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In this paper we introduce the notion of proximal 𝜌-normal structure of pair of 𝜌-admissible sets in modular spaces. We prove
some results of best proximity points in this setting without recourse to Zorn’s lemma. We provide some examples to support our
conclusions.

1. Introduction

Fixed point theory is powerful tools in different fields such
as differential equations, dynamical systems, optimal control,
andmany other scientific branches; it treats equations of type𝑇𝑥 = 𝑥 where 𝑇 : 𝑋 󳨀→ 𝑋 is a map of a nonempty set to
itself.

Let 𝐴, 𝐵 ⊂ 𝑋 and 𝑇 a cyclic mapping on 𝐴 ∪ 𝐵; that is,𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵 and 𝑇(𝐴) ⊆ 𝐵, 𝑇(𝐵) ⊆ 𝐴; in this case,𝑇 does not necessarily possess a fixed point if, for instance,𝐴 ∩ 𝐵 = 0. One often attempts to find a point 𝑥 which is
closest to 𝑇𝑥 in the sense that the “distance” between 𝑥 and𝑇𝑥 is equal to the distance between 𝐴 and 𝐵; such a point 𝑥 is
said to be a best proximity point.

The first result of this kind is due to Fan [1] which is
stated in locally convex Hausdorff topological vector space.
Afterward, many extensions and generalizations were given;
see, for instance, [2–6].

On the other hand, Eldred et al. in [7], after generalizing
the geometric concept of normal structure for a pair of
subsets (𝐴, 𝐵) in Banach space introduced earlier by Brodski
and Milman (see [8]), proved the existence of best proximity
points for relatively nonexpansive mappings in Banach space.
Recall that a map 𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵 is called relatively
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥 ∈ 𝐴 and 𝑦 ∈

𝐵. This class of mapping is much larger than nonexpansive,
because, it does not guarantee the continuity of 𝑇.

After that, Sankar and Veeramani in [9] without using
Zorn’s lemma, proved the existence of a best proximity point
by using convergence theorem. Also, Espinola in [10] showed
that under a suitable condition on the pair (𝐴, 𝐵) the relatively
nonexpansive assumption can be seen as nonexpansive one,
which in fact guarantees the continuity of the map.

Recently, the best proximity points results was inves-
tigated by many authors and found extension and gener-
alization for different class of mappings and spaces; for a
recent account of the theory we refer the reader to [11–18].
In this paper, we extend the notion of proximal 𝜌-normal
structure for a pair of 𝜌-admissible subsets (𝐴, 𝐵) which is a
generalization of Khamsi and Kozlowski definition. Also, we
give existence results of a best proximity point in the setting of
proximal 𝜌-admissible subsets in modular space. Our proofs
do not invoke Zorn’s lemma.

2. Preliminaries

We start by recalling some basic facts of modular space. For
more details the reader can consult [19].

Let𝑋 be an arbitrary vector space.
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2 Abstract and Applied Analysis

Definition 1. A function 𝜌 : 𝑋 󳨀→ [0,∞) is called a modular
on𝑋 if for arbitrary 𝑥, 𝑦 ∈ 𝑋,

(1) 𝜌(𝑥) = 0 if and only if 𝑥 = 0
(2) 𝜌(𝛼𝑥) = 𝜌(𝑥) for every scalar 𝛼 with |𝛼| = 1
(3) 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝜌(𝑥) + 𝜌(𝑦) if 𝛼 + 𝛽 = 1 and 𝛼, 𝛽 ≥ 0

If the following property is satisfied,
(4) 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝜌(𝑥) + 𝛽𝜌(𝑦) if 𝛼 + 𝛽 = 1 and 𝛼, 𝛽 ≥ 0

we say that𝜌 is a convexmodular. Amodular𝜌 defines
a corresponding modular space, i.e., the vector space𝑋𝜌 given by

𝑋𝜌 = {𝑥 ∈ 𝑋 : 𝜌 (𝜆𝑥) 󳨀→ 0 as 𝜆 󳨀→ 0} . (1)

In general the modular 𝜌 is not subadditive and therefore
does not behave as a norm or a distance.

Definition 2. Let𝑋𝜌 be a modular space.

(1) We say that (𝑥𝑛) is 𝜌-convergent to 𝑥 and write 𝑥𝑛 󳨀→𝑥(𝜌) if and only if 𝜌(𝑥𝑛 − 𝑥) 󳨀→ 0.
(2) A sequence (𝑥𝑛), where 𝑥𝑛 ∈ 𝑋𝜌, is called 𝜌-Cauchy

if 𝜌(𝑥𝑛 − 𝑥𝑚) 󳨀→ 0 as 𝑛,𝑚 󳨀→ ∞.
(3) We say that 𝑋𝜌 is 𝜌-complete if and only if any 𝜌-

Cauchy sequence in𝑋𝜌 is 𝜌-convergent.
(4) A set 𝐶 ⊂ 𝑋𝜌 is called 𝜌-closed if for any sequence(𝑥𝑛) of 𝐶; the convergence 𝑥𝑛 󳨀→ 𝑥(𝜌) implies that 𝑥

belongs to 𝐶.
(5) A set 𝐶 ⊂ 𝑋𝜌 is called 𝜌-bounded if sup{𝜌(𝑥 − 𝑦) :𝑥, 𝑦 ∈ 𝐶} < ∞.
(6) A set 𝐶 ⊂ 𝑋𝜌 is 𝜌-sequentially compact, if for

any sequence (𝑥𝑛) of 𝐶, there exists a convergent
subsequence (𝑥𝑛𝑘)𝑘 of (𝑥𝑛) such that 𝑥𝑛𝑘 󳨀→ 𝑥(𝜌) in𝐶.

(7) We will say 𝜌 satisfies Fatou property if

𝜌 (𝑥) ≤ lim inf
𝑛󳨀→∞

𝜌 (𝑥𝑛) whenever 𝑥𝑛 󳨀→ 𝑥 (𝜌) . (2)

We shall say that a pair (𝐴, 𝐵) of sets in a modular space
satisfies a property if each of the sets 𝐴 and 𝐵 has that
property. Thus (𝐴, 𝐵) is said to be 𝜌-closed if both 𝐴 and 𝐵
are 𝜌-closed, (𝐻,𝐾) ⊆ (𝐴, 𝐵) ⇐⇒ 𝐻 ⊆ 𝐴 and 𝐾 ⊆ 𝐵, (𝐴, 𝐵)
is not reduced to one point whichmeans that 𝐴 and 𝐵 are not
singletons, etc.We shall also introduce the following notation:

𝛿𝜌 (𝐴, 𝐵) = sup {𝜌 (𝑥 − 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ;
𝛿𝜌 (𝑥, 𝐴) = sup {𝜌 (𝑥 − 𝑦) : 𝑦 ∈ 𝐴} ;
𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) = inf {𝜌 (𝑥 − 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ;
𝛾𝜌 (𝐴, 𝐵) = max {inf {𝛿𝜌 (𝑥, 𝐵) : 𝑥 ∈ 𝐴} ,

inf {𝛿𝜌 (𝑦, 𝐴) : 𝑦 ∈ 𝐵}} .

(3)

The following definitions are extensions of Definition 5.7
in [19] and are more adapted for a pair of subsets (𝐴, 𝐵).

Definition 3. Let (𝐴, 𝐵) be a 𝜌-bounded pair.
We will say that (𝐻,𝐾) is proximal 𝜌-admissible pair of(𝐴, 𝐵) if

𝐻 = ⋂
𝑖∈𝐼

𝐵𝜌 (𝑦𝑖, 𝑟𝑖) ∩ 𝐴 and

𝐾 = ⋂
𝑖∈𝐼

𝐵𝜌 (𝑥𝑖, 𝑟󸀠𝑖 ) ∩ 𝐵 (4)

where (𝑥𝑖, 𝑦𝑖) ∈ 𝐴 × 𝐵, 𝑟𝑖, 𝑟󸀠𝑖 ≥ 𝑑𝜌(𝐴, 𝐵), 𝐼 is an arbitrary
index set, and 𝐵𝜌(𝑥, 𝑟) = {𝑦 ∈ 𝑋𝜌 : 𝜌(𝑥−𝑦) ≤ 𝑟} the standard𝜌-closed ball of 𝑋𝜌. The family of all proximal 𝜌-admissible
pair of (𝐴, 𝐵) will be denoted by Q(𝐴, 𝐵).

If (𝐷1, 𝐷2) ⊆ (𝐴, 𝐵) we write
𝑐𝑜𝐷2𝐴 (𝐷1) = ⋂

𝑦∈𝐷2

𝐵𝜌 (𝑦, 𝛿𝜌 (𝑦, 𝐷1)) ∩ 𝐴
𝑐𝑜𝐷1𝐵 (𝐷2) = ⋂

𝑥∈𝐷1

𝐵𝜌 (𝑥, 𝛿𝜌 (𝑥, 𝐷2)) ∩ 𝐵. (5)

Remark 4. Note that (𝑐𝑜𝐷2𝐴 (𝐷1), 𝑐𝑜𝐷1𝐵 (𝐷2)) ∈ Q(𝐴, 𝐵) and
is the smallest 𝜌-admissible pair of (𝐴, 𝐵) which contains(𝐷1, 𝐷2). Indeed, let (𝐻,𝐾) ∈ Q(𝐴, 𝐵) such that (𝐷1, 𝐷2) ⊆(𝐻,𝐾); then 𝐻 = ⋂𝑦∈𝐷2 𝐵𝜌(𝑦, 𝑟𝑦) ∩ 𝐴 and for each 𝑥 ∈ 𝐷1
and 𝑦 ∈ 𝐷2 we have 𝜌(𝑥 − 𝑦) ≤ 𝑟𝑦. Hence, 𝛿𝜌(𝑦,𝐷1) ≤ 𝑟𝑦
since 𝐷1 ⊆ 𝐻, which implies that

𝑐𝑜𝐷2𝐴 (𝐷1) = ⋂
𝑦∈𝐷2

𝐵𝜌 (𝑦, 𝛿𝜌 (𝑦, 𝐷1)) ∩ 𝐴
⊆ ⋂
𝑦∈𝐷2

𝐵𝜌 (𝑦, 𝑟𝑦) ∩ 𝐴. (6)

In the same manner, we obtain 𝑐𝑜𝐷1𝐵 (𝐷2) ⊆ 𝐾.
Definition 5. Let (𝐴, 𝐵) be a 𝜌-bounded pair.

(1) Q(𝐴, 𝐵) is said to satisfy the property (R)-proximal,
if for any sequence

({𝐴𝑛}𝑛≥1 , {𝐵𝑚}𝑚≥1) ⊆ Q (𝐴, 𝐵) , (7)

which are nonempty and decreasing, has a nonempty
intersection.

(2) Q(𝐴, 𝐵) is said to be proximal 𝜌-normal, if for each
proximal 𝜌-admissible pair (𝐻,𝐾) not reduced to one
point of (𝐴, 𝐵) for which 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵)
and 𝛿𝜌(𝐻,𝐾) > 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) there exists (𝑥, 𝑦) ∈ 𝐻 ×𝐾 such that

𝛿𝜌 (𝑥, 𝐾) < 𝛿𝜌 (𝐻,𝐾) and

𝛿𝜌 (𝑦,𝐻) < 𝛿𝜌 (𝐻,𝐾) . (8)

(3) We say that the pair (𝐴, 𝐵) is proximal 𝜌-sequentially
compactness provided that every sequence ({𝑥𝑛}𝑛,{𝑦𝑛}𝑛) of (𝐴, 𝐵) satisfying the condition that 𝜌(𝑥𝑛 −𝑦𝑛) 󳨀→ 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) has a convergent subsequence in(𝐴, 𝐵).
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Remark 6. Notice that the Q(𝐴, 𝐴) is proximal 𝜌-normal
(resp., has the (R)-proximal property) if and only if Q(𝐴)
is 𝜌-normal (resp., has the (R)-property) in the sense of
Khamsi-Kozlowski (see [19, Definition 5.7]).

Definition 7. A map 𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵 will be said cyclic
relatively 𝜌-nonexpansive on 𝐴 ∪ 𝐵 if

(1) 𝑇(𝐴) ⊆ 𝐵 and 𝑇(𝐵) ⊆ 𝐴
(2) 𝜌(𝑇𝑥 − 𝑇𝑦) ≤ 𝜌(𝑥 − 𝑦) for 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵
We conclude this section by a modular version of Kirk’s

fixed point theorem [20] which follows as a corollary from
our former result Theorem 10 (see Corollary 11 below).

Theorem8 (see [19,Theorem 5.9]). Let𝐴 be a𝜌-bounded and𝜌-closed nonempty subset of 𝑋𝜌 which satisfies (R)-property.
Assume that Q(𝐴) is 𝜌-normal. If 𝑇 : 𝐴 󳨀→ 𝐴 is 𝜌-
nonexpansive, then 𝑇 has a fixed point.

3. Best Proximity Results with𝜌-Normal Structure

Inwhat follows, we investigate the validity of technical lemma
due to Gillespie and Williams [21] for a pair of 𝜌-admissible
subsets in modular space.This result can be considered as the
main ingredient and will play an important role in this article.

Lemma 9. Let (𝐴, 𝐵) be a 𝜌-bounded pair of 𝑋𝜌. Let 𝑇 :𝐴∪𝐵 󳨀→ 𝐴∪𝐵 be a cyclic relatively 𝜌-nonexpansive mapping.
Assume that Q(𝐴, 𝐵) is proximal 𝜌-normal. Let (𝐻,𝐾) ∈
Q(𝐴, 𝐵) be a nonempty and 𝑇-cyclic pair; i.e., 𝑇(𝐻) ⊆ 𝐾 and𝑇(𝐾) ⊆ 𝐻 with 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) not reduced to one
point. Then, there exists a nonempty 𝑇-cyclic pair (𝐻0, 𝐾0) ∈
Q(𝐴, 𝐵) such that (𝐻0, 𝐾0) ⊆ (𝐻,𝐾) and

𝛿𝜌 (𝐻0, 𝐾0) ≤ 𝛿𝜌 (𝐻,𝐾) + 𝛾𝜌 (𝐻,𝐾)2 . (9)

Proof. Set 𝑟 = (1/2)(𝛿𝜌(𝐻,𝐾) + 𝛾𝜌(𝐻,𝐾)). If 𝛿𝜌(𝐻,𝐾) =𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) one can choose (𝐻0, 𝐾0) = (𝐻,𝐾). We assume
that 𝛿𝜌(𝐻,𝐾) > 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾). Since Q(𝐴, 𝐵) is proximal 𝜌-
normal, we have

𝛾𝜌 (𝐻,𝐾) < 𝛿𝜌 (𝐻,𝐾) (10)

and hence 𝛾𝜌(𝐻,𝐾) < 𝑟. Thus, there exists (𝑥1, 𝑦1) ∈ 𝐻 × 𝐾
such that

𝛿 (𝑥1, 𝐾) < 𝑟 and
𝛿 (𝑦1, 𝐻) < 𝑟. (11)

Let

𝐷𝐻 = ⋂
𝑦∈𝐾

𝐵𝜌 (𝑦, 𝑟) ∩ 𝐻 and

𝐷𝐾 = ⋂
𝑥∈𝐻

𝐵𝜌 (𝑥, 𝑟) ∩ 𝐾; (12)

then (𝐷𝐻, 𝐷𝐾) ̸= 0 since (𝑥1, 𝑦1) ∈ 𝐷𝐻 × 𝐷𝐾.

Let F denote the set of all nonempty pairs {(𝐸𝛼, 𝐹𝛼)}𝛼∈Λ
of Q(𝐴, 𝐵) which are subsets of (𝐴, 𝐵) such that 𝑇 is cyclic
on 𝐸𝛼 ∪ 𝐹𝛼 and (𝐷𝐻, 𝐷𝐾) ⊆ (𝐸𝛼, 𝐹𝛼) with 𝑑𝑖𝑠𝑡𝜌(𝐸𝛼, 𝐹𝛼) =𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) for all 𝛼 ∈ Λ. Obviously, F is nonempty since(𝐴, 𝐵) ∈ F. Defining (𝐿1, 𝐿2) by

𝐿1 = ⋂
𝛼

𝐸𝛼 and
𝐿2 = ⋂

𝛼

𝐹𝛼 (13)

it is clear that (𝐿1, 𝐿2) ̸= 0 since (𝐷𝐻, 𝐷𝐾) ⊂ (𝐿1, 𝐿2) and 𝑇 is
cyclic on 𝐿1 ∪ 𝐿2, (𝐸𝛼, 𝐹𝛼) is proximal 𝜌-admissible for each𝛼 so it is (𝐿1, 𝐿2), and it is easy to check that 𝑑𝑖𝑠𝑡𝜌(𝐿1, 𝐿2) =𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵); thus (𝐿1, 𝐿2) ∈ F.

Let𝑀1 = 𝐷𝐻∪𝑇(𝐿2) and𝑀2 = 𝐷𝐾∪𝑇(𝐿1); it is claimed
that

𝑐𝑜𝑀2𝐴 (𝑀1) = 𝐿1 and
𝑐𝑜𝑀1𝐵 (𝑀2) = 𝐿2. (14)

Indeed, 𝑀1 ⊂ 𝐿1, 𝑀2 ⊂ 𝐿2 and the pair (𝐿1, 𝐿2) is
proximal 𝜌-admissible; then

(𝑐𝑜𝑀2𝐴 (𝑀1) , 𝑐𝑜𝑀1𝐵 (𝑀2)) ⊆ (𝐿1, 𝐿2) (15)

since (𝑐𝑜𝑀2𝐴 (𝑀1), 𝑐𝑜𝑀1𝐵 (𝑀2)) is the smallest 𝜌-admissible
pair which contains (𝑀1,𝑀2). Also,

𝑇 (𝑐𝑜𝑀2𝐴 (𝑀1)) ⊆ 𝑇 (𝐿1) and

𝑇 (𝑐𝑜𝑀1𝐵 (𝑀2)) ⊆ 𝑇 (𝐿2) (16)

which implies

𝑇(𝑐𝑜𝑀2𝐴 (𝑀1)) ⊆ 𝑀2 and
𝑇(𝑐𝑜𝑀1𝐵 (𝑀2)) ⊆ 𝑀1. (17)

Note that 𝑑𝑖𝑠𝑡𝜌(𝑇(𝐿1), 𝑇(𝐿2)) = 𝑑𝑖𝑠𝑡𝜌(𝐿1, 𝐿2) since 𝑇 is
relatively 𝜌-nonexpansive mapping. And, since (𝑀1,𝑀2) ⊆(𝑐𝑜𝑀2𝐴 (𝑀1), 𝑐𝑜𝑀1𝐵 (𝑀2)) we get

𝑑𝑖𝑠𝑡𝜌 (𝑐𝑜𝑀2𝐴 (𝑀1) , 𝑐𝑜𝑀1𝐵 (𝑀2)) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) , (18)

and hence (𝑐𝑜𝑀2𝐴 (𝑀1), 𝑐𝑜𝑀1𝐵 (𝑀2)) ∈ F; that is,

(𝑐𝑜𝑀2𝐴 (𝑀1) , 𝑐𝑜𝑀1𝐵 (𝑀2)) = (𝐿1, 𝐿2) . (19)

Define

𝐻0 = ⋂
𝑦∈𝐿2

𝐵𝜌 (𝑦, 𝑟) ∩ 𝐿1 and
𝐾0 = ⋂

𝑥∈𝐿1

𝐵𝜌 (𝑥, 𝑟) ∩ 𝐿2. (20)

We claim that (𝐻0, 𝐾0) is the desired pair. Since(𝐷𝐻, 𝐷𝐾) ⊆ (𝐻0, 𝐾0) the pair (𝐻0, 𝐾0) is nonempty; also(𝐻0, 𝐾0) ∈ Q(𝐴, 𝐵).
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Note that for each 𝑥 ∈ 𝐻0 and 𝑦 ∈ 𝐾0 we have
𝜌 (𝑥 − 𝑦) ≤ 𝑟 󳨐⇒

𝛿𝜌 (𝐻0, 𝐾0) ≤ 𝑟. (21)

Next, we show that 𝑇 is cyclic on𝐻0 ∪𝐾0 to complete the
proof. Let 𝑥 ∈ 𝐻0; then,

𝜌 (𝑇𝑥 − 𝑇𝑦) ≤ 𝜌 (𝑥 − 𝑦) ≤ 𝑟 (∀𝑦 ∈ 𝐿2) (22)

since𝑇 is relatively 𝜌-nonexpansive.Thus,𝑇(𝐿2) ⊂ 𝐵𝜌(𝑇𝑥, 𝑟).
Recall that 𝐷𝐻 = ⋂𝑦∈𝐾 𝐵𝜌(𝑦, 𝑟) ∩ 𝐻; then if 𝑧 ∈ 𝐷𝐻 we

have for all 𝑤 ∈ 𝐾
𝜌 (𝑧 − 𝑤) ≤ 𝑟 (23)

and since (𝐻,𝐾) ∈ F, we get 𝐿2 ⊂ 𝐾; then 𝐿2 ⊂ 𝐵(𝑧, 𝑟). It is
clear that 𝑇𝑥 ∈ 𝐿2; that is,

𝑇𝑥 ∈ 𝐵𝜌 (𝑧, 𝑟) 󳨐⇒
𝑧 ∈ 𝐵𝜌 (𝑇𝑥, 𝑟) (24)

and hence 𝐷𝐻 ⊂ 𝐵𝜌(𝑇𝑥, 𝑟), which implies

𝐿1 = 𝑐𝑜𝑀2𝐴 (𝐷𝐻 ∪ 𝑇 (𝐿2)) ⊆ 𝐵𝜌 (𝑇𝑥, 𝑟) ∩ 𝐴; (25)

this deduces that 𝑇𝑥 ∈ 𝐾0; that is, 𝑇(𝐻0) ⊆ 𝐾0. Similarly,
we can see that 𝑇(𝐾0) ⊆ 𝐻0. Since (𝐿1, 𝐿2) ⊆ (𝐻,𝐾) we get(𝐻0, 𝐾0) ⊆ (𝐻,𝐾).
Theorem 10. Let (𝐴, 𝐵) be a nonempty 𝜌-bounded and 𝜌-
closed pair in a modular space 𝑋𝜌. Moreover, assume that
Q(𝐴, 𝐵) has the proximal 𝜌-normal structure and the property(R)-proximal.

If 𝑇 is cyclic relatively 𝜌-nonexpansive on𝐴∪𝐵, then there
exists (𝑥, 𝑦) ∈ 𝐴 × 𝐵 such that

𝜌 (𝑥 − 𝑇𝑥) = 𝜌 (𝑦 − 𝑇𝑦) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (26)

Proof. Let F denote the set of all nonempty pairs (𝐸, 𝐹) of
Q(𝐴, 𝐵) which are subsets of (𝐴, 𝐵) such that 𝑇 is cyclic on𝐸 ∪ 𝐹 and 𝑑𝑖𝑠𝑡𝜌(𝐸, 𝐹) = 𝑑𝜌, where 𝑑𝜌 = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵).

F is nonempty since (𝐴, 𝐵) ∈ F. Define 𝛿𝜌 : F 󳨀→[0,∞) by
𝛿𝜌 (𝐷𝐴, 𝐷𝐵) = inf {𝛿𝜌 (𝐸, 𝐹) : (𝐸, 𝐹) ∈ F and (𝐸, 𝐹)
⊆ (𝐷𝐴, 𝐷𝐵)} . (27)

Set (𝐷𝐴1 , 𝐷𝐵1 ) = (𝐴, 𝐵); by definition of 𝛿𝜌, there exists(𝐷𝐴2 , 𝐷𝐵2 ) ∈ F such that (𝐷𝐴2 , 𝐷𝐵2 ) ⊆ (𝐷𝐴1 , 𝐷𝐵1 ), 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴2 ,𝐷𝐵2 ) = 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴1 , 𝐷𝐵1 ) = 𝑑𝜌, and
𝛿𝜌 (𝐷𝐴2 , 𝐷𝐵2) < 𝛿𝜌 (𝐷𝐴1 , 𝐷𝐵1) + 1 (28)

and suppose that (𝐷𝐴𝑘 , 𝐷𝐵𝑘 )𝑘=1,2,...,𝑛 are constructed for 𝑛 ≥1. Again, by definition of 𝛿𝜌, there exists (𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) ⊆(𝐷𝐴𝑛 , 𝐷𝐵𝑛 ) such that

𝛿𝜌 (𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) < 𝛿𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑛) + 1𝑛 (29)

and 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) = 𝑑𝜌. Since Q(𝐴, 𝐵) has the property(R)-proximal, (𝐷𝐴∞, 𝐷𝐵∞) ̸= 0 where
𝐷𝐴∞ = ⋂

𝑛≥1

𝐷𝐴𝑛 and
𝐷𝐵∞ = ⋂

𝑛≥1

𝐷𝐵𝑛 , (30)

note that 𝑇(𝐷𝐴∞) = 𝑇(⋂𝑛𝐷𝐴𝑛 ) ⊆ ⋂𝑛 𝑇(𝐷𝐴𝑛 ) ⊆ ⋂𝑛𝐷𝐵𝑛 =𝐷𝐵∞; in the same manner 𝑇(𝐷𝐵∞) ⊆ 𝐷𝐴∞. Also, (𝐷𝐴∞, 𝐷𝐵∞) ∈
Q(𝐴, 𝐵) since (𝐷𝐴𝑛 , 𝐷𝐵𝑛 ) ∈ Q(𝐴, 𝐵) for all 𝑛 ≥ 1. Also, we have
𝑑𝜌 (𝐴, 𝐵) ≤ 𝑑𝜌 (𝐷𝐴∞, 𝐷𝐵∞)
= inf {𝜌 (𝑥 − 𝑦) : (𝑥, 𝑦) ∈ 𝐷𝐴∞ × 𝐷𝐵∞}
= inf {𝜌 (𝑥 − 𝑦) : (𝑥, 𝑦) ∈ ⋂

𝑛≥1

𝐷𝐴𝑛 × ⋂
𝑛≥1

𝐷𝐵𝑛}
= inf {𝜌 (𝑥 − 𝑦) : (𝑥, 𝑦) ∈ 𝐷𝐴𝑛 × 𝐷𝐵𝑚 (∀𝑛,𝑚 ∈ N∗)}
= inf
𝑛,𝑚∈N∗

𝑑𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑚)
≤ 𝑑𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑛) = 𝑑𝜌 (𝐴, 𝐵)

(31)

and then (𝐷𝐴∞, 𝐷𝐵∞) ∈ F.
If 𝛿𝜌(𝐷𝐴∞, 𝐷𝐵∞) = 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴∞, 𝐷𝐵∞), then for each (𝑥, 𝑦) ∈𝐷𝐴∞ × 𝐷𝐵∞ we get

𝜌 (𝑥 − 𝑇𝑥) = 𝜌 (𝑦 − 𝑇𝑦) = 𝑑𝑖𝑠𝑡𝜌 (𝐷𝐴∞, 𝐷𝐵∞) . (32)

Assume that 𝛿𝜌(𝐷𝐴∞, 𝐷𝐵∞) > 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴∞, 𝐷𝐵∞).
First Case. If one of the pair (𝐷𝐴∞, 𝐷𝐵∞) is reduced to one point,
say, for example, 𝐷𝐵∞ = {𝑦}, since 𝑇 is cyclic relatively 𝜌-
nonexpansive on 𝐷𝐴∞ ∪ 𝐷𝐵∞ we get for all 𝑥 ∈ 𝐷𝐴∞𝜌 (𝑇𝑥 − 𝑇𝑦) = 𝜌 (𝑦 − 𝑇𝑦) ≤ 𝜌 (𝑥 − 𝑦) (33)

which implies that

𝜌 (𝑦 − 𝑇𝑦) = 𝜌 (𝑥 − 𝑇𝑥) = 𝑑𝑖𝑠𝑡𝜌 (𝐷𝐴∞, 𝐷𝐵∞) (34)

for 𝑥 = 𝑇𝑦; note that 𝑇𝑥 = 𝑦 for each 𝑥 ∈ 𝐷𝐴∞.
Second Case.The pair (𝐷𝐴∞, 𝐷𝐵∞) is not reduced to one point;
by Lemma 9, there exists (𝐷∗𝐴, 𝐷∗𝐵) ⊆ (𝐷𝐴∞, 𝐷𝐵∞)

𝛿𝜌 (𝐷∗𝐴, 𝐷∗𝐵) ≤ 𝛿𝜌 (𝐷
𝐴
∞, 𝐷𝐵∞) + 𝛾𝜌 (𝐷𝐴∞, 𝐷𝐵∞)2 (35)

which implies

𝛿𝜌 (𝐷∗𝐴, 𝐷∗𝐵) ≤ 𝛿𝜌 (𝐷𝐴∞, 𝐷𝐵∞)
≤ 𝛿𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑛)
≤ 𝛿𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑛) + 1𝑛
≤ 𝛿𝜌 (𝐷∗𝐴, 𝐷∗𝐵) + 1𝑛

(36)
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since (𝐷∗𝐴, 𝐷∗𝐵) ⊆ (𝐷𝐴𝑛 , 𝐷𝐵𝑛 ) for any 𝑛 ≥ 1. If we let 𝑛 󳨀→ ∞,
we get 𝛿𝜌(𝐷∗𝐴, 𝐷∗𝐵) = 𝛿𝜌(𝐷𝐴∞, 𝐷𝐵∞). By (35) we get

𝛿𝜌 (𝐷𝐴∞, 𝐷𝐵∞) ≤ 𝛾𝜌 (𝐷𝐴∞, 𝐷𝐵∞) (37)

and this is in contradiction with the assumption that Q(𝐴, 𝐵)
is proximal 𝜌-normal. This completes the proof.

If we set 𝐴 = 𝐵, we get Theorem 8.

Corollary 11. Let 𝐴 be a 𝜌-bounded and 𝜌-closed nonempty
subset of 𝑋𝜌. Assume that Q(𝐴, 𝐴) is 𝜌-normal and satisfies
the property (R)-proximal. If 𝑇 : 𝐴 󳨀→ 𝐴 is 𝜌-nonexpansive,
then 𝑇 has a fixed point.

We conclude by the following example.

Example 12. Let the real space 𝑋 = {𝑥 = (𝑥𝑛)𝑛≥1 ∈ RN∗ :∑𝑛≥1 |𝑥𝑛|1/2 < ∞}, and define the modular functional 𝜌 :𝑋 󳨀→ [0,∞] by
𝜌 (𝑥) = ∞∑

𝑛=1

󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨1/2 , for all 𝑥 = (𝑥𝑛)𝑛≥1 ∈ 𝑋 (38)

Suppose that {𝑒𝑛} is the canonical basis of𝑋 and let

𝐴 = {12𝑒1} ∪ {𝑒3 + 𝑒𝑛 : 𝑛 ∈ N \ {0, 1, 3}} and

𝐵 = {12𝑒3} ∪ {𝑒1 + 𝑒𝑛 : 𝑛 ∈ N \ {0, 1}} .
(39)

Then, (𝐴, 𝐵) is 𝜌-bounded, 𝜌-closed in 𝑋𝜌, and not
convex. Note that 𝐴 (resp., 𝐵) is not 𝜌-sequentially compact,
because the sequence {𝑒3 + 𝑒𝑛}𝑛 ̸={0,1,3} (resp., {𝑒1 + 𝑒𝑛}𝑛 ̸={0,1})
does not have any 𝜌-convergent subsequence in 𝐴 (resp., in𝐵).

We have 𝜌((1/2)𝑒1−(1/2)𝑒3) = √2; also, for all 𝑥 ∈ 𝐴 and𝑛 ∈ N∗, 𝜌(𝑥 − 𝑒1 − 𝑒𝑛) ≥ √2, which implies that 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) =√2.
Q(𝐴, 𝐵) satisfies the property (R)-proximal; indeed, let({𝐻𝑛}𝑛≥1, {𝐾𝑚}𝑚≥1) be a sequence of Q(𝐴, 𝐵) which are

nonempty and decreasing.
(1) If, for each 𝑛 ∈ N∗, 𝐾𝑛 = ⋂𝑗∈𝐽𝑛 𝐵𝜌(𝑒3 + 𝑒𝑗,𝑛, 𝑟𝑗,𝑛) ∩ 𝐵,

so, for all 𝑗 ∈ 𝐽𝑛, (1/2)𝑒3 ∈ 𝐵𝜌(𝑒3+𝑒𝑗,𝑛, 1+√1/2)∩𝐵 ⊂⋂𝑛≥1𝐾𝑛, because 𝜌(𝑒3+𝑒𝑗,𝑛−(1/2)𝑒3) = 1+√1/2, and
since𝐾𝑛 ̸= 0 for each 𝑛 ∈ N∗, we have 𝑟𝑗,𝑛 ≥ 1+√1/2.
Hence,⋂𝑛≥1𝐾𝑛 ̸= 0.

(2) If, for each 𝑛 ∈ N∗, 𝐾𝑛 = ⋂𝑘∈𝐽󸀠
𝑛

𝐵𝜌((1/2)𝑒1, 𝑟𝑘,𝑛) ∩ 𝐵,
so (1/2)𝑒3 ∈ 𝐵𝜌((1/2)𝑒1, √2) ∩ 𝐵 ⊂ ⋂𝑛≥1𝐾𝑛, since𝐾𝑛 ̸= 0 for all 𝑛 ∈ N∗. Hence⋂𝑛≥1𝐾𝑛 ̸= 0.

(3) If there exists 𝑛 ∈ N∗ such that

𝐾𝑛 = (⋂
𝑗∈𝐽𝑛

𝐵𝜌 (𝑒3 + 𝑒𝑗,𝑛, 𝑟𝑗,𝑛))

∩ (⋂
𝑘∈𝐽󸀠
𝑛

𝐵𝜌 (12𝑒1, 𝑟𝑘,𝑛)) ∩ 𝐵,
(40)

we have (1/2)𝑒3 ∈ 𝐵𝜌(𝑒3 + 𝑒𝑗,𝑛, 1 + √1/2) ∩𝐵𝜌((1/2)𝑒1, √2) ∩ 𝐵 ⊂ ⋂𝑛≥1𝐾𝑛, and hence⋂𝑛≥1𝐾𝑛 ̸=0.
Analogously, we obtain that ⋂𝑛≥1𝐻𝑛 ̸= 0 replacing 𝑒3 + 𝑒𝑗,𝑛
and (1/2)𝑒1 by 𝑒1 + 𝑒𝑗,𝑛 and (1/2)𝑒3, respectively.

Q(𝐴, 𝐵) has the proximal 𝜌-normal structure. Indeed, let(𝐻,𝐾) be a proximal 𝜌-admissible pair of (𝐴, 𝐵) not reduced
to one point for which 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) = √2 and𝛿𝜌(𝐻,𝐾) > 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾); then (1/2)𝑒1 ∈ 𝐻 and (1/2)𝑒3 ∈ 𝐾.
So, there exist 𝑝, 𝑞 ∈ N \ {0, 1, 3} × N \ {0, 1} such that

𝑒3 + 𝑒𝑝 ∈ 𝐻 and

𝑒1 + 𝑒𝑞 ∈ 𝐾. (41)

Therefore, 𝛿𝜌((1/2)𝑒1, 𝐾) = 1+√1/2 and 𝛿𝜌((1/2)𝑒3,𝐻) =1 + √1/2; then we get

𝛿𝜌 (𝐻,𝐾) ≥ 𝜌 (𝑒3 + 𝑒𝑝 − 𝑒1 − 𝑒𝑞)
> max {𝛿𝜌 (12𝑒1, 𝐾) , 𝛿𝜌 (12𝑒3, 𝐻)} .

(42)

Let 𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵 be a mapping defined by

𝑇𝑦 = 12𝑒1 if 𝑦 ∈ 𝐵 and

𝑇𝑥 = {{{{{
12𝑒3 if 𝑥 = 12𝑒1𝑒1 + 𝑒2 if 𝑥 ∈ 𝐴 \ {12𝑒1} .

(43)

𝑇 is cyclic and for each 𝑦 ∈ 𝐵 and 𝑥 = (1/2)𝑒1
𝜌 (𝑇𝑥 − 𝑇𝑦) = 𝜌 (12𝑒1 − 12𝑒3) = √2 ≤ 𝜌 (𝑥 − 𝑦) , (44)

and for each 𝑥 ∈ 𝐴 \ {(1/2)𝑒1}, 𝑦 ∈ 𝐵
𝜌 (𝑇𝑥 − 𝑇𝑦) = 𝜌 (12𝑒1 − 𝑒1 − 𝑒2) = 1 + √12

≤ 𝜌 (𝑥 − 𝑦) .
(45)

Then, 𝑇 is cyclic relatively 𝜌-nonexpansive on 𝐴 ∪ 𝐵.
Therefore, all assumptions of Theorem 10 are satisfied, so 𝑇
has a best proximity point; in particular

𝜌 (12𝑒3 − 𝑇(12𝑒3)) = 𝜌(12𝑒1 − 𝑇(12𝑒1))
= 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) .

(46)
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4. Best Proximity for Proximal𝜌-Sequentially Compact Pair

In this section, we use (𝐴0, 𝐵0) to denote the proximal pair
obtained from (𝐴, 𝐵) upon setting

𝐴0 = {𝑥 ∈ 𝐴 : 𝜌 (𝑥 − 𝑦󸀠) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) for some 𝑦󸀠
∈ 𝐵}

𝐵0 = {𝑦 ∈ 𝐵 : 𝜌 (𝑥󸀠 − 𝑦) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) for some 𝑥󸀠
∈ 𝐴} .

(47)

Lemma 13. Let (𝐴, 𝐵) be a nonempty 𝜌-bounded and proxi-
mal 𝜌-sequentially compactness pair in a modular space𝑋𝜌 for
which 𝜌 satisfies Fatou property. Then (𝐴0, 𝐵0) is a nonempty𝜌-sequentially compact pair of (𝐴, 𝐵) such that 𝑑𝑖𝑠𝑡𝜌(𝐴0, 𝐵0) =𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵).
Proof. It is clear that 𝑑𝑖𝑠𝑡𝜌(𝐴0, 𝐵0) = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵). Let (𝑥𝑛) and(𝑦𝑛) be two sequences in 𝐴 and 𝐵, respectively, such that

𝜌 (𝑥𝑛 − 𝑦𝑛) 󳨀→ 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (48)

Since (𝐴, 𝐵) is a proximal 𝜌-compactness pair, there exist
subsequences (𝑥𝑛𝑘) and (𝑦𝑛𝑘) of (𝑥𝑛) and (𝑦𝑛), respectively,
such that 𝑥𝑛𝑘 󳨀→ 𝑥 ∈ 𝐴 and 𝑦𝑛𝑘 󳨀→ 𝑦 ∈ 𝐵 as 𝑘 󳨀→ ∞. Since𝜌 has Fatou property

𝜌 (𝑥 − 𝑦) ≤ lim inf
𝑘󳨀→∞

𝜌 (𝑥𝑛𝑘 − 𝑦𝑛𝑘) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (49)

This implies that 𝐴0 is nonempty, since 𝑥 ∈ 𝐴0. Similarly,
we can see that 𝐵0 is nonempty. The 𝜌-sequentially compact
of 𝐴0 is vacuous since for each sequence (𝑥𝑛) of 𝐴0 has a
convergent subsequence for which this limit is in 𝐴0 because𝐴0 is 𝜌-closed in 𝐴. Indeed, let (𝑥𝑛) ⊂ 𝐴0 such that 𝑥𝑛 󳨀→ 𝑎;
then there exists a sequence (𝑦𝑛) in 𝐵0 such that

𝜌 (𝑥𝑛 − 𝑦𝑛) 󳨀→ 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) (50)

and the proximal 𝜌-compactness of (𝐴, 𝐵) implies the exis-
tence of subsequences (𝑥𝑛𝑘) and (𝑦𝑛𝑘 ) of (𝑥𝑛) and (𝑦𝑛),
respectively, such that 𝑥𝑛𝑘 󳨀→ 𝑥 ∈ 𝐴 and 𝑦𝑛𝑘 󳨀→ 𝑦 ∈ 𝐵.
Since 𝜌 has Fatou property,

𝜌 (𝑥 − 𝑦) ≤ lim inf
𝑘󳨀→∞

𝜌 (𝑥𝑛𝑘 − 𝑦𝑛𝑘) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (51)

Then 𝑥 ∈ 𝐴0; the uniqueness of the limit implies that 𝑥 = 𝑎.
Hence (𝐴0, 𝐵0) is 𝜌-sequentially compact pair.

Theorem 14. Let (𝐴, 𝐵) be a nonempty 𝜌-bounded and proxi-
mal 𝜌-sequentially compactness pair in a modular space𝑋𝜌 for
which𝜌 has the Fatou property. Moreover, assume thatQ(𝐴, 𝐵)
has the proximal 𝜌-normal structure.

If 𝑇 is cyclic relatively 𝜌-nonexpansive on𝐴∪𝐵, then there
exists (𝑥, 𝑦) ∈ 𝐴 × 𝐵 such that

𝜌 (𝑥 − 𝑇𝑥) = 𝜌 (𝑦 − 𝑇𝑦) = 𝑑𝑖𝑠𝑡 (𝐴, 𝐵) . (52)

Proof. Let 𝑥0 ∈ 𝐴0; then there exists 𝑦0 ∈ 𝐵 such that

𝜌 (𝑇𝑥0 − 𝑇𝑦0) ≤ 𝜌 (𝑥0 − 𝑦0) = 𝑑𝜌 (53)

That is, 𝑇𝑥0 ∈ 𝐵0. Hence 𝑇(𝐴0) ⊆ 𝐵0, similarly, 𝑇(𝐵0) ⊆ 𝐴0
and 𝑇 is cyclic relatively 𝜌-nonexpansive on 𝐴0 ∪ 𝐵0.

LetF denote the set of all nonempty 𝜌-closed pairs (𝐸, 𝐹)
of Q(𝐴, 𝐵) which are subsets of (𝐴, 𝐵) such that 𝑇 is cyclic on𝐸 ∪ 𝐹 and 𝜌(𝑥 − 𝑦) = 𝑑𝜌 for some (𝑥, 𝑦) ∈ 𝐸 × 𝐹, where𝑑𝜌 = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵). Thus,F is nonempty since (𝐴, 𝐵) ∈F.

Define 𝛿𝜌 : F 󳨀→ [0,∞) by
𝛿𝜌 (𝐷𝐴, 𝐷𝐵) = inf {𝛿𝜌 (𝐸, 𝐹) : (𝐸, 𝐹) ∈F and (𝐸, 𝐹)
⊆ (𝐷𝐴, 𝐷𝐵)} . (54)

Set (𝐷𝐴1 , 𝐷𝐵1 ) = (𝐴, 𝐵); by definition of 𝛿𝜌, there exists(𝐷𝐴2 , 𝐷𝐵2 ) ∈ F such that (𝐷𝐴2 , 𝐷𝐵2 ) ⊆ (𝐷𝐴1 , 𝐷𝐵1 ), 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴2 ,𝐷𝐵2 ) = 𝑑𝜌, and
𝛿𝜌 (𝐷𝐴2 , 𝐷𝐵2) < 𝛿𝜌 (𝐷𝐴1 , 𝐷𝐵1) + 1 (55)

Suppose that (𝐷𝐴𝑘 , 𝐷𝐵𝑘 )𝑘=1,2,...,𝑛 are constructed for 𝑛 ≥ 1.
Again, by definition of 𝛿𝜌, there exists (𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) ⊆ (𝐷𝐴𝑛 ,𝐷𝐵𝑛 ) such that

𝛿𝜌 (𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) < 𝛿𝜌 (𝐷𝐴𝑛 , 𝐷𝐵𝑛) + 1𝑛 (56)

and 𝑑𝑖𝑠𝑡𝜌(𝐷𝐴𝑛+1, 𝐷𝐵𝑛+1) = 𝑑𝜌. Since (𝐴0, 𝐵0) is 𝜌-sequentially
compact, (𝐷𝐴∞, 𝐷𝐵∞) ̸= 0, where

𝐷𝐴∞ = ⋂
𝑛≥1

𝐷𝐴𝑛 and
𝐷𝐵∞ = ⋂

𝑛≥1

𝐷𝐵𝑛 . (57)

Indeed, one can choose two sequences (𝑥𝑛) and (𝑦𝑛) such
that (𝑥𝑛, 𝑦𝑛) ∈ (𝐷𝐴𝑛 ∩ 𝐴0) × (𝐷𝐵𝑛 ∩ 𝐵0) for each 𝑛 ≥ 1 and

𝜌 (𝑥𝑛 − 𝑦𝑛) 󳨀→ 𝑑𝜌 (58)

Using the proximal 𝜌-compactness of (𝐴0, 𝐵0), there exists(𝑥𝑛𝑘) of (𝑥𝑛) and (𝑦𝑛𝑘) of (𝑦𝑛) such that 𝑥𝑛𝑘 󳨀→ 𝑥(𝜌) and𝑦𝑛𝑘 󳨀→ 𝑦(𝜌); let 𝑝 ≥ 1 and define two subsets of 𝐴0 and 𝐵0
as follows:

𝐶𝐴𝑝 = {𝑥𝑛𝑘 : 𝑘 ≥ 𝑝} and

𝐶𝐵𝑝 = {𝑦𝑛𝑘 : 𝑘 ≥ 𝑝} (59)

Hence 𝑥 ∈ ⋂𝑝 𝐶𝐴𝑝 and 𝑦 ∈ ⋂𝑝 𝐶𝐵𝑝. Thus, 𝑥 ∈ ⋂𝑛≥1𝐷𝐴𝑛 =⋂𝑘≥1𝐷𝐴𝑛𝑘 = 𝐷𝐴∞ and 𝑦 ∈ ⋂𝑛≥1𝐷𝐵𝑛 = ⋂𝑘≥1𝐷𝐵𝑛𝑘 = 𝐷𝐵∞. Also, 𝜌
satisfies Fatou property and we get

𝜌 (𝑥 − 𝑦) = 𝑑𝑖𝑠𝑡𝜌 (𝐷𝐴∞, 𝐷𝐵∞) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (60)
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Note that

𝑇 (𝐷𝐴∞) = 𝑇(⋂
𝑛

𝐷𝐴𝑛) ⊆ ⋂
𝑛

𝑇 (𝐷𝐴𝑛 ) ⊆ ⋂
𝑛

𝐷𝐵𝑛 = 𝐷𝐵∞ (61)

In the same manner 𝑇(𝐷𝐵∞) ⊆ 𝐷𝐴∞. Hence, (𝐷𝐴∞, 𝐷𝐵∞) ∈
Q(𝐴, 𝐵) since (𝐷𝐴𝑛 , 𝐷𝐵𝑛 ) ∈ Q(𝐴, 𝐵) for all 𝑛 ≥ 1, which implies(𝐷𝐴∞, 𝐷𝐵∞) ∈ F.

In this step, we can use the same argument asTheorem 14
to prove that

𝛿𝜌 (𝐷𝐴∞, 𝐷𝐵∞) = 𝑑𝑖𝑠𝑡𝜌 (𝐷𝐴∞, 𝐷𝐵∞) (62)

Hence we get for each (𝑥, 𝑦) ∈ 𝐷𝐴∞ × 𝐷𝐵∞
𝜌 (𝑥 − 𝑇𝑥) = 𝜌 (𝑦 − 𝑇𝑦) = 𝑑𝑖𝑠𝑡𝜌 (𝐷𝐴∞, 𝐷𝐵∞) (63)

which completes the proof.

Corollary 15. Let 𝐴 be a 𝜌-bounded and 𝜌-sequentially
compact nonempty subset of𝑋𝜌 which satisfies Fatou property.
Assume that Q(𝐴, 𝐴) is 𝜌-normal. If 𝑇 : 𝐴 󳨀→ 𝐴 is 𝜌-
nonexpansive, then 𝑇 has a fixed point.

We conclude by the following example.

Example 16. Let the real space 𝑋 = {𝑥 = (𝑥𝑛)𝑛≥1 ∈ RN∗ :∑𝑛≥1 |𝑥𝑛|1/2 < ∞} and define the modular functional 𝜌 :𝑋 󳨀→ [0,∞] by
𝜌 (𝑥) = ∞∑

𝑛=1

󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨1/2 , for all 𝑥 = (𝑥𝑛)𝑛≥1 ∈ 𝑋 (64)

Suppose that {𝑒𝑛} is the canonical basis of𝑋 and let

𝐴 = {12𝑒1} ∪ {𝑒2 + 𝑒𝑛 : 𝑛 ∈ N \ {0, 1, 2}} and

𝐵 = {𝑒1, 𝑒2, 116𝑒3} .
(65)

Then, (𝐴, 𝐵) is 𝜌-bounded and not convex. Let 𝑢 =(1/2)𝑒1 in 𝐴; we have 𝜌(𝑢 − 𝑒1) = √1/2, also for each (𝑥, 𝑦) ∈𝐴 × 𝐵, 𝜌(𝑥 − 𝑦) ≥ √1/2, which implies that 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) =√1/2.
Also, for all (𝑥𝑛) ⊂ 𝐴 and (𝑦𝑛) ⊂ 𝐵 such that lim𝑛 𝜌(𝑥𝑛 −𝑦𝑛) = √1/2 there exists 𝑛0 ∈ N such that

𝑥𝑛 = 12𝑒1 and
𝑦𝑛 = 𝑒1

(66)

for each 𝑛 ≥ 𝑛0, so (𝑥𝑛) and (𝑦𝑛) are 𝜌-convergent sequences
and the pair (𝐴, 𝐵) is proximal 𝜌-sequentially compactness.
However,𝐴 is not 𝜌-sequentially compact since the sequence{𝑒2 + 𝑒𝑛}𝑛 ̸={0,1,2} does not have any 𝜌-convergent subsequence
in 𝐴.

Q(𝐴, 𝐵) has the proximal 𝜌-normal structure. Indeed, let(𝐻,𝐾) be a proximal 𝜌-admissible pair of (𝐴, 𝐵) not reduced

to one point for which 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾) = 𝑑𝑖𝑠𝑡𝜌(𝐴, 𝐵) = √1/2;
then (1/2)𝑒1 ∈ 𝐻 and 𝑒1 ∈ 𝐾. Also, 𝛿𝜌(𝐻,𝐾) > 𝑑𝑖𝑠𝑡𝜌(𝐻,𝐾),
so there exits 𝑚 ∉ {0, 1, 2} such that 𝑒2 + 𝑒𝑚 ∈ 𝐻 and 𝑒2 ∈ 𝐾
or (1/16)𝑒3 ∈ 𝐾.

If 𝐾 = {𝑒1, (1/16)𝑒3} we obtain 𝛿𝜌((1/2)𝑒1, 𝐾) = 1/4 +√1/2 and
𝛿𝜌 ( 116𝑒3, 𝐻) =

{{{{{{{
1 + √154 if 𝐻 = {12𝑒1, 𝑒2 + 𝑒3}2 + 14 otherwise,

(67)

and hence 𝛿𝜌(𝐻,𝐾) ≥ 𝜌(𝑒2 + 𝑒𝑚 − 𝑒1) > max{𝛿𝜌((1/2)𝑒1,𝐾), 𝛿𝜌((1/16)𝑒3, 𝐻)}.
If 𝑒2 ∈ 𝐾, then, 𝛿𝜌((1/2)𝑒1, 𝐾) = 1+√1/2 and 𝛿𝜌(𝑒2,𝐻) =1 + √1/2.Hence, we have
𝛿𝜌 (𝐻,𝐾) ≥ 𝜌 (𝑒2 + 𝑒𝑚 − 𝑒1)

> max {𝛿𝜌 (12𝑒1, 𝐾) , 𝛿𝜌 (𝑒2, 𝐻)} .
(68)

Let 𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵 be a mapping defined by

𝑇𝑦 = 12𝑒1 if 𝑦 ∈ 𝐵, and

𝑇𝑥 = {{{{{
𝑒1 if 𝑥 = 12𝑒1116𝑒3 if 𝑥 ∈ 𝐴 \ {12𝑒1} ,

(69)

So, for each 𝑦 ∈ 𝐵 and 𝑥 = (1/2)𝑒1, we get 𝜌(𝑇𝑥 − 𝑇𝑦) =√1/2 ≤ 𝜌(𝑥 − 𝑦), and, for each 𝑦 ∈ 𝐵 and 𝑥 ∈ 𝐴 \ {(1/2)𝑒1},
we obtain, 𝜌(𝑇𝑥 − 𝑇𝑦) = (1 + 2√2)/4 ≤ 𝜌(𝑥 − 𝑦).

Then, 𝑇 is cyclic relatively 𝜌-nonexpansive on 𝐴 ∪ 𝐵.
Therefore, all assumptions of Theorem 14 are satisfied, so 𝑇
has a best proximity point; in particular

𝜌 (𝑒1 − 𝑇𝑒1) = 𝜌 (12𝑒1 − 𝑇(12𝑒1)) = 𝑑𝑖𝑠𝑡𝜌 (𝐴, 𝐵) . (70)
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