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This paper describes a numerical solution formathematicalmodel of the transport equation in a simple rectangular box domain.The
model of street tunnel pollution distribution using two-dimension advection and three-dimension diffusion is solved numerically.
Because of the nature of the problem, themodel is extended to become three-dimension advection and three-dimension diffusion to
study the sea-sand mining pollution distribution. This model with various advection and diffusion parameters and the boundaries
conditions is also solved numerically using a finite difference (FTCS) method.

1. Introduction

The solution of partial differential equation and their associ-
ated boundary and initial condition play an important role
in modelling of phenomena in fields as diverse as physics,
chemistry, geology, biology, engineering, and economics.
The transport of pollutants occurs in a large variety of
environmental, agricultural, and industrial processes. The
phenomenon is usually modelled into partial differential
equations with boundary and/or initial conditions. The
models, however, in most cases have no analytical solution.
Numerical solution becomes an alternative solution to mod-
els such as partial differential equation models in order to
investigate, predict, and conclude the models.

Numerical solution for an advection-diffusion equation
or transport equation had become an interesting subject
for many authors recently. Several improvements in finite
difference approach had been noted. A stability limit for a
finite difference scheme such as the forward time and space-
centered numerical scheme applied the convection-diffusion
equation is discussed in [1]. Three-dimension solution of
advection-diffusion base on the two-level fully explicit and
fully implicit finite difference approximation is discussed in
[2]. The comparison of the two standard finite difference
schemes such as FTCS and Crank-Nicolson methods is
carried out by [3]. The method of time splitting to divide

complicated time dependent partial differential equation
into sets of simpler equations which could then be solved
separately by numerical means over fraction time step had
been done as in [4]. Numerical solution of a three-dimension
advection-diffusion for models in a street tunnel is discussed
in [5]. More recently, an application of the generalized finite
difference method to solve the advection-diffusion equation
using the explicit method is discussed in [6]. Also, practical
use of finite differencemethods in order to study the pollution
distribution on Unhas lake had been carried out as in [7].

The studying of a box model had been carried out
numerically as in [5] using two-dimension advection and
three-dimension diffusion. In this paper we extend the box
model into three-dimension advection and three-dimension
diffusion to determine the pollutants spread in the water or in
the air. This is because of the nature of the pollutant particles.
For certain dimension of particle, gravitational force due to
the particle mass should be taken into account. We solve
the three-dimension advection-diffusion equation by using
the forward in time, center in space (FTCS) finite difference
method. The domain of this study model is a rectangular
box with length 𝐿, width 𝑊, and height 𝐻. Numerical
results for several different pollutant source configurations
are presented and discussed.

The paper is organized as follows. In Section 2, we
introduce the basic equation and the problems. In Section 3,
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Figure 1: Domain of advection-diffusion.

the finite difference schemes for the computation approach
are introduced. The stability condition for FTCS scheme is
discussed in Section 4. In Section 5, some numerical models,
results, and discussions are presented. Finally, conclusions are
found in Section 6.

2. Basic Equation and Problems

In this paper we consider the three-dimension advection-
diffusion equation [2, 5, 6]

𝜕𝐶
𝜕𝑡 + 𝑉𝑥 𝜕𝐶𝜕𝑥 + 𝑉𝑦 𝜕𝐶𝜕𝑦 + 𝑉𝑧 𝜕𝐶𝜕𝑧
= 𝐷𝑥 𝜕

2𝐶
𝜕𝑥2 + 𝐷𝑦

𝜕2𝐶
𝜕𝑦2 + 𝐷𝑧

𝜕2𝐶
𝜕𝑧2 , 0 < 𝑡 ≤ 𝑇,

(1)

in the domains 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑊, and 0 ≤ 𝑧 ≤ 𝐻, with
initial condition

𝐶 (𝑥, 𝑦, 𝑧, 0) = 𝑓 (𝑥, 𝑦, 𝑧) , (2)

and the boundary conditions

𝐶 (0, 𝑦, 𝑧, 𝑡) = 𝑔0 (𝑦, 𝑧, 𝑡) , 0 < 𝑡 ≤ 𝑇, (3)

𝐶 (𝐿, 𝑦, 𝑧, 𝑡) = 𝑔𝐿 (𝑦, 𝑧, 𝑡) , 0 < 𝑡 ≤ 𝑇, (4)

𝐶 (𝑥, 0, 𝑧, 𝑡) = ℎ0 (𝑥, 𝑧, 𝑡) , 0 < 𝑡 ≤ 𝑇, (5)

𝐶 (𝑥,𝑊, 𝑧, 𝑡) = ℎ𝑊 (𝑥, 𝑧, 𝑡) , 0 < 𝑡 ≤ 𝑇, (6)

𝐶 (𝑥, 𝑦, 0, 𝑡) = 𝑘0 (𝑥, 𝑦, 𝑡) , 0 < 𝑡 ≤ 𝑇, (7)

𝐶 (𝑥, 𝑦,𝐻, 𝑡) = 𝑘𝐻 (𝑥, 𝑦, 𝑡) , 0 < 𝑡 ≤ 𝑇, (8)

where 𝑓, 𝑔0, 𝑔𝐿, ℎ0, ℎ𝑊, 𝑘0, and 𝑘𝐻 are known functions,
while the function 𝐶 is unknown. Here 𝐶(𝑥, 𝑦, 𝑧, 𝑡) denote
materials concentration which is transported. The constants

𝑉𝑥, 𝑉𝑦, 𝑉𝑧 represent speeds of advection with respect to 𝑥 −
axis, 𝑦 − axis, and 𝑧 − axis, respectively. Also, the constants𝐷𝑥, 𝐷𝑦, 𝐷𝑧, represent the speeds of diffusivities with respect
to 𝑥− axis, 𝑦− axis, and 𝑧− axis, respectively (see illustration
in Figure 1).

3. Finite Difference Schemes

The main idea behind the finite difference schemes for
obtaining the solution of a given partial differential equation
is to approximate the derivatives appearing in the equation
by a set of values of the function at selected number of
points. Themost usual way to generate these approximations
is through the use of Taylor series.

The solution domain of the problem over a time 0 ≤ 𝑡 ≤ 𝑇
is covered by a mesh of uniformly spaced grid-lines parallel
to the space and time coordinates axes, respectively.

𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, 1, 2, . . . ,𝑀; (9)

𝑦𝑗 = 𝑗Δ𝑦, 𝑗 = 0, 1, 2, . . . , 𝑁; (10)

𝑧𝑘 = 𝑘Δ𝑧, 𝑘 = 0, 1, 2, . . . , 𝑂; (11)

𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, . . . , 𝑅; (12)

Approximations 𝐶𝑛𝑖,𝑗,𝑘 to𝐶(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, 𝑛Δ𝑡) are calculated
at the point of intersection of these lines according to the(𝑖, 𝑗, 𝑘, 𝑛) grid points. The uniform spatial and temporal grid
spacings are Δ𝑥 = 𝐿/𝑀, Δ𝑦 = 𝑊/𝑁, Δ𝑧 = 𝐻/𝑂, andΔ𝑡 = 𝑇/𝑅, where 𝐿 is the length, 𝑊 is the width, and 𝐻 is
the height of the domain of the interested rectangular box.

Since the grid points are in three dimensions of the
box form, several numerical approximations are needed for
the grid points. These depend on the position of the grid
points. The approximation for interior points is forward time
center space (FTCS). The points obtained from intersection
of two planes of the box are approximated using forward time
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center space forward or backward space while the edge points
with intersection of three planes are approximated using
forward time and combination of forward and backward
approximation.

Forward time centered space (FTCS) approximation of (1)
for the interior points as in [2, 5, 7] is

𝐶𝑛+1𝑖,𝑗,𝑘 − 𝐶𝑛𝑖,𝑗,𝑘
Δ𝑡 + 𝑉𝑥 (𝐶

𝑛
𝑖+1,𝑗,𝑘 − 𝐶𝑛𝑖−1,𝑗,𝑘

2Δ𝑥 )

+ 𝑉𝑦 (𝐶
𝑛
𝑖,𝑗+1,𝑘 − 𝐶𝑛𝑖,𝑗−1,𝑘

2Δ𝑦 )

+ 𝑉𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛𝑖,𝑗,𝑘−1

2Δ𝑧 )

= 𝐷𝑥 (𝐶
𝑛
𝑖+1,𝑗,𝑘 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖−1,𝑗,𝑘

Δ𝑥2 )

+ 𝐷𝑦 (𝐶
𝑛
𝑖,𝑗+1,𝑘 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗−1,𝑘

Δ𝑦2 )

+ 𝐷𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗,𝑘−1

Δ𝑧2 ) .

(13)

Another finite difference approximation such as forward time
backward space 𝑥 center space 𝑦 center space 𝑧 is used for the
boundary points on 𝐶(𝐿, 𝑦, 𝑧, 𝑡) = 𝑔𝐿(𝑦, 𝑧, 𝑡)

𝐶𝑛+1𝑖,𝑗,𝑘 − 𝐶𝑛𝑖,𝑗,𝑘
Δ𝑡 + 𝑉𝑥 (3𝐶

𝑛
𝑖,𝑗,𝑘 − 4𝐶𝑛𝑖−1,𝑗,𝑘 + 3𝐶𝑛𝑖−2,𝑗,𝑘

2Δ𝑥 )

+ 𝑉𝑦 (𝐶
𝑛
𝑖,𝑗+1,𝑘 − 𝐶𝑛𝑖,𝑗−1,𝑘

2Δ𝑦 )

+ 𝑉𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛𝑖,𝑗,𝑘−1

2Δ𝑧 )

= 𝐷𝑥 (𝐶
𝑛
𝑖,𝑗,𝑘 − 2𝐶𝑛𝑖−1,𝑗,𝑘 + 𝐶𝑛𝑖−2,𝑗,𝑘

Δ𝑥2 )

+ 𝐷𝑦 (𝐶
𝑛
𝑖,𝑗+1,𝑘 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗−1,𝑘

Δ𝑦2 )

+ 𝐷𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗,𝑘−1

Δ𝑧2 ) .

(14)

Forward time backward space 𝑥 backward space 𝑦 center
space 𝑧 is used for the boundary points on𝐶(𝐿,𝑊, 𝑧, 𝑡)which
is

𝐶𝑛+1𝑖,𝑗,𝑘 − 𝐶𝑛𝑖,𝑗,𝑘
Δ𝑡 + 𝑉𝑥 (3𝐶

𝑛
𝑖,𝑗,𝑘 − 4𝐶𝑛𝑖−1,𝑗,𝑘 + 3𝐶𝑛𝑖−2,𝑗,𝑘

2Δ𝑥 )

+ 𝑉𝑦 (3𝐶
𝑛
𝑖,𝑗,𝑘 − 4𝐶𝑛𝑖,𝑗−1,𝑘 + 3𝐶𝑛𝑖,𝑗−2,𝑘

2Δ𝑦 )

+ 𝑉𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛𝑖,𝑗,𝑘−1

2Δ𝑧 )

= 𝐷𝑥 (𝐶
𝑛
𝑖,𝑗,𝑘 − 2𝐶𝑛𝑖−1,𝑗,𝑘 + 𝐶𝑛𝑖−2,𝑗,𝑘

Δ𝑥2 )

+ 𝐷𝑦 (𝐶
𝑛
𝑖,𝑗,𝑘 − 2𝐶𝑛𝑖,𝑗−1,𝑘 + 𝐶𝑛𝑖,𝑗−2,𝑘

Δ𝑦2 )

+ 𝐷𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗,𝑘−1

Δ𝑧2 ) .
(15)

Also forward time backward space 𝑥 forward space 𝑦 center
space 𝑧 is used for the boundary points on 𝐶(𝐿, 0, 𝑧, 𝑡) which
is

𝐶𝑛+1𝑖,𝑗,𝑘 − 𝐶𝑛𝑖,𝑗,𝑘
Δ𝑡 + 𝑉𝑥 (3𝐶

𝑛
𝑖,𝑗,𝑘 − 4𝐶𝑛𝑖−1,𝑗,𝑘 + 3𝐶𝑛𝑖−2,𝑗,𝑘

2Δ𝑥 )

+ 𝑉𝑦 (𝐶
𝑛
𝑖,𝑗,𝑘 − 4𝐶𝑛𝑖,𝑗+1,𝑘 + 3𝐶𝑛𝑖,𝑗+2,𝑘

2Δ𝑦 )

+ 𝑉𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛𝑖,𝑗,𝑘−1

2Δ𝑧 )

= 𝐷𝑥 (𝐶
𝑛
𝑖,𝑗,𝑘 − 2𝐶𝑛𝑖−1,𝑗,𝑘 + 𝐶𝑛𝑖−2,𝑗,𝑘

Δ𝑥2 )

+ 𝐷𝑦 (𝐶
𝑛
𝑖,𝑗,𝑘 − 2𝐶𝑛𝑖,𝑗+1,𝑘 + 𝐶𝑛𝑖,𝑗+2,𝑘

Δ𝑦2 )

+ 𝐷𝑧 (𝐶
𝑛
𝑖,𝑗,𝑘+1 − 2𝐶𝑛𝑖,𝑗,𝑘 + 𝐶𝑛𝑖,𝑗,𝑘−1

Δ𝑧2 ) .

(16)

All approximations have error of first order in time interval
and second order is spatial coordinate grid spacing.

4. Stability

To ensure obtained solutions have a nonpropagate error, the
approximation or schemes should meet certain conditions.
The approximation schemes on the boundary usually have
a nonpropagate error since boundary exact conditions are
supplied on the boundary. However, for the interior points
the errormight propagate. For the FTCS approximations, (13)
might be rewritten as

𝐶𝑛+1𝑖,𝑗,𝑘 = (𝐷𝑥Δ𝑡Δ𝑥2 + 𝑉𝑥Δ𝑡2Δ𝑥 )𝐶𝑛𝑖−1,𝑗,𝑘
+ (𝐷𝑦Δ𝑡Δ𝑦2 + 𝑉𝑦Δ𝑡

2Δ𝑦 )𝐶𝑛𝑖,𝑗−1,𝑘
+ (𝐷𝑧Δ𝑡Δ𝑧2 + 𝑉𝑧Δ𝑡2Δ𝑧 )𝐶𝑛𝑖,𝑗,𝑘−1
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+ (𝐷𝑥Δ𝑡Δ𝑥2 − 𝑉𝑥Δ𝑡2Δ𝑥 )𝐶𝑛𝑖+1,𝑗,𝑘
+ (𝐷𝑦Δ𝑡Δ𝑦2 − 𝑉𝑦Δ𝑡

2Δ𝑦 )𝐶𝑛𝑖,𝑗+1,𝑘
+ (𝐷𝑧Δ𝑡Δ𝑧2 − 𝑉𝑧Δ𝑡2Δ𝑧 )𝐶𝑛𝑖,𝑗,𝑘−1
+ (1 − 2[𝐷𝑥Δ𝑡Δ𝑥2 + 𝐷𝑦Δ𝑡

Δ𝑦2 + 𝐷𝑧Δ𝑡Δ𝑧2 ])𝐶𝑛𝑖,𝑗,𝑘
(17)

or simply

𝐶𝑛+1𝑖,𝑗,𝑘 = (𝑠𝑥 + 𝑐𝑥2 )𝐶𝑛𝑖−1,𝑗,𝑘 + (𝑠𝑦 +
𝑐𝑦
2 )𝐶𝑛𝑖,𝑗−1,𝑘

+ (𝑠𝑧 + 𝑐𝑧2 )𝐶𝑛𝑖,𝑗,𝑘−1 + (𝑠𝑥 −
𝑐𝑥2 )𝐶𝑛𝑖+1,𝑗,𝑘

+ (𝑠𝑦 − 𝑐𝑦
2 )𝐶𝑛𝑖,𝑗+1,𝑘 + (𝑠𝑧 −

𝑐𝑧2 )𝐶𝑛𝑖,𝑗,𝑘+1
+ (1 − 2 [𝑠𝑥 + 𝑠𝑦 + 𝑠𝑧])𝐶𝑛𝑖,𝑗,𝑘

(18)

in which

𝑠𝑥 = 𝐷𝑥Δ𝑡Δ𝑥2 ,

𝑠𝑦 = 𝐷𝑦Δ𝑡
Δ𝑦2 ,

𝑠𝑧 = 𝐷𝑧Δ𝑡Δ𝑧2 ,

(19)

𝑐𝑥 = 𝑉𝑥Δ𝑡Δ𝑥 ,
𝑐𝑦 = 𝑉𝑦Δ𝑡

Δ𝑦 ,

𝑐𝑧 = 𝑉𝑧Δ𝑡Δ𝑧 .

(20)

The stability of this three-dimensional difference schememay
be investigated using the von Neumann method. As in [2, 5]
application of this method of stability analysis shows that (18)
will be stable if it satisfies both equations

𝑠𝑥 + 𝑠𝑦 + 𝑠𝑧 ≤ 1
2 (21)

and

𝑐2𝑥𝑠𝑥 +
𝑐2𝑦
𝑠𝑦 +

𝑐2𝑧𝑠𝑧 ≤ 3. (22)

For one-dimension version of the forward time centered
space (FTCS) type formula for the case that 𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 𝑠
and 𝑐𝑥 = 𝑐𝑥 = 𝑐𝑥 = 𝑐, it should also satisfy

𝑐2 ≤ 𝑠 ≤ 1
6 . (23)

This clearly is much more strict than one-dimension
advection-diffusion equation of the forward time centered
space (FTCS) approximation which is 𝑠 ≤ 1/2.
5. Numerical Results and Discussions

Problem 1. In order to verify the accuracy of the proce-
dure that has been built, we consider the three-dimension
advection-diffusion equation (1), with initial condition (2)
and boundary conditions (3)-(8). By taking 𝑉𝑦 = 𝑉𝑧 = 0,𝐿 = 1,𝑊 = 1,𝐻 = 1, this procedure simply reduced to
three-dimension advection-diffusion equation for transport
of pollutants in street tunnel as discussed in [5]

𝜕𝐶
𝜕𝑡 + 𝑉𝑥 𝜕𝐶𝜕𝑥 = 𝐷𝑥 𝜕

2𝐶
𝜕𝑥2 + 𝐷𝑦

𝜕2𝐶
𝜕𝑦2 + 𝐷𝑧

𝜕2𝐶
𝜕𝑧2 ,

0 < 𝑡 < 𝑇.
(24)

Furthermore, taking appropriate function for 𝑓, 𝑔0, 𝑔𝐿,ℎ0, ℎ𝑊, 𝑘0, 𝑘𝐻, the initial condition and boundary conditions
yield

𝐶 (𝑥, 𝑦, 𝑧, 0) = 0 0 ≤ 𝑥 ≤ 1; 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 0 0 ≤ 𝑦 < 0.5; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 1 0.5 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (1, 𝑦, 𝑧, 𝑡) = 0 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝜕𝐶
𝜕𝑦 (𝑥, 0, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑦 (𝑥, 1, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 0, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 1, 𝑡) = 0 𝑡 > 0

(25)

This partial differential equation and its initial and boundary
conditions come from pollution distribution on a street
tunnel, where the wind flows steadily only in the 𝑥 direction.
There is no disperse flux of the pollutant through the solid
side-walls nor through the base and the roof. By using
nondimensionalised parameters Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1,Δ𝑡 = 0.01, 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 0.1, 𝑉𝑥 = 0.02, and for the
time 𝑇 = 20. These given values will certainly satisfy both
conditions 𝑠𝑥+𝑠𝑦+𝑠𝑧 = 3/10 ≤ 1/2 and 𝑐2𝑥/𝑠𝑥+𝑐2𝑦/𝑠𝑦+𝑐2𝑧/𝑠𝑧 =3/25000 ≤ 3. Thus numerical results are stable and can be
found as in the Figure 2.

There is no significant difference from the results
obtained from [5], as from Figure 2 left one can see the
mesh plot on 𝑧 = 0. This is reasonable, with the boundary
conditions satisfied, the concentration decreases away from
the source and is less than one-half of the source value over
more than three-quarters of the tunnel. Also, the solutions are
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Figure 2: Pollutant distribution in a street tunnel with advection only in 𝑥 direction.

independent of height since all contour plots on 𝑧 = 0, 𝑧 =0.2, . . . , 𝑧 = 1 are the same as Figure 2 right. The difference
may be noted from the previous work as in [5] lies only on𝑥 = 0.1.
Problem 2. Here, we consider the three-dimension advec-
tion-diffusion equation (1), with initial condition (2) and
boundary conditions (3)-(8). By taking 𝑉𝑧 = 0, 𝐿 =1,𝑊 = 1,𝐻 = 1, this simply reduces to two-dimension
advection three-dimension diffusion equation for transport
of pollutants in street tunnel problem as discussed in [5]

𝜕𝐶
𝜕𝑡 + 𝑉𝑥 𝜕𝐶𝜕𝑥 + 𝑉𝑦 𝜕𝐶𝜕𝑦 = 𝐷𝑥 𝜕

2𝐶
𝜕𝑥2 + 𝐷𝑦

𝜕2𝐶
𝜕𝑦2 + 𝐷𝑧

𝜕2𝐶
𝜕𝑧2 ,

0 < 𝑡 < 𝑇.
(26)

Furthermore, taking appropriate function for 𝑓, 𝑔0, 𝑔𝐿,ℎ0, ℎ𝑊, 𝑘0, 𝑘𝐻, the initial condition and boundary conditions
yield

𝐶 (𝑥, 𝑦, 𝑧, 0) = 0 0 ≤ 𝑥 ≤ 1; 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 0 0 ≤ 𝑦 < 0.5; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 1 0.5 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (𝑥, 0, 𝑧, 𝑡) = 0 0 ≤ 𝑦 < 0.3; 0 ≤ 𝑧 ≤ 1
𝐶 (𝑥, 0, 𝑧, 𝑡) = 1 0.3 ≤ 𝑦 ≤ 0.6; 0 ≤ 𝑧 ≤ 1
𝐶 (𝑥, 0, 𝑧, 𝑡) = 0 0.6 < 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1

𝜕𝐶
𝜕𝑦 (𝑥, 0, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑦 (𝑥, 1, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 0, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 1, 𝑡) = 0 𝑡 > 0

(27)

This model of partial differential equation and its initial and
boundary conditions comes from pollution distribution on a

street tunnel, where the wind flows steadily only in the 𝑥 and𝑦directions.There is no disperse flux of the pollutant through
the solid side-walls nor through the base and the roof. By
using nondimensionalised parameters Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1,Δ𝑡 = 0.005, 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 0.2, 𝑉𝑥 = 0.6, 𝑉𝑦 = 0.4
and for the time 𝑇 = 20. These values satisfy both conditions𝑠𝑥+𝑠𝑦+𝑠𝑧 = 3/10 ≤ 1/2 and 𝑐2𝑥/𝑠𝑥+𝑐2𝑦/𝑠𝑦+𝑐2𝑧/𝑠𝑧 = 13/1000 ≤
3.The numerical results are found as in Figure 3.

Figure 3 shows a mesh plot and a contour plot on 𝑧 =0.2. The other mesh plot and contour plot on the other 𝑧
show no difference in 𝑧 = 0.2. This is reasonable, with the
boundary conditions satisfied, the concentration decreases
away from the source faster in the 𝑥 direction rather than in
the 𝑦 direction.

Problem 3. We consider a three-dimensional advection-
diffusion equation for transport of pollutants in the water
such as a sea-sand mining or in the air such as limestone
rock mining to produce cement. Such activity usually spread
pollutants to the environment nearby. By assuming that the
domain of the physical problem had been nondimensional-
ized, and taking the boxmodel, it will satisfy three-dimension
advection and three-dimension diffusion equation. There is
no disperse flux of the pollutant through the base and the
roof. The boundary condition on top of the box will be sea
surface and the bottom of the box will be sea floor and satisfy(𝜕𝐶/𝜕𝑧)(𝑥, 𝑦,𝐻, 𝑡) = 0 and (𝜕𝐶/𝜕𝑧)(𝑥, 𝑦, 0, 𝑡) = 0. The
advection constant 𝑉𝑧 ̸= 0 due to the gravitational force
acting on the particle. The constants 𝑉𝑥 and 𝑉𝑦 are the sea
current speed in 𝑥 and 𝑦 directions. Another initial condition
and boundary conditions yield

𝐶 (𝑥, 𝑦, 𝑧, 0) = 0 0 ≤ 𝑥 ≤ 1; 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 0

0 ≤ 𝑦 < 0.4; 0.6 < 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 1 0.4 ≤ 𝑦 ≤ 0.6; 0 ≤ 𝑧 ≤ 1
𝐶 (𝑥, 0, 𝑧, 𝑡) = 0

0 ≤ 𝑥 < 0.4; 0.6 < 𝑥 ≤ 1; 0 ≤ 𝑧 ≤ 1
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Figure 3: Pollutant distribution in a street tunnel with advection in 𝑥 and 𝑦 directions.

𝐶 (𝑥, 0, 𝑧, 𝑡) = 1 0.4 ≤ 𝑥 ≤ 0.6; 0 ≤ 𝑧 ≤ 1
𝐶 (1, 𝑦, 𝑧, 𝑡) = 0 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝜕𝐶
𝜕𝑦 (𝑥, 0, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑦 (𝑥, 1, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 0, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 1, 𝑡) = 0 𝑡 > 0

(28)

Using nondimensionalised parameters Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1,Δ𝑡 = 0.005; 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 0.1, 𝑉𝑥 = 1.0, 𝑉𝑦 = 0.3,𝑉𝑧 = −0.3 and for the time 𝑇 = 2. Here, the values satisfy
also both stability conditions 𝑠𝑥 + 𝑠𝑦 + 𝑠𝑧 = 3/20 ≤ 1/2 and
𝑐2𝑥/𝑠𝑥+𝑐2𝑦/𝑠𝑦+𝑐2𝑧 /𝑠𝑧 = 59/1000 ≤ 3.Thenumerical results for
surface plot and contour plot on 𝑧 = 0.5 and several values of
time 𝑡 are found as in Figure 4. Surface plot and contour plot
for other values of 𝑧 are similar as in Figure 4.

Problem 4. We consider a three-dimensional advection-
diffusion equation for transport of pollutants in the water
such as a sea-sand mining again. Such activity usually lasts
for certain period of time and spreads pollutants to the
environment nearby. Of our interest is to find out the
pollutant distribution of this activity. By assuming that the
domain of the physical problem had been nondimensional-
ized and taking the boxmodel, it will satisfy three-dimension
advection and three-dimension diffusion equation. There is
no disperse flux of the pollutant through the base and the
roof. The boundary condition on top of the box will be sea

surface and the bottom of the box will be sea floor and satisfy(𝜕𝐶/𝜕𝑧)(𝑥, 𝑦,𝐻, 𝑡) = 0 and (𝜕𝐶/𝜕𝑧)(𝑥, 𝑦, 0, 𝑡) = 0. Other
initial condition and boundary conditions yield

𝐶 (𝑥, 𝑦, 𝑧, 0) = 0 0 ≤ 𝑥 ≤ 1; 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 0

0 ≤ 𝑦 < 0.4; 0.6 < 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 1

0.4 ≤ 𝑦 ≤ 0.6; 0 ≤ 𝑧 ≤ 1; 0 ≤ 𝑡 ≤ 0.5
𝐶 (𝑥, 0, 𝑧, 𝑡) = 0

0 ≤ 𝑥 < 0.4; 0.6 < 𝑥 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (𝑥, 0, 𝑧, 𝑡) = 1

0.4 ≤ 𝑥 ≤ 0.6; 0 ≤ 𝑧 ≤ 1; 0 ≤ 𝑡 ≤ 0.5
𝐶 (1, 𝑦, 𝑧, 𝑡) = 0 0 ≤ 𝑦 ≤ 1; 0 ≤ 𝑧 ≤ 1
𝐶 (0, 𝑦, 𝑧, 𝑡) = 0

0.4 ≤ 𝑦 ≤ 0.6; 0 ≤ 𝑧 ≤ 1; 𝑡 > 0.5
𝐶 (𝑥, 0, 𝑧, 𝑡) = 0

0.4 ≤ 𝑥 ≤ 0.6; 0 ≤ 𝑧 ≤ 1; 𝑡 > 0.5
𝜕𝐶
𝜕𝑦 (𝑥, 0, 𝑧, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑦 (𝑥, 1, 𝑧, 𝑡) = 0 𝑡 > 0
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Figure 4: Pollutant distribution in a box model under the sea with advection in 𝑥, 𝑦, and 𝑧 directions.
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Figure 5: Pollutant distribution in a box model under the sea with advection in 𝑥, 𝑦, and 𝑧 directions.
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𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 0, 𝑡) = 0 𝑡 > 0
𝜕𝐶
𝜕𝑧 (𝑥, 𝑦, 1, 𝑡) = 0 𝑡 > 0

(29)

Using nondimensionalised parameters Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1,Δ𝑡 = 0.005; 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 0.2, 𝑉𝑥 = 1.0, 𝑉𝑦 = 0.3,𝑉𝑧 = −0.3 and for the time 𝑇 = 2. These values also satisfy
both stability conditions 𝑠𝑥 + 𝑠𝑦 + 𝑠𝑧 = 3/10 ≤ 1/2 and
𝑐2𝑥/𝑠𝑥+𝑐2𝑦/𝑠𝑦+𝑐2𝑧/𝑠𝑧 = 295/10000 ≤ 3.There are two pollutant
sources on the 𝑥-axis and 𝑦-axis and they last for certain
period of time 0 ≤ 𝑡 ≤ 0.5.The numerical results for surface
plot and contour plot on 𝑧 = 0.4 for several different times are
found as in Figure 5. Unlike the previous Problem 3, surface
and contour plot for other values of 𝑧 show that pollutant
materials move to 𝑥, 𝑦, 𝑧 directions as expected.
6. Conclusions

We have employed a standard finite difference scheme to
study the pollution distribution for two-dimension advection
and three-dimension diffusion equation and extend into
three-dimension advection and three-dimension diffusion
equation. The stability conditions ensure that the solution of
all the interior points can be obtained.The schemeworks well
as one can see numerical results obtained in solutions of the
problems above.
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