇 Φ𝑡 (X0)X . (23)

Thus, we obtain

Φ𝑡 (X0)X ≤ Λ̃𝜇 − 𝑒−𝜇𝑡 (Λ̃𝜇 − X0X) , (24)

where ‖Φ0(X0)‖X = ‖X0‖X.
If we consider the state space Γ of (4), defined by

Γ = {(𝑥, 𝜑, 𝜓, 𝜙, 𝑦) ∈ X+ : (𝑥, 𝜑, 𝜓, 𝜙, 𝑦)X ≤ Λ̃𝜇 } , (25)

we get

Φ𝑡 (X0)X ≤ Λ̃𝜇 , (26)

for any 𝑡 ≥ 0, whenever X0 ∈ Γ. Moreover

lim sup
𝑡→∞

Φ𝑡 (X0)X ≤ Λ̃𝜇 , (27)

for any X0 ∈ X+.
Then, we state the following result.

Lemma 1. The set Γ is positively invariant for Φ; that is,

Φ𝑡 (X0) ⊂ Γ, ∀𝑡 ≥ 0, X0 ∈ Γ. (28)

Moreover, Φ𝑡(X0) is point dissipative and the set Γ attracts all
points inX+.

As we aim to make use of the Lasalle’s Invariance Prin-
ciple, we are required to establish the relative compactness
of the orbit {Φ𝑡(X0) : 𝑡 ≥ 0} in X+ due to the infinite
dimensional Banach space X. For this, we consider two
operators Θ and Ψ, (Θ,Ψ : R+ ×X+ → X+), such that

Θ(𝑡,X0) = Θ𝑡 (X0)
= (0, 𝜃V (⋅, 𝑎) , 𝜃𝑒 (⋅, 𝑎) , 𝜃𝑖 (⋅, 𝑎) , 0)

Ψ (𝑡,X0) = Ψ𝑡 (X0)
= (𝑆 (𝑡) , Ṽ (⋅, 𝑎) , 𝑒 (⋅, 𝑎) , �̃� (⋅, 𝑎) , 𝑅 (𝑡)) ,

(29)

where

𝜃V (𝑎, 𝑡) = {{{
0, 0 ≤ 𝑎 ≤ 𝑡,
V (𝑎, 𝑡) , 0 ≤ 𝑡 ≤ 𝑎,

Ṽ (𝑎, 𝑡) = {{{
V (𝑎, 𝑡) , 0 ≤ 𝑎 ≤ 𝑡,
0 0 ≤ 𝑡 ≤ 𝑎,

𝜃𝑒 (𝑎, 𝑡) = {{{
0, 0 ≤ 𝑎 ≤ 𝑡,
𝑒 (𝑎, 𝑡) 0 ≤ 𝑡 ≤ 𝑎,

𝑒 (𝑎, 𝑡) = {{{
𝑒 (𝑎, 𝑡) , 0 ≤ 𝑎 ≤ 𝑡,
0 0 ≤ 𝑡 ≤ 𝑎,

𝜃𝑖 (𝑎, 𝑡) = {{{
0, 0 ≤ 𝑎 ≤ 𝑡,
𝑖 (𝑎, 𝑡) 0 ≤ 𝑡 ≤ 𝑎,

�̃� (𝑎, 𝑡) = {{{
𝑖 (𝑎, 𝑡) , 0 ≤ 𝑎 ≤ 𝑡,
0 0 ≤ 𝑡 ≤ 𝑎.

(30)

Thus, Φ𝑡(X0) = Θ𝑡(X0) + Ψ𝑡(X0), for any 𝑡 ≥ 0; and from
the proof of [22, Proposition 3.13] and Lemma 1, we get to the
following result.

Theorem 2. For X0 ∈ Γ, the orbit {Φ𝑡(X0) : 𝑡 ≥ 0} has a
compact closure in X+ if the following conditions are satisfied:

(i) There exists a function Δ : R+ ×R+ → R+ such that,
for any 𝑟 > 0, lim𝑡→∞Δ(𝑡, 𝑟) = 0, and if X0 ∈ Γ with‖X0‖X ≤ 𝑟, then ‖Θ𝑡(X0)‖X ≤ Δ(𝑡, 𝑟) for any 𝑡 ≥ 0.

(ii) For any 𝑡 ≥ 0, Ψ𝑡(⋅) maps any bounded sets of Γ into a
set with compact closure inX+.

For verifying conditions (i) and (ii) ofTheorem2,we need
lemmas.

Lemma 3. For 𝑟 > 0, let Δ(𝑡, 𝑟) = 𝑒−𝜇𝑡𝑟. Then
lim𝑡→∞Δ(𝑡, 𝑟) = 0. Then (i) of Theorem 2 holds.

Proof. Clearly, we see that lim𝑡→∞Δ(𝑡, 𝑟) = 0. Making use of
some equations in (13), we get

𝜃V (𝑎, 𝑡) = {{{{{
0, 0 ≤ 𝑎 ≤ 𝑡,
V0 (𝑎 − 𝑡) 𝜒 (𝑎)𝜒 (𝑎 − 𝑡) , 0 ≤ 𝑡 ≤ 𝑎,

𝜃𝑒 (𝑎, 𝑡) = {{{{{
0, 0 ≤ 𝑎 ≤ 𝑡,
𝑒0 (𝑎 − 𝑡) 𝜗 (𝑎)𝜗 (𝑎 − 𝑡) 0 ≤ 𝑡 ≤ 𝑎,

𝜃𝑖 (𝑎, 𝑡) = {{{{{
0, 0 ≤ 𝑎 ≤ 𝑡,
𝑖0 (𝑎 − 𝑡) 𝜁 (𝑎)𝜁 (𝑎 − 𝑡) 0 ≤ 𝑡 ≤ 𝑎.

(31)
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Taking the initial condition X0 ∈ Γ such that ‖X0‖X ≤ 𝑟 and𝑡 ≥ 0, we have
Θ𝑡 (X0)X = |0| + 𝜃V (⋅, 𝑡)1 + 𝜃𝑒 (⋅, 𝑡)1

+ 𝜃𝑖 (⋅, 𝑡)1 + |0|
= ∫∞
𝑡

V0 (𝑎 − 𝑡) 𝜒 (𝑎)𝜒 (𝑎 − 𝑡)
 𝑑𝑎

+ ∫∞
𝑡

𝑒0 (𝑎 − 𝑡) 𝜗 (𝑎)𝜗 (𝑎 − 𝑡)
 𝑑𝑎

+ ∫∞
𝑡

𝑖0 (𝑎 − 𝑡) 𝜁 (𝑎)𝜁 (𝑎 − 𝑡)
 𝑑𝑎

= ∫∞
0

V0 (𝑠)
𝜒 (𝑠 + 𝑡)𝜒 (𝑠)

 𝑑𝑠
+ ∫∞
0

𝑒0 (𝑠)
𝜗 (𝑠 + 𝑡)𝜗 (𝑠)

 𝑑𝑠
+ ∫∞
0

𝑖0 (𝑠)
𝜁 (𝑠 + 𝑡)𝜁 (𝑠)

 𝑑𝑠
= ∫∞
0

V0 (𝑠) 𝑒−∫
𝑠+𝑡

𝑠
𝜂(𝜏)𝑑𝜏 𝑑𝑠

+ ∫∞
0

𝑒0 (𝑠) 𝑒−∫
𝑠+𝑡

𝑠
(𝜏)𝑑𝜏 𝑑𝑠

+ ∫∞
0

𝑖0 (𝑠) 𝑒−∫
𝑠+𝑡

𝑠
𝜎(𝜏)𝑑𝜏 𝑑𝑠

≤ 𝑒−𝜇𝑡 (V01 + 𝑒01 + 𝑖01)
≤ 𝑒−𝜇𝑡 X0X ≤ 𝑒−𝜇𝑡𝑟 = Λ (𝑡, 𝑟) .

(32)

Lemma 4. For 𝑡 ≥ 0, Ψ𝑡(⋅) maps any bounded set of Γ into a
set with a compact closure inX+.

Proof. Since 𝑆(𝑡) and 𝑅(𝑡) remain in the compact set [0, Λ/𝜇]
by Lemma 1, it is sufficient to show that Ṽ(𝑎, 𝑡), 𝑒(𝑎, 𝑡), and�̃�(𝑎, 𝑡) remain in a precompact subset of L1+(0,∞), which does
not depend on the initial data X0 ∈ Γ. To achieve this, the
following conditions (see [23,TheoremB.2])must be satisfied
for Ṽ(𝑎, 𝑡), 𝑒(𝑎, 𝑡), and �̃�(𝑎, 𝑡):

(i) The supremum of ‖�̃�(⋅, 𝑡)‖1 with respect to X0 ∈ Γ is
finite;

(ii) limℎ→∞ ∫∞ℎ �̃�(𝑎, 𝑡)𝑑𝑎 = 0 uniformly with respect to
X0 ∈ Γ;

(iii) limℎ→0+ ∫∞ℎ |�̃�(𝑎 + ℎ, 𝑡) − �̃�(𝑎, 𝑡)|𝑑𝑎 = 0 uniformly
with respect to X0 ∈ Γ;

(iv) limℎ→0+ ∫ℎ0 �̃�(𝑎, 𝑡)𝑑𝑎 = 0 uniformly with respect to
X0 ∈ Γ,

where �̃� ∈ {Ṽ, 𝑒, �̃�}. It follows from (13) and (30) that

𝑒 (𝑎, 𝑡) = {{{
𝑒0 (𝑡 − 𝑎) 𝜗 (𝑎) , 0 ≤ 𝑎 ≤ 𝑡,
0, 0 ≤ 𝑡 ≤ 𝑎, (33)

and hence, using Lemma 1, we get

0 ≤ Ṽ (𝑎, 𝑡) ≤ ]
Λ̃𝜇 𝑒−𝜇𝑎, (34)

and hence, (i), (ii), and (iv) follow. To establish (iii), we take a
sufficiently small ℎ such that ℎ ∈ (0, 𝑡) and we show that

∫∞
0

|Ṽ (𝑎 + ℎ, 𝑡) − Ṽ (𝑎, 𝑡)| 𝑑𝑎
= ∫𝑡
𝑡−ℎ

0 − ]𝑆 (𝑡 − 𝑎) 𝜒 (𝑎) 𝑑𝑎
+ ]∫𝑡−ℎ
0

𝑆 (𝑡 − 𝑎 − ℎ) 𝜒 (𝑎 + ℎ) − 𝑆 (𝑎, 𝑡) 𝜒 (𝑎) 𝑑𝑎
≤ ]

Λ̃𝜇 ℎ + ]∫𝑡−ℎ
0

𝑆 (𝑡 − 𝑎 − ℎ) (𝜒 (𝑎) − 𝜒 (𝑎 + ℎ)) 𝑑𝑎
+ ]∫𝑡−ℎ
0

𝜒 (𝑎) |𝑆 (𝑡 − 𝑎 − ℎ) − 𝑆 (𝑎, 𝑡)| 𝑑𝑎
≤ ]

Λ̃𝜇 ℎ + ]
Λ̃𝜇 (∫𝑡−ℎ
0

𝜒 (𝑎) 𝑑𝑎 − ∫𝑡−ℎ
0

𝜒 (𝑎 + ℎ) 𝑑𝑎)
+ ]∫𝑡−ℎ
0

𝜒 (𝑎) |𝑆 (𝑡 − 𝑎 − ℎ) − 𝑆 (𝑎, 𝑡)| 𝑑𝑎
≤ ]

Λ̃𝜇 ℎ + ]
Λ̃𝜇 (∫𝑡
0
𝜒 (𝑎) 𝑑𝑎 + ∫ℎ

𝑡
𝜒 (𝑎) 𝑑𝑎)

+ ]∫𝑡−ℎ
0

𝜒 (𝑎) |𝑆 (𝑡 − 𝑎 − ℎ) − 𝑆 (𝑎, 𝑡)| 𝑑𝑎
≤ ] (2Λ + 𝑙𝑆) ℎ̃𝜇 .

(35)

Indeed, 𝜒(𝑎) is a nondecreasing function of 𝑎 such that 0 ≤𝜒(𝑎) ≤ 1 satisfying
∫𝑡−ℎ
0

𝜒 (𝑎 + ℎ) − 𝜒 (𝑎) 𝑑𝑎
= ∫𝑡−ℎ
0

(𝜒 (𝑎) − 𝜒 (𝑎 + ℎ)) 𝑑𝑎
= ∫𝑡−ℎ
0

𝜒 (𝑎) 𝑑𝑎 − ∫𝑡−ℎ
0

𝜒 (𝑎 + ℎ) 𝑑𝑎
= ∫𝑡−ℎ
0

𝜒 (𝑎) 𝑑𝑎 − ∫𝑡
ℎ
𝜒 (𝑎) 𝑑𝑎

= ∫𝑡−ℎ
0

𝜒 (𝑎) 𝑑𝑎 − ∫𝑡−ℎ
ℎ

𝜒 (𝑎) 𝑑𝑎 − ∫𝑡
𝑡−ℎ

𝜒 (𝑎) 𝑑𝑎
= ∫ℎ
0
𝜒 (𝑎) 𝑑𝑎 − ∫𝑡

𝑡−ℎ
𝜒 (𝑎) 𝑑𝑎 ≤ ∫ℎ

0
𝜒 (𝑎) 𝑑𝑎 ≤ ℎ.

(36)
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On the other hand, the Lipschitz continuity of 𝑆(⋅) is obtained
from the first equation of (4), using the boundedness of the
solution of (4) (see Lemma 1); that is, there exists 𝑙𝑆 > 0 such
that |𝑆(𝑡1) − 𝑆(𝑡2)| ≤ 𝑙𝑆|𝑡1 − 𝑡2| for any 𝑡1, 𝑡2 ≥ 0.

Since ](2Λ + 𝑙𝑆)ℎ/𝜇 does not depend on the initial data
X0 ∈ Γ and ](2Λ + 𝑙𝑆)ℎ/𝜇 → 0 as ℎ → 0+, it follows from
(35) that (iii) is satisfied.

Therefore, From Lemma 1 and Theorem 2, the existence
result of global attractors (see [24]) follows.

Theorem 5. The semiflow {Φ𝑡(X0) : 𝑡 ≥ 0} has a global
attractor inX+, which attracts any bounded subset ofX+.

3. Equilibria and Basic Reproduction Number

System (4) has a unique disease-free equilibrium 𝐸0 =(𝑆0, V0(𝑎), 𝑒0(𝑎), 𝑖0, 𝑅0), where

𝑆0 = Λ
𝜇0 + ] (1 − ∫∞0 𝛼 (𝑎) 𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎) ,

V0 (𝑎) = ]𝑆0𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠,
𝑒0 (𝑎) = 𝑖0 (𝑎) = 0,

𝑅0 = 0.

(37)

Apart from 𝐸0, system (4) could also have an endemic
equilibrium. We suppose that there exists an endemic equi-
librium for system (4) denoted by 𝐸∗ = (𝑆∗, V∗, 𝑒∗, 𝑖∗, 𝑅∗).
Therefore,

0 = Λ − (] + 𝜇0) 𝑆∗ + ∫∞
0

𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎
− 𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖∗ (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
0 = − d

d𝑎V∗ (𝑎) − 𝜂 (𝑎) V∗ (𝑎)
0 = − d

d𝑎𝑒∗ (𝑎) −  (𝑎) 𝑒∗ (𝑎)
0 = − d

d𝑎 𝑖∗ (𝑎) − 𝜎 (𝑎) 𝑖∗ (𝑎)
0 = ∫∞
0

𝛾 (𝑎) 𝑖∗ (𝑎) 𝑑𝑎 − 𝜇0𝑅∗.

(38)

are satisfied. In addition, 𝐸∗ also satisfies (5), i.e.,
V∗ (0) = ]𝑆∗
𝑒∗ (0) = 𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖∗ (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
𝑖∗ (0) = ∫∞

0
𝜀 (𝑎) 𝑒∗ (𝑎) 𝑑𝑎.

(39)

The second equation of (38) and the first equation of (39) give

V∗ (𝑎) = ]𝑆∗𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠. (40)

It follows from the third equation of (38) that

𝑒∗ (𝑎) = 𝑒∗ (0) 𝑒−∫𝑎0 (𝑠)𝑑𝑠. (41)

Equations (5) and (41) together with the fourth equation of
(38) yield

𝑖∗ (𝑎) = 𝑒∗ (0) (𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠 ∫∞
0

𝜀 (𝑎) 𝑒−∫𝑎0 (𝑠)𝑑𝑠𝑑𝑎) . (42)

We introduce parametersR0, 𝐿, 𝐽, and 𝑃 such that

R0 = 𝑆0𝐿∫∞
0

(𝐾0 (𝑎) 𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠𝑑𝑎)𝑑𝑎
𝐿 = ∫∞
0

𝜀 (𝑎) 𝑒−∫𝑎0 (𝑠)𝑑𝑠𝑑𝑎
𝐽 = ∫∞
0

𝛾 (𝑎) 𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠𝑑𝑎
𝑃 = ∫∞
0

𝛼 (𝑎) 𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎.

(43)

By substituting (42) into the second equation of (39), we have

𝑆∗ = 𝑆0
R0

(44)

And hence,

V∗ (𝑎) = V0 (𝑎)
R0

. (45)

Then, substituting (37), (40), (42), and (44) into the first
equation of (38) yields

𝑒∗ (0) = Λ(1 − 1
R0

) . (46)
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Therefore, it easily follows that

𝑒∗ (𝑎) = Λ(1 − 1
R0

)𝜗 (𝑎)
𝑖∗ (𝑎) = Λ(1 − 1

R0
)𝐿𝜁 (𝑎)

𝑅∗ = Λ𝜇0 (1 − 1
R0

)𝐿𝐽.
(47)

A threshold condition is derived from the existence
condition for the endemic equilibrium 𝐸∗ such thatR0 > 1.
Thus, the parameter R0, given by the first equation of (43),
can be called the basic reproduction number of system (4).
Moreover,R0 can also be expressed as

R0 = Rintra +Rinter, (48)

where

Rintra = Λ𝐿𝜇0 + ] (1 − 𝑃) ∫
∞

0
𝐾0 (𝑎) 𝜁 (𝑎) 𝑑𝑎,

Rinter

= Λ𝐿𝜇0 + ] (1 − 𝑃) ∫
∞

0
(∫∞
0

𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑑𝑎)𝑑𝑎.
(49)

Rintra and Rinter can be understood, respectively, as the
basic reproduction numbers for the corresponding model
with purely intracohort infection mechanism (i.e., situation
in which individuals can only be infected by their age-mates)
and for the corresponding model with purely intercohort
infection mechanism (i.e., situation in which individuals can
be infected by those of any age).

Therefore, we state the following.

Theorem 6. If R0 ≤ 1, then system (4) has only a disease-
free equilibrium 𝐸0, while if R0 > 1, then system (4) also
has an endemic equilibrium 𝐸∗ in addition to the disease-free
equilibrium 𝐸0.
4. Uniform Persistence

This section is devoted to the uniform persistence of system
(4) under the condition R0 > 1. For this, we introduce a
function 𝜌 : X+ → R+ defined by

𝜌 (𝑥, 𝜍, 𝜛, 𝜐, 𝑦)
= 𝑥∫∞
0

(𝐾0 (𝑎) 𝜐 (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝜐 (𝑎) 𝑑𝑎)𝑑𝑎, (50)

where (𝑥, 𝜍, 𝜛, 𝜐, 𝑦) ∈ X+. Furthermore, we consider the set
X0 defined by

X0

= {X0 ∈ X+ : 𝜌 (Φ𝑡0 (X0)) > 0 for some 𝑡0 ∈ R+} (51)

such thatΦ𝑡(X0) → 𝐸0 as 𝑡 → ∞ whenever X0 ∈ X+ \X0.

Definition 7 (see [23, p. 61]). System (4) is uniformly weakly𝜌-persistent (respectively, uniformly strongly 𝜌-persistent) if
there exists a positive 𝜖∗, independent of initial conditions,
such that

lim sup
𝑡→∞

𝜌 (Φ𝑡 (X0))
> 𝜖∗ (respectively, lim inf

𝑡→∞
𝜌 (Φ𝑡 (X0)) > 𝜖∗) (52)

for X0 ∈ X+.

Theorem 8. If R0 > 1, then system (4) is uniformly weakly𝜌-persistent.
Proof. We assume that, for any 𝜖∗ > 0, we can find X𝜖

∗

0 ∈ X+
such that

lim sup
𝑡→∞

𝜌 (Φ𝑡 (X𝜖∗0 )) ≤ 𝜖∗. (53)

Since R0 > 1, then we can find a small enough 𝜖∗0 > 0 such
that

1 < (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫∞

0
𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

⋅ ∫∞
0

(𝐾0 (𝑎) 𝜁 (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑑𝑎)𝑑𝑎.
(54)

In particular, we can find X𝜖
∗

0
/2
0 ∈ X+ such that

lim sup
𝑡→∞

𝜌 (Φ𝑡 (X𝜖∗0 /20 )) ≤ 𝜖∗02 . (55)

We can assume that, for any 𝑡 ≥ 0, 𝜌(Φ𝑡(X𝜖∗0 /20 )) ≤ 𝜖∗0 . It
follows from the first equation of (4) that

d
d𝑡𝑆 (𝑡) ≥ Λ − 𝜖∗0 − (] + 𝜇0) 𝑆 (𝑡) + ∫𝑡

0
𝛼 (𝑎) V (𝑎, 𝑡) 𝑑𝑎

= Λ − 𝜖∗0 − (] + 𝜇0) 𝑆 (𝑡)
+ ∫𝑡
0
𝛼 (𝑎) 𝜁 (𝑎) V (0, 𝑡 − 𝑎) 𝑑𝑎

≥ Λ − 𝜖∗0 − (] + 𝜇0) 𝑆 (𝑡)
+ ]∫𝑡
0
𝛼 (𝑎) 𝜒 (𝑎) 𝑆 (𝑡 − 𝑎) 𝑑𝑎.

(56)

We apply the Laplace transform L to the above inequality
and we obtain

𝜆L {𝑆 (𝑡)} − 𝑆0 ≥ Λ − 𝜖∗0𝜆 − (] + 𝜇0)L {𝑆 (𝑡)}
+ ]L {𝛼 (𝑡) 𝜒 (𝑡)}L {𝑆 (𝑡)} .

(57)
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It follows that

L {𝑆 (𝑡)} ≥ 𝑆0𝜆 + Λ − 𝜖∗0𝜆 (𝜆 + 𝜇0 + ] (1 −L {𝛼 (𝑡) 𝜒 (𝑡)}))
≥ 𝑆0𝜆 + Λ − 𝜖∗0𝜆 (𝜆 + 𝜇0 + ])
= Λ − 𝜖∗0

] + 𝜇0 ⋅ 1𝜆 + (𝑆0 − Λ − 𝜖∗0
] + 𝜇0 ) 1𝜆 + ] + 𝜇0

(58)

And hence,

𝑆 (𝑡) ≥ Λ − 𝜖∗0
] + 𝜇0L−1 { 1𝜆}
+ (𝑆0 − Λ − 𝜖∗0

] + 𝜇0 )L
−1 { 1𝜆 + ] + 𝜇0}

= Λ − 𝜖∗0
] + 𝜇0 + 𝑒−(]+𝜇0)𝑡 (𝑆0 − Λ − 𝜖∗0

] + 𝜇0 ) ,
for any 𝑡 ≥ 0.

(59)

This yields lim sup𝑡→∞𝑆(𝑡) ≥ (Λ − 𝜖0)/(] + 𝜇0). We can
assume that, for any 𝑡 ≥ 0,

𝑆 (𝑡) ≥ Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0 . (60)

Now, we consider the boundary condition defined by the
second equation of (5) and we get

𝑒 (0, 𝑡) ≥ 𝑆 (𝑡) ∫𝑡
0
(𝐾0 (𝑎) 𝑖 (𝑎, 𝑡) + ∫𝑡

0
𝐾(𝑎, 𝑎)

⋅ 𝑖 (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎 ≥ (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫𝑡

0
𝐾0 (𝑎)

⋅ 𝑖 (𝑎, 𝑡) 𝑑𝑎 + ∫𝑡
0
∫𝑡
0
𝐾(𝑎, 𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎𝑑𝑎)

≥ (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫𝑡

0
𝐾0 (𝑎) 𝜁 (𝑎) 𝑖 (0, 𝑡 − 𝑎) 𝑑𝑎

+ ∫𝑡
0
∫𝑡
0
𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑖 (0, 𝑡 − 𝑎) 𝑑𝑎𝑑𝑎) ≥ (Λ − 𝜖∗0

] + 𝜇0
− 𝜖∗0)(∫𝑡

0
𝐾0 (𝑎) 𝜁 (𝑎)

⋅ (∫𝑡−𝑎
0

𝜀 (𝑏) 𝜗 (𝑏) 𝑒 (0, 𝑡 − 𝑎 − 𝑏) 𝑑𝑏) 𝑑𝑎
+ ∫𝑡
0
∫𝑡
0
𝐾(𝑎, 𝑎) 𝜁 (𝑎)

⋅ (∫𝑡−𝑎
0

𝜀 (𝑏) 𝜗 (𝑏) 𝑒 (0, 𝑡 − 𝑎 − 𝑏) 𝑑𝑏)𝑑𝑎𝑑𝑎) .

(61)

We apply the Laplace TransformL to the above inequality so
that

L {𝑒 (0, 𝑡)} ≥ (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)

⋅ (L {𝐾0 (𝑡) 𝜁 (𝑡)} + 1𝜆L {𝐾 (⋅, 𝑡) 𝜁 (𝑡)})
⋅L {𝜀 (𝑡) 𝜗 (𝑡)}L {𝑒 (0, 𝑡)} .

(62)

Dividing the above inequality byL{𝑒(0, 𝑡)} yields
1 ≥ (Λ − 𝜖∗0

] + 𝜇0 − 𝜖∗0)(L {𝐾0 (𝑡) 𝜁 (𝑡)} + 1𝜆
⋅L {𝐾 (⋅, 𝑡) 𝜁 (𝑡)})L {𝜀 (𝑡) 𝜗 (𝑡)} ≥ (Λ − 𝜖∗0

] + 𝜇0
− 𝜖∗0)(∫∞

0
𝑒−𝜆𝑡𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

× (∫∞
0

𝑒−𝜆𝑡𝐾0 (𝑡) 𝜁 (𝑡) 𝑑𝑡
+ ∫∞
0

𝑒−𝜆𝑡 (∫𝑡
0
𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠) 𝑑𝑡) = (Λ − 𝜖∗0

] + 𝜇0
− 𝜖∗0)(∫∞

0
𝑒−𝜆𝑡𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

× (∫∞
0

𝑒−𝜆𝑡𝐾0 (𝑡) 𝜁 (𝑡) 𝑑𝑡
+ ∫∞
0

∫𝑡
0
𝑒−𝜆𝑡𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠 𝑑𝑡) = (Λ − 𝜖∗0

] + 𝜇0 − 𝜖∗0)
⋅ (∫∞
0

𝑒−𝜆𝑡𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡) × ∫∞
0

(𝑒−𝜆𝑡𝐾0 (𝑡) 𝜁 (𝑡)
+ ∫𝑡
0
𝑒−𝜆𝑡𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠) 𝑑𝑡.

(63)

First, taking the limit inferior as 𝑡 → ∞ on both sides of the
above inequality, we obtain

1 ≥ (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫∞

0
𝑒−𝜆𝑡𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

× ∫∞
0

(𝑒−𝜆𝑡𝐾0 (𝑡) 𝜁 (𝑡)
+ lim inf
𝑡→∞

∫𝑡
0
𝑒−𝜆𝑡𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠) 𝑑𝑡

= (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫∞

0
𝑒−𝜆𝑡𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

× ∫∞
0

(𝑒−𝜆𝑡𝐾0 (𝑡) 𝜁 (𝑡)
+ ∫∞
0

𝑒−𝜆𝑡𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠) 𝑑𝑡.

(64)
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Next, take the limit as 𝜆 → 0 on both sides of the above
inequality, we get

1 ≥ (Λ − 𝜖∗0
] + 𝜇0 − 𝜖∗0)(∫∞

0
𝜀 (𝑡) 𝜗 (𝑡) 𝑑𝑡)

× ∫∞
0

(𝐾0 (𝑡) 𝜁 (𝑡) + ∫∞
0

𝐾 (𝑡, 𝑠) 𝜁 (𝑠) 𝑑𝑠) 𝑑𝑡,
(65)

which contradicts the inequality given in (54).

Combining the results from Theorems 5 and 8 with [25,
Theorem 3.2] leads to the uniform (strong) 𝜌-persistence as
follows.

Theorem 9. If R0 > 1, then the semiflow Φ is uniformly
(strongly) 𝜌-persistent.
Definition 10. A total trajectory of a continuous semiflow Φ,
defined by (11), is a function X : R → X+ such thatΦ𝑡(X(𝑟)) = X(𝑡 + 𝑟) for any (𝑡, 𝑟) ∈ R+ ×R.

Note that a global attractor will only contain points with
total trajectories through them as it needs to be invariant.
So, the 𝛼-limit point of a total trajectory X, passing through
X(0) = X0, is given by

𝛼 (X0) = ⋂
𝑡≥0

⋃
𝑠≥𝑡
X (𝑠). (66)

A total trajectory X(𝑡) = (𝑆(𝑡), V(⋅, 𝑡), 𝑒(⋅, 𝑡), 𝑖(⋅, 𝑡), 𝑅(𝑡))
satisfies

V (𝑎, 𝑟) = ]𝑆 (𝑟 − 𝑎) 𝜒 (𝑎) , (𝑎, 𝑟) ∈ R+ ×R,
𝑒 (𝑎, 𝑟) = 𝑒 (0, 𝑟 − 𝑎) 𝜗 (𝑎) , (𝑎, 𝑟) ∈ R+ ×R,
𝑖 (𝑎, 𝑟) = 𝑖 (0, 𝑟 − 𝑎) 𝜁 (𝑎) , (𝑎, 𝑟) ∈ R+ ×R.

(67)

Corollary 11. LetA and X(𝑡) be, respectively, a global attrac-
tor ofΦ inX+ and a total trajectory ofΦ inA∩X+. IfR0 > 1,
then there exists 𝜖 > 0 such that
𝑆 (𝑡) , V (0, 𝑡) , 𝑒 (0, 𝑡) , 𝑖 (0, 𝑡) , 𝑅 (𝑡) ≥ 𝜖,

for any 𝑡 ≥ 0. (68)

Proof. We consider the boundary condition given by the
second equation of (5). Using (25) and (ii) of A1, we get

𝑒 (0, 𝑡) ≤ 4 ‖𝑖 (𝑡)‖1 𝑆 (𝑡)max {𝐾0, 𝐾1}
≤ 4Λ2𝜇2 max {𝐾0, 𝐾1} š K. (69)

From the first equation of (4), we have

d
d𝑡𝑆 (𝑡) ≥ Λ − (] − 𝜇0) 𝑆 (𝑡) − 𝑆 (𝑡)

⋅ ∫∞
0

(𝐾0 (𝑎) 𝜁 (𝑎) 𝑖 (0, 𝑡 − 𝑎)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑖 (0, 𝑡 − 𝑎) 𝑑𝑎)𝑑𝑎
≥ Λ − (] − 𝜇0) 𝑆 (𝑡) − 𝐿K𝑆 (𝑡) ∫∞

0
(𝐾0 (𝑎) 𝜁 (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑑𝑎)𝑑𝑎 ≥ Λ − (] + 𝜇0

+ K𝑆0R0)𝑆 (𝑡) ;

(70)

that is,

d
d𝑡𝑆 (𝑡) ≥ Λ − (] + 𝜇0 + K𝑆0R0)𝑆 (𝑡) . (71)

This yields

𝑆 (𝑡)
≥ Λ𝑆0

(] + 𝜇0) 𝑆0 +KR0

+ 𝑒−(]+𝜇0+(K/𝑆0)R0)𝑡 (𝑆0 − Λ𝑆0
(] + 𝜇0) 𝑆0 +KR0

) .
(72)

Taking the limit inferior as 𝑡 → ∞ in (72) leads to

lim inf
𝑡→∞

𝑆 (𝑡) ≥ Λ𝑆0
(] + 𝜇0) 𝑆0 +KR0

š 𝜖1. (73)

Therefore, 𝑆(𝑡) ≥ 𝜖1. It follows that V(0, 𝑡) ≥ 𝜖1] š 𝜖2.
Now, we consider again the boundary condition given by

the second equation of (5). It is easy to see that

𝑒 (0, 𝑡) = 𝜌 (Φ𝑡 (X0)) = 𝜌 (X (𝑡)) (74)

And hence,

𝑒 (0, 𝑡) ≥ lim inf
𝑡→∞

𝜌 (X (𝑡)) . (75)

It follows fromTheorem9 andDefinition 7 that 𝑒(0, 𝑡) ≥ 𝜖∗ š𝜖3.
Further, considering the boundary condition given by the

third equation of (5), we obtain

𝑖 (0, 𝑡) = ∫∞
0

𝜀 (𝑎) 𝜗 (𝑎) 𝑒 (0, 𝑡 − 𝑎) 𝑑𝑎
≥ 𝜖3 ∫∞

0
𝜀 (𝑎) 𝜗 (𝑎) 𝑑𝑎 š 𝜖4.

(76)
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Finally, the fifth equation of (4) leads to

d
d𝑡𝑅 (𝑡) ≥ 𝜖4 ∫∞

0
𝛾 (𝑎) 𝜁 (𝑎) 𝑑𝑎 − 𝜇0𝑅 (𝑡) (77)

And hence,

𝑅 (𝑡) ≥ 𝜖4𝜇0 ∫
∞

0
𝛾 (𝑎) 𝜁 (𝑎) 𝑑𝑎

+ 𝑒−𝜇0𝑡 (𝑅0 − 𝜖4𝜇0 ∫
∞

0
𝛾 (𝑎) 𝜁 (𝑎) 𝑑𝑎) .

(78)

Taking the limit inferior as 𝑡 → ∞ in (78), we obtain

lim inf
𝑡→∞

𝑅 (𝑡) ≥ 𝜖4𝜇0 ∫
∞

0
𝛾 (𝑎) 𝜁 (𝑎) 𝑑𝑎 š 𝜖5. (79)

And therefore𝑅(𝑡) ≥ 𝜖5. By choosing 𝜖 such that 𝜖 = min𝑖{𝜖𝑖},
for 𝑖 ∈ {1, 2, 3, 4, 5}, we get

𝑆 (𝑡) , V (0, 𝑡) , 𝑒 (0, 𝑡) , 𝑖 (0, 𝑡) , 𝑅 ≥ 𝜖. (80)

5. Local Stability of Equilibria

The conditions of stability for each equilibrium will be
derived through linearization technique around the equilib-
rium.

The conditions of stability for the disease-free equilibrium𝐸0 can be investigated through the following result.

Theorem 12. IfR0 < 1 then𝐸0 is locally asymptotically stable;
ifR0 > 1 then 𝐸0 is unstable.
Proof. To investigate the stability of the disease-free equi-
librium 𝐸0, we denote by 𝑆(𝑡), Ṽ(𝑎, 𝑡), 𝑒(𝑎, 𝑡), �̃�(𝑎, 𝑡), and�̃�(𝑡) the perturbations of 𝑆(𝑡), V(𝑎, 𝑡), 𝑒(𝑎, 𝑡), 𝑖(𝑎, 𝑡), and 𝑅(𝑡),
respectively, such that

𝑆 (𝑡) = 𝑆 (𝑡) − 𝑆0,
Ṽ (𝑎, 𝑡) = V (𝑎, 𝑡) − V0 (𝑎)
𝑒 (𝑎, 𝑡) = 𝑒 (𝑎, 𝑡) ,
�̃� (𝑎, 𝑡) = 𝑖 (𝑎, 𝑡) ,
�̃� (𝑡) = 𝑅 (𝑡) .

(81)

The perturbations satisfy the following:

d
d𝑡𝑆 (𝑡) = − (] + 𝜇0) 𝑆 (𝑡) + ∫∞

0
𝛼 (𝑎) Ṽ (𝑎, 𝑡) 𝑑𝑎

− 𝑆0 ∫∞
0

(𝐾0 (𝑎) �̃� (𝑎, 𝑡)
+ ∫∞
0

𝐾(𝑎, 𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎
𝜕𝜕𝑡 Ṽ (𝑎, 𝑡) = − 𝜕𝜕𝑎 Ṽ (𝑎, 𝑡) − 𝜂 (𝑎) Ṽ (𝑎, 𝑡)
𝜕𝜕𝑡𝑒 (𝑎, 𝑡) = − 𝜕𝜕𝑎𝑒 (𝑎, 𝑡) −  (𝑎) 𝑒 (𝑎, 𝑡)
𝜕𝜕𝑡 �̃� (𝑎, 𝑡) = − 𝜕𝜕𝑎 �̃� (𝑎, 𝑡) − 𝜎 (𝑎) �̃� (𝑎, 𝑡)
d
d𝑡 �̃� = ∫∞

0
𝛾 (𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎 − 𝜇0�̃�,

(82)

after substituting (81) into (4) and neglecting the terms of
order higher or equal to two, with boundary conditions

Ṽ (0, 𝑡) = ]𝑆 (𝑡)
𝑒 (0, 𝑡) = 𝑆0 ∫∞

0
(𝐾0 (𝑎) �̃� (𝑎, 𝑡)

+ ∫∞
0

𝐾(𝑎, 𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎
�̃� (0, 𝑡) = ∫∞

0
𝜀 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎,

(83)

after substituting (81) into (5) and neglecting the terms of
order higher or equal to two.

Now, we consider the exponential solutions of systems
(82)-(83) of the form

𝑆 (𝑡) = 𝑆𝑒𝜆𝑡,
Ṽ (𝑎, 𝑡) = V (𝑎) 𝑒𝜆𝑡,
𝑒 (𝑎, 𝑡) = 𝑒 (𝑎) 𝑒𝜆𝑡,
�̃� (𝑎, 𝑡) = 𝑖 (𝑎) 𝑒𝜆𝑡,
�̃� (𝑡) = 𝑅𝑒𝜆𝑡,

(84)



12 Abstract and Applied Analysis

where 𝑆, V(𝑎), 𝑒(𝑎), 𝑖(𝑎), and 𝜆 (real or complex number)
satisfy the following system:

𝜆𝑆 = − (] + 𝜇0) 𝑆 + ∫∞
0

𝛼 (𝑎) V (𝑎) 𝑑𝑎
− 𝑆0 ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎) 𝑑𝑎)𝑑𝑎
𝜆V (𝑎) = − 𝑑𝑑𝑎V (𝑎) − 𝜂 (𝑎) V (𝑎)
𝜆𝑒 (𝑎) = − 𝑑𝑑𝑎𝑒 (𝑎) −  (𝑎) 𝑒 (𝑎)
𝜆𝑖 (𝑎) = − 𝑑𝑑𝑎𝑖 (𝑎) − 𝜎 (𝑎) 𝑖 (𝑎)
𝜆𝑅 = ∫∞

0
𝛾 (𝑎) 𝑖 (𝑎) 𝑑𝑎 − 𝜇0𝑅,

(85)

with boundary conditions

V (0) = ]𝑆
𝑒 (0)
= 𝑆0 ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎) + ∫∞

0
𝐾(𝑎, 𝑎) 𝑖 (𝑎) 𝑑𝑎)𝑑𝑎

𝑖 (0) = ∫∞
0

𝜀 (𝑎) 𝑒 (𝑎) 𝑑𝑎.

(86)

From the second, third, and fourth equations of (85), we
get

V (𝑎) = V (0) 𝑒−𝜆𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠,
𝑒 (𝑎) = 𝑒 (0) 𝑒−𝜆𝑎−∫𝑎0 (𝑠)𝑑𝑠,
𝑖 (𝑎) = 𝑖 (0) 𝑒−𝜆𝑎−∫𝑎0 𝜎(𝑠)𝑑𝑠,

(87)

respectively, where V(0), 𝑒(0), and 𝑖(0) are given by (86).
Substituting the last equation of (87) into the boundary

condition given by the second equation of (86) yields the
characteristic equation

C
0 (𝜆) = 1, (88)

where

C
0 (𝜆) = 𝑆0 (∫∞

0
𝜀 (𝑎) 𝑒−𝜆𝑎−∫𝑎0 (𝑠)𝑑𝑠𝑑𝑎)

× ∫∞
0

(𝐾0 (𝑎) 𝑒−𝜆𝑎−∫𝑎0 𝜎(𝑠)𝑑𝑠

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑒−𝜆𝑎−∫𝑎0 𝜎(𝑠)𝑑𝑠𝑑𝑎)𝑑𝑎,
(89)

such that C0(0) = R0. It is not difficult to see that(𝑑/𝑑𝜆)C0(𝜆) = −C0(𝜆) < 0. Thus, C0(𝜆) is a decreasing
continuous function of 𝜆 which approaches∞ as 𝜆 → −∞
and 0 as 𝜆 → ∞. Hence, the characteristic equation (88)
admits a real solution 𝜆∗ such that 𝜆∗ < 0 whenever C0(0) <1 and 𝜆∗ > 0 whenever C0(0) > 1.

On the other hand, by assuming a complex solution 𝜆 =𝛼 + 𝑖𝛽 of the characteristic equation C0(𝜆) = 1, we can
notice that R(𝑒𝜆) ≤ 𝑒R(𝜆) is always true. Thus, we clearly
get RC0(𝜆) ≤ C0(R𝜆). It follows from the characteristic
equation C0(𝜆) = 1 that RC0(𝜆) = 1 and IC0(𝜆) = 0.
Therefore, we obtain 1 ≤ C0(R𝜆), i.e., C0(𝜆∗) ≤ C0(R𝜆).
Hence,R𝜆 ≤ 𝜆∗, since C0(𝜆) is a decreasing function.

It results from the above statements that all eigenvalues
of the characteristic equation C0(𝜆) = 1 have negative real
part whenever C0(0) < 1, i.e., R0 < 1. Thus, the disease-
free equilibrium 𝐸0 is locally asymptotically stable if R0 <1. Otherwise, C0(0) ≥ 1, i.e., the unique real solution of the
characteristic equation C0(𝜆) = 1 is positive, and hence the
disease-free equilibrium 𝐸0 is unstable.
Theorem 13. IfR0 > 1 then𝐸∗ is locally asymptotically stable.

Proof. Likewise for the disease-free equilibrium, we perturb
the disease-endemic equilibrium by letting

𝑆 (𝑡) = 𝑆 (𝑡) − 𝑆∗,
Ṽ (𝑎, 𝑡) = V (𝑎, 𝑡) − V∗ (𝑎) ,
𝑒 (𝑎, 𝑡) = 𝑒 (𝑎, 𝑡) − 𝑒∗ (𝑎) ,
�̃� (𝑎, 𝑡) = 𝑖 (𝑎, 𝑡) − 𝑖∗ (𝑎) ,
�̃� (𝑡) = 𝑅 (𝑡) − 𝑅∗.

(90)

Substituting 𝑆(𝑡) = 𝑆(𝑡) + 𝑆∗, V(𝑎, 𝑡) = Ṽ(𝑎, 𝑡) + V∗(𝑎), 𝑒(𝑎, 𝑡) =𝑒(𝑎, 𝑡) + 𝑒∗(𝑎), and 𝑖(𝑎, 𝑡) = �̃�(𝑎, 𝑡) + 𝑖∗(𝑎), 𝑅(𝑡) = �̃�(𝑡) + 𝑅∗
into (4) and neglecting the terms of second order and above,
the perturbations satisfy the linear system

d
d𝑡𝑆 (𝑡) = − (] + 𝜇0) 𝑆 (𝑡) + ∫∞

0
𝛼 (𝑎) Ṽ (𝑎, 𝑡) 𝑑𝑎

− 𝑆∗ ∫∞
0

(𝐾0 (𝑎) �̃� (𝑎, 𝑡)
+ ∫∞
0

𝐾(𝑎, 𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎 − 𝑆 (𝑡)
⋅ ∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
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𝜕𝜕𝑡 Ṽ (𝑎, 𝑡) = − 𝜕𝜕𝑎 Ṽ (𝑎, 𝑡) − 𝜂 (𝑎) Ṽ (𝑎, 𝑡)
𝜕𝜕𝑡𝑒 (𝑎, 𝑡) = − 𝜕𝜕𝑎𝑒 (𝑎, 𝑡) −  (𝑎) 𝑒 (𝑎, 𝑡)
𝜕𝜕𝑡 �̃� (𝑎, 𝑡) = − 𝜕𝜕𝑎 �̃� (𝑎, 𝑡) − 𝜎 (𝑎) �̃� (𝑎, 𝑡)
d
d𝑡 �̃� = ∫∞

0
𝛾 (𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎 − 𝜇0�̃�,

(91)

with boundary conditions

Ṽ (0, 𝑡) = ]𝑆 (𝑡)
𝑒 (0, 𝑡) = 𝑆∗ ∫∞

0
(𝐾0 (𝑎) �̃� (𝑎, 𝑡)

+ ∫∞
0

𝐾(𝑎, 𝑎) �̃� (𝑎, 𝑡) 𝑑𝑎)𝑑𝑎 + 𝑆 (𝑡)

⋅ ∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎

�̃� (0, 𝑡) = ∫∞
0

𝜀 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎,

(92)

after substituting 𝑆(𝑡) = 𝑆(𝑡) + 𝑆∗, V(𝑎, 𝑡) = Ṽ(𝑎, 𝑡) + V∗(𝑎),𝑒(𝑎, 𝑡) = 𝑒(𝑎, 𝑡) + 𝑒∗(𝑎), 𝑖(𝑎, 𝑡) = �̃�(𝑎, 𝑡) + 𝑖∗(𝑎), and 𝑅(𝑡) =�̃�(𝑡) + 𝑅∗ into (5) and neglecting the terms of second order
and above.

Now, we consider the exponential solutions of systems
(91)-(92) of the form

𝑆 (𝑡) = 𝑆𝑒𝜆𝑡,
Ṽ (𝑎, 𝑡) = V (𝑎) 𝑒𝜆𝑡,
𝑒 (𝑎, 𝑡) = 𝑒 (𝑎) 𝑒𝜆𝑡,
�̃� (𝑎, 𝑡) = 𝑖 (𝑎) 𝑒𝜆𝑡,
�̃� (𝑡) = 𝑅𝑒𝜆𝑡,

(93)

where 𝑆, V(𝑎), 𝑒(𝑎), 𝑖(𝑎), and 𝜆 (real or complex number)
satisfy the system

𝜆𝑆 = − (] + 𝜇0) 𝑆 + ∫∞
0

𝛼 (𝑎) V (𝑎) 𝑑𝑎
− 𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎) 𝑑𝑎)𝑑𝑎
− 𝑆∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
𝜆V (𝑎) = − d

d𝑎V (𝑎) − 𝜂 (𝑎) V (𝑎)
𝜆𝑒 (𝑎) = − d

d𝑎𝑒 (𝑎) −  (𝑎) 𝑒 (𝑎)
𝜆𝑖 (𝑎) = − d

d𝑎 𝑖 (𝑎) − 𝜎 (𝑎) 𝑖 (𝑎)
𝜆𝑅 = ∫∞

0
𝛾 (𝑎) 𝑖 (𝑎) 𝑑𝑎 − 𝜇0𝑅,

(94)

with boundary conditions

V (0) = ]𝑆
𝑒 (0) = 𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎) 𝑑𝑎)𝑑𝑎
+ 𝑆∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
𝑖 (0) = ∫∞

0
𝜀 (𝑎) 𝑒 (𝑎) 𝑑𝑎.

(95)

Similarly to the process leading to the characteristic equation
(88), the characteristic equation at the disease-endemic equi-
librium 𝐸∗ is given by

(𝜆 + 𝜇0 + ]𝐴𝜆)C∗ (𝜆) − 𝐵 − (𝜆 + 𝜇0 + ]𝐴𝜆) = 0, (96)
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where

C
∗ (𝜆) = C0 (𝜆)

R0
> 0

𝐴𝜆 = 1 − ∫∞
0

𝛼 (𝑎) 𝑒−𝜆𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎 > 0
𝐵
= ∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
> 0.

(97)

It is sufficient to prove that (96) has no root with
nonnegative real part. So, we suppose that (96) has a complex
root with nonnegative real part denoted by

𝜆 = 𝛼 + 𝑖𝛽, (98)

where 𝛼 ≥ 0 and 𝛽 ̸= 0. It follows from (96) that

(𝛼 + 𝑖𝛽 + 𝜇0 + ]𝐴𝛼+𝑖𝛽)C∗ (𝛼 + 𝑖𝛽) − 𝐵
− (𝛼 + 𝑖𝛽 + 𝜇0 + ]𝐴𝛼+𝑖𝛽) = 0, (99)

where

C
∗ (𝛼 + 𝑖𝛽) = C0 (𝛼 + 𝑖𝛽)

R0
> 0

𝐴𝛼+𝑖𝛽 = 1 − ∫∞
0

𝛼 (𝑎) 𝑒−𝛼𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑒−𝑖𝛽𝑎𝑑𝑎 > 0
𝐵
= ∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
> 0,

(100)

and hence

C
∗ (𝛼 + 𝑖𝛽) = RC

∗ (𝛼 + 𝑖𝛽) +IC
∗ (𝛼 + 𝑖𝛽) , (101)

where

RC
∗ (𝛼 + 𝑖𝛽) = 1 + 𝐵𝐾𝛼𝛽 (𝛼 + 𝜇0 + ]

− ]∫∞
0

𝛼 (𝑎) 𝑒−𝛼𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠 cos𝛽𝑎 𝑑𝑎) > 1
(102)

and

IC
∗ (𝛼 + 𝑖𝛽)
= − 𝐵𝐾𝛼𝛽 (𝛽 − ]∫∞

0
𝛼 (𝑎) 𝑒−𝛼𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠 sin𝛽𝑎 𝑑𝑎)

< 0,
(103)

with

𝐾𝛼𝛽 = (𝛼 + 𝜇0 + ]

− ]∫∞
0

𝛼 (𝑎) 𝑒−𝛼𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠 cos𝛽𝑎 𝑑𝑎)2 + (𝛽
− ]∫∞
0

𝛼 (𝑎) 𝑒−𝛼𝑎−∫𝑎0 𝜂(𝑠)𝑑𝑠 sin𝛽𝑎 𝑑𝑎)2 > 0.
(104)

Since RC∗(𝛼 + 𝑖𝛽) ≤ C∗(𝛼) is always true and C∗(𝛼) ≤
C∗(0) = 1 (C∗ is a decreasing function of 𝜆), thusRC∗(𝛼 +𝑖𝛽) ≤ 1.

Therefore, the latter statement contradicts (102).

6. Global Stability of Equilibria

To investigate the global asymptotic stability of equilibria
of system (4) we shall use suitable Volterra-type Lyapunov
functions of the form

𝐺 (𝑋) = 𝑋 − 1 − ln𝑋, 𝑋 > 0. (105)

We state the following results.

Theorem 14. The disease-free equilibrium 𝐸0 of (4) is globally
asymptotically stable ifR0 ≤ 1.
Proof. A Lyapunov function 𝐿0 of the form

𝐿0 (𝑡) = 𝐿01 (𝑡) + 𝐿02 (𝑡) + 𝐿03 (𝑡) + 𝐿04 (𝑡) + 𝐿05 (𝑡) (106)

is considered, where

𝐿01 (𝑡) = 𝑆0𝐺(𝑆 (𝑡)𝑆0 ) ,
𝐿02 (𝑡) = ∫∞

0
V0 (𝑎) 𝐺(V (𝑎, 𝑡)

V0 (𝑎) ) 𝑑𝑎
𝐿03 (𝑡) = ∫∞

0
𝜑 (𝑎) 𝑒 (𝑎, 𝑡) 𝑑𝑎,

𝐿04 (𝑡) = ∫∞
0

𝜔 (𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎,
𝐿05 (𝑡) = 𝐶0𝑅 (𝑡) .

(107)

The functions𝜑 and𝜔 are nonnegative functions to be chosen
suitably and carefully. �̇�0𝑖 , 𝑖 = 1, . . . , 5, denote the derivatives
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of 𝐿0𝑖 with respect to 𝑡 along the solution to (4) and are given
by

�̇�01 (⋅) = (] + 𝜇0) 𝑆0 (2 − 𝑆0𝑆 − 𝑆𝑆0) + (1 − 𝑆0𝑆 )

⋅ ∫∞
0

𝛼 (𝑎) V (𝑎, ⋅) (1 − V0 (𝑎)
V (𝑎, ⋅)) 𝑑𝑎

+ 𝑆0 ∫∞
0

(𝐾0 (𝑎) 𝑖 (𝑎, ⋅)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎)𝑑𝑎 − 𝑒 (0, ⋅)
�̇�02 (⋅) = − lim

𝑎→∞
V (𝑎, ⋅) + ] (𝑆 − 𝑆0 ln 𝑆) + ]𝑆0 (1

− ln ]) − ∫∞
0

𝜂 (𝑎) (V (𝑎, ⋅) − V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎,
�̇�03 (⋅) = − lim

𝑎→∞
𝜑 (𝑎) 𝑒 (𝑎, ⋅) + 𝜑 (0) 𝑒 (0, ⋅)

+ ∫∞
0

(�̇� (𝑎) −  (𝑎) 𝜑 (𝑎)) 𝑒 (𝑎, ⋅) 𝑑𝑎,
�̇�04 (⋅) = − lim

𝑎→∞
𝜔 (𝑎) 𝑖 (𝑎, ⋅) + 𝜔 (0) 𝑖 (0, ⋅)

+ ∫∞
0

(�̇� (𝑎) − 𝜎 (𝑎) 𝜔 (𝑎)) 𝑖 (𝑎, ⋅) 𝑑𝑎,

�̇�05 (⋅) = 𝐶0 ∫∞
0

𝛾 (𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎 − 𝐶0𝜇0𝑅.

(108)

Therefore,

�̇�0 (⋅) = (] + 𝜇0) 𝑆0 (2 − 𝑆0𝑆 − 𝑆𝑆0) + (𝜑 (0) − 1)

⋅ 𝑒 (0, ⋅) + ] (𝑆 − 𝑆0 ln 𝑆) + ]𝑆0 (1 − ln ]) − (1

− 𝑆0𝑆 )∫∞
0

𝛼 (𝑎) V0 (𝑎) 𝑑𝑎 − 𝐶0 (𝜇0𝑅

− ∫∞
0

𝛾 (𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎)

− 𝑆0𝑆 ∫∞
0

𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎 + ∫∞
0

𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎

− ∫∞
0

𝜂 (𝑎) (V (𝑎, ⋅) − V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎

+ ∫∞
0

(𝜔 (𝑎) − 𝜎 (𝑎) 𝜔 (𝑎) + 𝑆0𝐾0 (𝑎)

+ 𝑆0 ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, ⋅)
𝑖 (𝑎, ⋅) ) 𝑖 (𝑎, ⋅) 𝑑𝑎

+ ∫∞
0

(𝜑 (𝑎) −  (𝑎) 𝜑 (𝑎) + 𝜔 (0) 𝜀 (𝑎))
⋅ 𝑒 (𝑎, ⋅) 𝑑𝑎,

(109)

i.e.,

�̇�0 (⋅) = (] + 𝜇0) 𝑆0 (2 − 𝑆0𝑆 − 𝑆𝑆0) + (𝜑 (0) − 1)
⋅ 𝑒 (0, ⋅) + ] (𝑆 − 𝑆0 ln 𝑆) + ]𝑆0 (1 − ln ]) − (1
− 𝑆0𝑆 )∫∞

0
𝛼 (𝑎) V0 (𝑎) 𝑑𝑎 − 𝐶0 (𝜇0𝑅

− ∫∞
0

𝛾 (𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎)
− 𝑆0𝑆 ∫∞

0
𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎 + ∫∞

0
𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎

− ∫∞
0

𝜂 (𝑎) (V (𝑎, ⋅) − V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎
+ ∫∞
0

(𝜔 (𝑎) − 𝜎 (𝑎) 𝜔 (𝑎) + 𝑆0𝐾0 (𝑎)
+ 𝑆0 ∫∞

0
𝐾(𝑎, 𝑎) 𝑒−∫𝑎𝑎 𝜎(𝑠)𝑑𝑠𝑑𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎

+ ∫∞
0

(𝜑 (𝑎) −  (𝑎) 𝜑 (𝑎) + 𝜔 (0) 𝜀 (𝑎))
⋅ 𝑒 (𝑎, ⋅) 𝑑𝑎,

(110)

after choosing 𝑎 and 𝑎 such that

𝑖 (𝑎, 𝑡)
𝜁 (𝑎) = 𝑖 (𝑎, 𝑡)𝜁 (𝑎) . (111)

Note that

] (𝑆 − 𝑆0 ln 𝑆) + ]𝑆0 (1 − ln ]) − (1 − 𝑆0𝑆 )
⋅ ∫∞
0

𝛼 (𝑎) V0 (𝑎) 𝑑𝑎 = −]𝑆0 (1 + ln ]𝑆)
+ 1𝑆 []𝑆2 + (2]𝑆0 + (Λ − (] + 𝜇0) 𝑆0)) 𝑆
− (Λ − (] + 𝜇0) 𝑆0) 𝑆0] ,

(112)
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after using ∫∞0 𝛼(𝑎)V0(𝑎)𝑑𝑎 = −Λ + (] + 𝜇0)𝑆0. Thus, (110)
becomes

�̇�0 (⋅) = (] + 𝜇0) 𝑆0 (2 − 𝑆0𝑆 − 𝑆𝑆0) + (𝜑 (0) − 1)
⋅ 𝑒 (0, ⋅) − 𝐶0 (𝜇0𝑅 − ∫∞

0
𝛾 (𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎) − ]𝑆0 (1

+ ln ]𝑆) + 1𝑆 []𝑆2 + (2]𝑆0 + (Λ − (] + 𝜇0) 𝑆0)) 𝑆
− (Λ − (] + 𝜇0) 𝑆0) 𝑆0]

− 𝑆0𝑆 ∫∞
0

𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎 − ∫∞
0

((𝜂 (𝑎) − 𝛼 (𝑎)) V (𝑎, ⋅)
− 𝜂 (𝑎) V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎 + ∫∞

0
(𝜔 (𝑎)

− 𝜎 (𝑎) 𝜔 (𝑎) + 𝑆0𝐾0 (𝑎)
+ 𝑆0 ∫∞

0
𝐾(𝑎, 𝑎) 𝑒−∫𝑎𝑎 𝜎(𝑠)𝑑𝑠𝑑𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎

+ ∫∞
0

(𝜑 (𝑎) −  (𝑎) 𝜑 (𝑎) + 𝜔 (0) 𝜀 (𝑎))
⋅ 𝑒 (𝑎, ⋅) 𝑑𝑎.

(113)

Using assumption A2, we show that

𝜇0𝑅 (𝑡) − ∫∞
0

𝛾 (𝑎) 𝑖 (𝑎, 𝑡) 𝑑𝑎
≥ 𝜇0𝑅 (𝑡) − 𝛾∫∞

0
𝑖 (𝑎, 𝑡) 𝑑𝑎 ≥ 𝜇0𝑅 (𝑡) − 𝛾0𝐼 (𝑡)

> 0,
(114)

where

𝐼 (𝑡) = ∫∞
0

𝑖 (𝑎, ⋅) 𝑑𝑎. (115)

By assumption A3, obtain

∫∞
0

((𝜂 (𝑎) − 𝛼 (𝑎)) V (𝑎, ⋅) − 𝜂 (𝑎) V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎
> ∫∞
0

(𝜂 (𝑎) (1 − V0 (𝑎)) − 𝛼 (𝑎)) V (𝑎, ⋅) 𝑑𝑎
> ∫∞
0

(𝜂 (𝑎) (1 − ]𝑆0) − 𝛼 (𝑎)) V (𝑎, ⋅) 𝑑𝑎
> ∫∞
0

(𝜂 (𝑎)
⋅ (1 − Λ(1 − ∫∞

0
𝛼 (𝑎) 𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎)−1)

− 𝛼 (𝑎)) V (𝑎, ⋅) 𝑑𝑎 > 0.

(116)

Next, we choose functions 𝜔 and 𝜑 such that

𝜔 (𝑎)
= 𝑆0 ∫∞

0
(𝐾0 (𝑢) + ∫∞

0
𝐾(𝑢, 𝑎) 𝑒−∫𝑎𝑢 𝜎(𝑠)𝑑𝑠𝑑𝑎)

⋅ 𝑒−∫𝑢𝑎 𝜎(𝑠)𝑑𝑠𝑑𝑢
(117)

and

𝜑 (𝑎) = 𝜔 (0) ∫∞
0

𝜀 (𝑢) 𝑒−∫𝑢𝑎 (𝑠)𝑑𝑠𝑑𝑢. (118)

It follows from (117) and (118) that 𝜑(0) = R0 and

𝜔 (0) = 𝑆0 ∫∞
0

(𝐾0 (𝑢) 𝑒−∫𝑢0 𝜎(𝑠)𝑑𝑠

+ ∫∞
0

𝐾(𝑢, 𝑎) 𝑒−∫𝑎0 𝜎(𝑠)𝑑𝑠𝑑𝑎)𝑑𝑢.
(119)

Moreover, by differentiation of (117) and (118) with respect to
age 𝑎, we obtain

𝜔 (𝑎) − 𝜎 (𝑎) 𝜔 (𝑎) + 𝑆0𝐾0 (𝑎)
+ 𝑆0 ∫∞

0
𝐾(𝑎, 𝑎) 𝑒−∫𝑎𝑎 𝜎(𝑠)𝑑𝑠𝑑𝑎 = 0 (120)

and

𝜑 (𝑎) −  (𝑎) 𝜑 (𝑎) + 𝜔 (0) 𝜀 (𝑎) , (121)

respectively. Therefore, (113) is reduced to

�̇�0 (⋅) = −(] + 𝜇0)
𝑆 (𝑆 − 𝑆0)2 + (R0 − 1) 𝑒 (0, ⋅)

− 𝐶0 (𝜇0𝑅 − ∫∞
0

𝛾 (𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎) − ]𝑆0 (1
+ ln ]𝑆) + 1𝑆 []𝑆2 + (2]𝑆0 + (Λ − (] + 𝜇0) 𝑆0)) 𝑆
− (Λ − (] + 𝜇0) 𝑆0) 𝑆0]

− 𝑆0𝑆 ∫∞
0

𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎 − ∫∞
0

((𝜂 (𝑎) − 𝛼 (𝑎)) V (𝑎, ⋅)
− 𝜂 (𝑎) V0 (𝑎) ln V (𝑎, ⋅)) 𝑑𝑎.

(122)

We denote

𝐹 (𝑆) = ]𝑆2 + (2]𝑆0 + (Λ − (] + 𝜇0) 𝑆0)) 𝑆
− (Λ − (] + 𝜇0) 𝑆0) 𝑆0. (123)

Since

Λ𝜇0 + ]
< 𝑆0 < Λ𝜇0 − ]

, (124)
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it is easy to check that 𝐹(𝑆) has two negative (real) roots.
Moreover, 𝐹(𝑆) > 0 for every 𝑆 ≥ 0. Therefore, the sign of�̇�0(⋅) will be determined by the sign of

𝐹 (0) − (] + 𝜇0) (𝑆 (𝑡) − 𝑆0)2
= −Λ𝑆0 − (] + 𝜇0) 𝑆 (𝑡) (𝑆 (𝑡) − 2𝑆0) . (125)

Thus, three cases occur:

Case 1 (𝑆(𝑡) > 2𝑆0). It is easy to see that 𝐹(0) − (] + 𝜇0)(𝑆(𝑡) −𝑆0)2 < 0 and therefore �̇�0(𝑡) ≤ 0 ifR0 ≤ 1.
Case 2 (𝑆(𝑡) = 2𝑆0). For this value of 𝑆(𝑡), we have 𝐹(0) − (] +𝜇0)(𝑆(𝑡) − 𝑆0)2 = −Λ𝑆0 < 0 and therefore �̇�0(𝑡) ≤ 0 ifR0 ≤ 1.
Case 3 (0 < 𝑆(𝑡) < 2𝑆0). For such values of 𝑆(𝑡)we have 𝐹(0)−(]+𝜇0)(𝑆(𝑡)−𝑆0)2 = −(Λ−2(]+𝜇0)𝑆(𝑡))𝑆0−(]+𝜇0)𝑆2. Since2−1(]+𝜇0)−1Λ < 2𝑆0, it follows that𝐹(0)−(]+𝜇0)(𝑆(𝑡)−𝑆0)2 <0 for any 0 < 𝑆(𝑡) < 2−1(] + 𝜇0)−1Λ. Therefore �̇�0(𝑡) ≤ 0 if
R0 ≤ 1.

It results from the above that the derivative of 𝐿0(𝑡) along
the solutions of (4) is �̇�0(𝑡) ≤ 0. If 𝑆(𝑡) = 𝑆0, V(𝑎, 𝑡) = V0(𝑎),
and 𝑒(𝑎, 𝑡) = 𝑖(𝑎, 𝑡) = 𝑅(𝑡) = 0 are simultaneously satisfied
with R0 = 1, then �̇�0(𝑡) = 0 holds. Moreover, it can be
verified that {(𝑆, V, 𝑒, 𝑖, 𝑅) : �̇�0(𝑡) = 0} = {𝐸0}. Therefore, it
results from Lasalle’s InvarianceTheorem [26, p. 200] that 𝐸0
is globally asymptotically stable, ifR0 ≤ 1.
Theorem 15. The endemic equilibrium 𝐸∗ of (4) is globally
asymptotically stable on the set, ifR0 > 1.
Proof. To prove the above result we consider a Lyapunov
function of the form given below

𝐿∗ (𝑡) = 𝐿∗1 (𝑡) + 𝐿∗2 (𝑡) + 𝐿∗3 (𝑡) + 𝐿∗4 (𝑡) + 𝐿∗5 (𝑡) , (126)

where

𝐿∗1 (𝑡) = 𝑆∗𝐺(𝑆 (𝑡)𝑆∗ ) ,
𝐿∗2 (𝑡) = ∫∞

0
V∗ (𝑎) 𝐺(V (𝑎, 𝑡)

V∗ (𝑎) ) 𝑑𝑎,
𝐿∗3 (𝑡) = ∫∞

0
𝑒∗ (𝑎) 𝐺(𝑒 (𝑎, 𝑡)𝑒∗ (𝑎) ) 𝑑𝑎

𝐿∗4 (𝑡) = ∫∞
0

𝑖∗ (𝑎) 𝐺(𝑖 (𝑎, 𝑡)𝑖∗ (𝑎) ) 𝑑𝑎,
𝐿∗5 (𝑡) = 𝑅∗𝐺(𝑅 (𝑡)𝑅∗ ) ,

(127)

with 𝐺(𝑋) = 𝑋 − 1 − ln𝑋, for any𝑋 > 0.

Thus, we have

�̇�∗1 (⋅) = (1 − 𝑆∗𝑆 ) [Λ − (] + 𝜇0) 𝑆 + ∫∞
0

𝛼 (𝑎)
⋅ V (𝑎, ⋅) 𝑑𝑎 − 𝑆∫∞

0
(𝐾0 (𝑎) 𝑖 (𝑎, ⋅)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎)𝑑𝑎]
(128)

Using (37), (44), and (45) together with the first equation of
(38), we obtain

�̇�∗1 (⋅) = Λ
R0

(2 − 𝑆∗𝑆 − 𝑆𝑆∗) + (2 − 𝑆∗𝑆 − 𝑆𝑆∗)
⋅ ∫∞
0

𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎 + (1 − 𝑆∗𝑆 ) [−∫∞
0

𝛼 (𝑎)
⋅ V∗ (𝑎) 𝑑𝑎 + ∫∞

0
𝛼 (𝑎) V (𝑎, ⋅) 𝑑𝑎

− 𝑆∫∞
0

(𝐾0 (𝑎) 𝑖 (𝑎, ⋅)
+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖 (𝑎, ⋅) 𝑑𝑎)𝑑𝑎
− 𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖∗ (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎] .

(129)

We add and subtract, carefully, some terms to the above
expression, and we also identify group of terms in the form
given by 𝐺(𝑋) = 𝑋 − 1 − ln𝑋. We obtain

�̇�∗1 (⋅) = Λ
R0

(2 − 𝑆∗𝑆 − 𝑆𝑆∗) − ∫∞
0

𝛼 (𝑎) V∗ (𝑎)
⋅ [𝐺(𝑆∗V (𝑎, ⋅)𝑆V∗ (𝑎) ) − 𝐺(𝑆∗𝑆 ) − 𝐺(V (𝑎, ⋅)

V∗ (𝑎) )] 𝑑𝑎
− 2𝐺(𝑆∗𝑆 )∫∞

0
𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎 − 𝑆∗ ∫∞

0
𝐾0 (𝑎)

⋅ 𝑖∗ (𝑎) [𝐺( 𝑆𝑖 (𝑎, ⋅)𝑆∗𝑖∗ (𝑎)) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎
− 𝑆∗ ∫∞

0
∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎)

⋅ [𝐺( 𝑆𝑖 (𝑎, ⋅)
𝑆∗𝑖∗ (𝑎)) − 𝐺(𝑖 (𝑎, ⋅)

𝑖∗(𝑎) )]𝑑𝑎𝑑𝑎.

(130)

By differentiating 𝐿∗2 with respect to 𝑡, we obtain
�̇�∗2 (⋅) = −∫∞

0
(1 − V∗ (𝑎)

V (𝑎, ⋅))
⋅ ( 𝜕𝜕𝑡V (𝑎, ⋅) + 𝜂 (𝑎) V (𝑎, ⋅)) 𝑑𝑎.

(131)
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Since

V∗ (𝑎) 𝜕𝜕𝑡𝐺(V (𝑎, ⋅)
V∗ (𝑎) )

= (1 − V∗ (𝑎)
V (𝑎, ⋅)) ( 𝜕𝜕𝑡V (𝑎, ⋅) + 𝜂 (𝑎) V (𝑎, ⋅))

(132)

thus (131) yields

�̇�∗2 (⋅) = −∫∞
0

V∗ (𝑎) 𝜕𝜕𝑡𝐺(V (𝑎, ⋅)
V∗ (𝑎) ) 𝑑𝑎. (133)

Using the second equation of (38) after integrating by part,
we get

�̇�∗2 (⋅) = V∗ (0) 𝐺 ( 𝑆𝑆∗ )
− ∫∞
0

𝜂 (𝑎) V∗ (𝑎) 𝐺(V (𝑎, ⋅)
V∗ (𝑎) ) 𝑑𝑎.

(134)

Moreover,

V∗ (0) 𝐺 ( 𝑆𝑆∗ )
= V∗ (0) ∫∞

0
𝜂 (𝑎) 𝑒−∫∞0 𝜂(𝑠)𝑑𝑠𝐺( 𝑆𝑆∗ )𝑑𝑎

= ∫∞
0

𝜂 (𝑎) V∗ (𝑎) 𝐺 ( 𝑆𝑆∗ )𝑑𝑎,
(135)

yields

�̇�∗2 (⋅)
= −∫∞
0

𝜂 (𝑎) V∗ (𝑎) [𝐺(V (𝑎, ⋅)
V∗ (𝑎) ) − 𝐺( 𝑆𝑆∗ )] 𝑑𝑎.

(136)

Similarly to 𝐿∗2, from 𝐿∗3 and 𝐿∗4 we get, respectively,
�̇�∗3 (⋅) = −∫∞

0
 (𝑎) 𝑒∗ (𝑎)

⋅ [𝐺(𝑒 (𝑎, ⋅)𝑒∗ (𝑎) ) − 𝐺(𝑒 (0, ⋅)𝑒∗ (0) )] 𝑑𝑎
(137)

and

�̇�∗4 (⋅)
= −∫∞
0

𝜎 (𝑎) 𝑖∗ (𝑎) [𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) ) − 𝐺(𝑖 (0, ⋅)𝑖∗ (0) )] 𝑑𝑎,
(138)

while using the fifth equation of (38) 𝐿∗5 leads to
�̇�∗5 (⋅) = 𝜇0𝑅∗ (2 − 𝑅𝑅∗ − 𝑅∗𝑅 ) − ∫∞

0
𝛾 (𝑎) 𝑖∗ (𝑎)

⋅ [𝐺(𝑅∗𝑖 (𝑎, ⋅)𝑅𝑖∗ (𝑎) ) − 𝐺(𝑅∗𝑅 )
− 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎.

(139)

By combining (130), (136), (137), (138), and (139), we obtain

�̇�∗ (⋅) = Λ
R0

(2 − 𝑆∗𝑆 − 𝑆𝑆∗) − ∫∞
0

𝛼 (𝑎) V∗ (𝑎)
⋅ [𝐺(𝑆∗V (𝑎, ⋅)𝑆V∗ (𝑎) ) − 𝐺(𝑆∗𝑆 ) − 𝐺(V (𝑎, ⋅)

V∗ (𝑎) )] 𝑑𝑎
− 2𝐺(𝑆∗𝑆 )∫∞

0
𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎 − 𝑆∗ ∫∞

0
𝐾0 (𝑎)

⋅ 𝑖∗ (𝑎) [𝐺( 𝑆𝑖 (𝑎, ⋅)𝑆∗𝑖∗ (𝑎)) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎
− 𝑆∗ ∫∞

0
∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎)

⋅ [𝐺( 𝑆𝑖 (𝑎, ⋅)
𝑆∗𝑖∗ (𝑎)) − 𝐺(𝑖 (𝑎, ⋅)

𝑖∗(𝑎) )]𝑑𝑎𝑑𝑎
+ 𝐺( 𝑆𝑆∗ )∫∞

0
𝜂 (𝑎) V∗ (𝑎) 𝑑𝑎 − ∫∞

0
𝜂 (𝑎) V∗ (𝑎)

⋅ 𝐺 (V (𝑎, ⋅)
V∗ (𝑎) ) 𝑑𝑎 − ∫∞

0
 (𝑎) 𝑒∗ (𝑎)

⋅ [𝐺(𝑒 (𝑎, ⋅)𝑒∗ (𝑎) ) − 𝐺(𝑒 (0, ⋅)𝑒∗ (0) )] 𝑑𝑎
− ∫∞
0

𝜎 (𝑎) 𝑖∗ (𝑎) [𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) ) − 𝐺(𝑖 (0, ⋅)𝑖∗ (0) )] 𝑑𝑎
+𝜇0𝑅∗ (2 − 𝑅𝑅∗ − 𝑅∗𝑅 ) − ∫∞

0
𝛾 (𝑎) 𝑖∗ (𝑎)

⋅ [𝐺(𝑅∗𝑖 (𝑎, ⋅)𝑅𝑖∗ (𝑎) ) − 𝐺(𝑅∗𝑅 ) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎.

(140)

This yields

�̇�∗ (⋅) = Λ
R0

(2 − 𝑆∗𝑆 − 𝑆𝑆∗) − ∫∞
0

𝛼 (𝑎) V∗ (𝑎)
⋅ [𝐺(𝑆∗V (𝑎, ⋅)𝑆V∗ (𝑎) ) − 𝐺(𝑆∗𝑆 )
− 𝐺(V (𝑎, ⋅)

V∗ (𝑎) )] 𝑑𝑎 − 𝑆∗ ∫∞
0

𝐾0 (𝑎) 𝑖∗ (𝑎)
⋅ [𝐺( 𝑆𝑖 (𝑎, ⋅)𝑆∗𝑖∗ (𝑎)) − 𝐺( 𝑆𝑆∗ ) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎

− 𝑆∗ ∫∞
0

∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) [𝐺( 𝑆𝑖 (𝑎, ⋅)
𝑆∗𝑖∗ (𝑎))

− 𝐺( 𝑆𝑆∗ ) − 𝐺(𝑖 (𝑎, ⋅)
𝑖∗ (𝑎) )]𝑑𝑎𝑑𝑎

− 2𝐺(𝑆∗𝑆 )∫∞
0

𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎 − ∫∞
0

𝜂 (𝑎) V∗ (𝑎)
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⋅ 𝐺 (V (𝑎, ⋅)
V∗ (𝑎) ) 𝑑𝑎 − [𝑆∗ ∫∞

0
(𝐾0 (𝑎) 𝑖∗ (𝑎)

+ ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎 − ∫∞
0

𝜂 (𝑎)
⋅ V∗ (𝑎) 𝑑𝑎]𝐺( 𝑆𝑆∗ ) − ∫∞

0
 (𝑎) 𝑒∗ (𝑎)

⋅ 𝐺( 𝑒∗ (0) 𝑒 (𝑎, ⋅)𝑒 (0, 𝑡) 𝑒∗ (𝑎)) 𝑑𝑎 − ∫∞
0

 (𝑎) 𝑒∗ (𝑎) (1
− 𝑒∗ (0)𝑒 (0, ⋅)) (𝑒 (𝑎, ⋅)𝑒∗ (𝑎) − 𝑒 (0, ⋅)𝑒∗ (0) ) 𝑑𝑎 − ∫∞

0
𝜎 (𝑎)

⋅ 𝑖∗ (𝑎) 𝐺( 𝑖∗ (0) 𝑖 (𝑎, ⋅)𝑖 (0, 𝑡) 𝑖∗ (𝑎)) 𝑑𝑎 − ∫∞
0

𝜎 (𝑎) 𝑖∗ (𝑎)
⋅ (1 − 𝑖∗ (0)𝑖 (0, ⋅)) (𝑖 (𝑎, ⋅)𝑖∗ (𝑎) − 𝑖 (0, ⋅)𝑖∗ (0) ) 𝑑𝑎
+ 𝜇0𝑅∗ (2 − 𝑅𝑅∗ − 𝑅∗𝑅 ) − ∫∞

0
𝛾 (𝑎) 𝑖∗ (𝑎)

⋅ [𝐺(𝑅∗𝑖 (𝑎, ⋅)𝑅𝑖∗ (𝑎) ) − 𝐺(𝑅∗𝑅 )
− 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎.

(141)

Since

𝑆∗ ∫∞
0

(𝐾0 (𝑎) 𝑖∗ (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) 𝑑𝑎)𝑑𝑎
= 1,

∫∞
0

𝜂 (𝑎) 𝑒−∫∞0 𝜂(𝑠)𝑑𝑠𝑑𝑎 = 1,
(142)

thus

�̇�∗ (⋅) = Λ
R0

(2 − 𝑆∗𝑆 − 𝑆𝑆∗) − ∫∞
0

𝛼 (𝑎) V∗ (𝑎)
⋅ [𝐺(𝑆∗V (𝑎, ⋅)𝑆V∗ (𝑎) ) − 𝐺(𝑆∗𝑆 )
− 𝐺(V (𝑎, ⋅)

V∗ (𝑎) )] 𝑑𝑎 − 𝑆∗ ∫∞
0

𝐾0 (𝑎) 𝑖∗ (𝑎)
⋅ [𝐺( 𝑆𝑖 (𝑎, ⋅)𝑆∗𝑖∗ (𝑎)) − 𝐺( 𝑆𝑆∗ ) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎

− 𝑆∗ ∫∞
0

∫∞
0

𝐾(𝑎, 𝑎) 𝑖∗ (𝑎) [𝐺( 𝑆𝑖 (𝑎, ⋅)
𝑆∗𝑖∗ (𝑎))

− 𝐺( 𝑆𝑆∗ ) − 𝐺(𝑖 (𝑎, ⋅)
𝑖∗ (𝑎) )]𝑑𝑎𝑑𝑎

− 2𝐺(𝑆∗𝑆 )∫∞
0

𝛼 (𝑎) V∗ (𝑎) 𝑑𝑎 − ∫∞
0

𝜂 (𝑎) V∗ (𝑎)
⋅ 𝐺(V (𝑎, ⋅)

V∗ (𝑎) ) 𝑑𝑎 − (1 − ]𝑆∗) 𝐺 ( 𝑆𝑆∗ )
− ∫∞
0

 (𝑎) 𝑒∗ (𝑎) 𝐺( 𝑒∗ (0) 𝑒 (𝑎, ⋅)𝑒 (0, 𝑡) 𝑒∗ (𝑎)) 𝑑𝑎
− ∫∞
0

 (𝑎) 𝑒∗ (𝑎) (1 − 𝑒∗ (0)𝑒 (0, ⋅)) (𝑒 (𝑎, ⋅)𝑒∗ (𝑎)
− 𝑒 (0, ⋅)𝑒∗ (0) ) 𝑑𝑎 − ∫∞

0
𝜎 (𝑎) 𝑖∗ (𝑎)

⋅ 𝐺( 𝑖∗ (0) 𝑖 (𝑎, ⋅)𝑖 (0, 𝑡) 𝑖∗ (𝑎)) 𝑑𝑎 − ∫∞
0

𝜎 (𝑎) 𝑖∗ (𝑎) (1
− 𝑖∗ (0)𝑖 (0, ⋅)) (𝑖 (𝑎, ⋅)𝑖∗ (𝑎) − 𝑖 (0, ⋅)𝑖∗ (0) ) 𝑑𝑎 + 𝜇0𝑅∗ (2
− 𝑅𝑅∗ − 𝑅∗𝑅 ) − ∫∞

0
𝛾 (𝑎) 𝑖∗ (𝑎) [𝐺(𝑅∗𝑖 (𝑎, ⋅)𝑅𝑖∗ (𝑎) )

− 𝐺(𝑅∗𝑅 ) − 𝐺(𝑖 (𝑎, ⋅)𝑖∗ (𝑎) )] 𝑑𝑎.
(143)

Using assumption A3, it is easy to see that Λ < 1 −
∫∞0 𝛼(𝑎)𝑒−∫𝑎0 𝜂(𝑠)𝑑𝑠𝑑𝑎. Hence, 𝑆0/R0 < 1/] for R0 > 1; i.e.,1 − ]𝑆∗ > 0 forR0 > 1. Moreover,

(i) 𝐺(𝑆∗V(𝑎, ⋅)/𝑆V∗(𝑎)) − 𝐺(𝑆∗/𝑆) − 𝐺(V(𝑎, ⋅)/V∗(𝑎))
= (1 − 𝑆∗/𝑆)(1 − V(𝑎, ⋅)/V∗(𝑎)) > 0 ⇐⇒(𝑆/𝑆∗ < 1 and V(𝑎, ⋅)/V∗(𝑎) > 1) or (𝑆/𝑆∗ >1 and V(𝑎, ⋅)/V∗(𝑎) < 1);

(ii) 𝐺(𝑆𝑖(𝑎, ⋅)/𝑆∗𝑖∗(𝑎)) − 𝐺(𝑆/𝑆∗) − 𝐺(𝑖(𝑎, ⋅)/𝑖∗(𝑎))
= (1 − 𝑆/𝑆∗)(1 − 𝑖(𝑎, ⋅)/𝑖∗(𝑎)) > 0 ⇐⇒(𝑆/𝑆∗ > 1 and 𝑖(𝑎, ⋅)/𝑖∗(𝑎) > 1) or (𝑆/𝑆∗ <1 and 𝑖(𝑎, ⋅)/𝑖∗(𝑎) < 1);

(iii) (1−𝑒∗(𝑎)/𝑒(0, ⋅))(𝑒(𝑎, ⋅)/𝑒∗(𝑎)−𝑒(0, ⋅)/𝑒∗(0)) > 0 ⇐⇒(𝑒(𝑎, ⋅)/𝑒∗(𝑎) < 𝑒(0, ⋅)/𝑒∗(0) < 1) or (𝑒(𝑎, ⋅)/𝑒∗(𝑎) >𝑒(0, ⋅)/𝑒∗(0) > 1);
(iv) (1 − 𝑖∗(𝑎)/𝑖(0, ⋅))(𝑖(𝑎, ⋅)/𝑖∗(𝑎) − 𝑖(0, ⋅)/𝑖∗(0)) > 0 ⇐⇒(𝑖(𝑎, ⋅)/𝑖∗(𝑎) < 𝑖(0, ⋅)/𝑖∗(0) < 1) or (𝑖(𝑎, ⋅)/𝑖∗(𝑎) >𝑖(0, ⋅)/𝑖∗(0) > 1);
(v) 𝐺(𝑅∗𝑖(𝑎, ⋅)/𝑅𝑖∗(𝑎)) − 𝐺(𝑅∗/𝑅) − 𝐺(𝑖(𝑎, ⋅)/𝑖∗(𝑎))

= (1 − 𝑅∗/𝑅)(1 − 𝑖(𝑎, ⋅)/𝑖∗(𝑎)) > 0 ⇐⇒(𝑅/𝑅∗ < 1 and 𝑖(𝑎, ⋅)/𝑖∗(𝑎) > 1) or (𝑅/𝑅∗ >1 and 𝑖(𝑎, ⋅)/𝑖∗(𝑎) < 1).
Therefore, we obtain

�̇�∗ (𝑡) < 0, (144)

in the following cases:

(i) 𝑆/𝑆∗ < 1, V(𝑎, ⋅)/V∗(𝑎) > 1, 𝑒(𝑎, ⋅)/𝑒∗(𝑎) >𝑒(0, ⋅)/𝑒∗(0) > 1, 𝑖(𝑎, ⋅)/𝑖∗(𝑎) < 𝑖(0, ⋅)/𝑖∗(0) < 1, and𝑅/𝑅∗ > 1;
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(ii) 𝑆/𝑆∗ < 1, V(𝑎, ⋅)/V∗(𝑎) > 1, 𝑒(𝑎, ⋅)/𝑒∗(𝑎) <𝑒(0, ⋅)/𝑒∗(0) < 1, 𝑖(𝑎, ⋅)/𝑖∗(𝑎) < 𝑖(0, ⋅)/𝑖∗(0) < 1, and𝑅/𝑅∗ > 1;
(iii) 𝑆/𝑆∗ > 1, V(𝑎, ⋅)/V∗(𝑎) < 1, 𝑒(𝑎, ⋅)/𝑒∗(𝑎) >𝑒(0, ⋅)/𝑒∗(0) > 1, 𝑖(𝑎, ⋅)/𝑖∗(𝑎) > 𝑖(0, ⋅)/𝑖∗(0) > 1, and𝑅/𝑅∗ < 1;
(iv) 𝑆/𝑆∗ > 1, V(𝑎, ⋅)/V∗(𝑎) < 1, 𝑒(𝑎, ⋅)/𝑒∗(𝑎) <𝑒(0, ⋅)/𝑒∗(0) < 1, 𝑖(𝑎, ⋅)/𝑖∗(𝑎) > 𝑖(0, ⋅)/𝑖∗(0) > 1, and𝑅/𝑅∗ < 1.

From (144), we say that the derivative of 𝐿∗(𝑡) along the
solutions of (4) is �̇�∗(𝑡) < 0. If 𝑆(𝑡) = 𝑆∗, V(𝑎, 𝑡) =
V∗(𝑎), 𝑒(𝑎, 𝑡) = 𝑒∗(𝑎), 𝑖(𝑎, 𝑡) = 𝑖∗(𝑎), and 𝑅(𝑡) = 𝑅∗ are
simultaneously satisfied, then we obtain �̇�∗(𝑡) = 0 from (76).
Moreover, it can be verified that {(𝑆, V, 𝑒, 𝑖, 𝑅) : �̇�∗(𝑡) = 0} ={𝐸∗}. Therefore, it results from Lasalle’s Invariance Theorem
[26, p. 200] that 𝐸∗ is globally asymptotically stable, if R0 >1.

The results fromTheorems 14 and 15 show that there exists
a threshold parameter, called the basic reproduction number
and denoted by R0, that is essential in the stability analysis
of the global dynamics of the model defined by system (4).
Moreover, such a parameter can play a crucial role in the
implementation of human vaccination policies. As we can see
in

𝜕R0𝜕] = − Λ (1 − 𝑃)
(𝜇0 + ] (1 − 𝑃))2

⋅ ∫∞
0

(𝐾0 (𝑎) 𝜁 (𝑎) + ∫∞
0

𝐾(𝑎, 𝑎) 𝜁 (𝑎) 𝑑𝑎)𝑑𝑎
< 0,

(145)

the rise in rate of vaccination of (infant) susceptible individ-
uals against an SEIR infection can reduce the spread of the
infection and help to elaborate control measures to prevent
and reduce the spread of the infection.
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