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In the present article, we introduce the second Kummer function with matrix parameters and examine its asymptotic behaviour
relying on the residue theorem. Further, we provide a closed form of a solution of a Weber matrix differential equation and give a
representation using the second Kummer function.

1. Introduction

The application of special functions can be found in the-
oretical physics [1], probability theory [1, 2], or numerical
mathematics [1]. The solution of the confluent hypergeomet-
ric differential equation [3] is often expressed as a linear
combination of the Kummer functions that are defined as

M (𝑎, 𝑏, 𝑧) = ∞∑
𝑘=0

(𝑎)𝑘(𝑏)𝑘 𝑘!𝑧𝑘,
U (𝑎, 𝑏, 𝑧) = 𝜋

sin (𝜋𝑏) ( M (𝑎, 𝑏, 𝑧)Γ (1 + 𝑎 − 𝑏) Γ (𝑏)− 𝑧1−𝑏M (1 + 𝑎 − 𝑏, 2 − 𝑏, 𝑧)Γ (𝑎) Γ (2 − 𝑏) ) ,
(1)

where 𝑧 is a complex argument and 𝑎 and 𝑏 are real-valued
parameters that are not negative integers. We note that U is
also known as the second confluent hypergeometric, Tricomi,
or Gordon function. Its asymptotic behaviour is well known
(see [3]): in particular for |𝑧| → ∞, we have

U (𝑎, 𝑏, 𝑧) = 𝑧−𝑎 (1 + 𝑂 (|𝑧|−1)) . (2)

The generalization of special functions to matrix valued
functions is a growing subject and the first Kummer function
has been studied widely (see [4–7]). However, the second
Kummer function has not yet been examined.

The main goal of this article is to introduce the second
Kummer function with matrix parameters and to study its
asymptotic behaviour. This function appears as a solution
of an equation in mathematical finance, where a Markovian
regime switching framework (see [8, 9] as an example) is
combined with an equilibrium model for asset bubbles from
[10, 11]. In such a model, knowing the asymptotic behaviour
of the solution is essential.

Currently, there is a growing number of literatures about
matrix special functions. The study of the properties of
Gamma and Beta matrix functions by Jódar and Cortés [5]
is a corner stone of the theory of matrix special functions
and provides us with many important concepts to examine
their properties. Moreover, Jódar and Cortés [6, 12] also
later introduced the first Kummer matrix function, gave an
integral representation, and used them to obtain a solution in
a closed form of a hypergeometric matrix differential equa-
tion. For solving a matrix differential equations, matrix poly-
nomials were studied frequently, such as the Laguerre matrix
polynomials [13–15], the Hermite matrix polynomials [14],
the Jacobimatrix polynomials [16], or the Gegenbauer matrix
polynomials [17]. Many other matrix special functions were
already introduced. The modified Gamma matrix and the
incomplete Bessel function were studied in [18] and the
Humbert matrix functions in [19, 20]. A modification of
the first Kummer matrix function including two complex
variables was introduced in [7]. Recently, the hypergeometric
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matrix functions were extended by adding another matrix
parameter (see [4]).

Throughout the paper, we will use the following notation.
Let L and M be 𝑁 × 𝑁 matrices. With I we denote the iden-
tity matrix. Given a vector V ∈ C𝑁, we use diag(V) for the
matrix with V in its diagonal entries and zero elsewhere. We
call a matrix positive stable, if it has only eigenvalues with
positive real part. For complex valued matrix functions 𝑓
and 𝑔, we write 𝑓(𝑧) ∼ 𝑔(𝑧) if there is a matrix C such that
lim|𝑧|→∞𝑓(𝑧) = lim|𝑧|→∞𝑔(𝑧)C.Wewrite ⌊𝑥⌋ for the integer
part of 𝑥 ∈ R. The symbol ≲ means asymptotically smaller.

The article is structured as follows. In Section 2, we repeat
some of the most important concepts from matrix special
function theory. It contains the definition of the second Kum-
mer function, with matrix parameters L and 𝑏I and a com-
plex argument 𝑧, as
U (L, 𝑏I, 𝑧) = Γ (1 − 𝑏) 1𝐹1 (L; 𝑏I; 𝑧) Γ (L + (1 − 𝑏) I)−1+ 𝑧1−𝑏Γ (𝑏 − 1)⋅ 1𝐹1 ((1 − 𝑏) I + L; (2 − 𝑏) I; 𝑧)⋅ Γ (L)−1 .

(3)

Based on a classical approach as in Slater [21] or Paris and
Kaminski [22], we analyse the asymptotic behaviour of this
function in Section 3. In particular, we show the asymptotic
behaviour for large |𝑧|,

U (L, 𝑏I, 𝑧) ∼ |𝑧|−L (4)

under certain conditions on thematrix L. Moreover, we intro-
duce the parabolic cylinder function with matrix parameters
in the present article and analyse its asymptotic behaviour.
In Section 4, we compute a solution of a Weber matrix
differential equation𝑦 (𝑥) + (K + (12 − 𝑥24 ) I)𝑦 (𝑥) = 0, 𝑥 ≥ 0, (5)

using thepower seriesmethod.The representation of this solu-
tion uses parabolic cylinder functions with matrix parame-
ters.

2. Some Examples of Special Matrix Functions

First, we define the Pochhammer symbol for matrices as(M)𝑘 = (M + (𝑘 − 1) I) ⋅ ⋅ ⋅ (M + I) M for 𝑘 ≥ 1,(M)0 = I. (6)

Using the matrix exponential, we define𝑡M = 𝑒M ln 𝑡 = ∞∑
𝑘=0

M
𝑘 (ln 𝑡)𝑘𝑘! (7)

for 𝑡 > 0. Following [5], we introduce the Gamma matrix
function for a positive stable matrix M asΓ (M) = ∫∞

0
𝑒−𝑡𝑡M−I𝑑𝑡. (8)

Using infinite matrix products [23], the Gamma matrix
function can be extended to matrices with only nonnegative-
integer eigenvalues, i.e., −𝑛 ∉ 𝜎(M) for 𝑛 ∈ N \ {0}. If M + 𝑛I
is an invertible matrix for every integer 𝑛 ≥ 0, then it can be
shown that Γ(M) is also invertible and its inverse corresponds
to the inverse of the Gamma function (see [5]). ComputingΓ(M) numerically for a diagonalizable matrix M = TDT−1 is
simple, as we haveΓ (M) = Γ (TDT−1) = ∫∞

0
𝑒−𝑡T𝑒D ln(𝑡)T−1𝑡−1𝑑𝑡 = TGT

−1 (9)

where the matrix

G = (Γ(𝜇1) 0 ⋅ ⋅ ⋅ 00 Γ (𝜇2) ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ Γ (𝜇𝑁)) (10)

contains Gamma functions of eigenvalues the 𝜇1, . . . , 𝜇𝑁 of M.
Nowwedefine theBetamatrix function for positive stable

matrices L and M as𝐵 (L, M) = ∫1
0

𝑡L−I (1 − 𝑡)M−I 𝑑𝑡. (11)

This function is symmetric if and only if L and M commute
[5]. The next lemma (see Lemma 2 from [12]) characterizes
the relationship between Beta and Gamma matrix function.

Lemma 1. For positive stable, commuting matrices L and M
so that L + M has only nonnegative-integer eigenvalues, the
following holds:𝐵 (L, M) = Γ (L) Γ (M) Γ (L + M)−1 . (12)

Proof. First, we writeΓ (L) Γ (M) = (∫∞
0

𝑒−𝑠𝑠L−I𝑑𝑠) (∫∞
0

𝑒−𝑡𝑡M−I𝑑𝑡)= ∫∞
0

∫∞
0

𝑒−𝑠𝑠L−I𝑒−𝑡𝑡M−I𝑑𝑠 𝑑𝑡. (13)

With the change of variables 𝑥 = 𝑠/(𝑠 + 𝑡) and 𝑦 = 𝑠 + 𝑡 and
using the commutativity, we getΓ (L) Γ (M) = ∫∞

0
∫1
0

𝑒−𝑥𝑦 (𝑥𝑦)L−I⋅ 𝑒−𝑦(1−𝑥) (𝑦 (1 − 𝑥))M−I 𝑦𝑑𝑥𝑑𝑦.= (∫∞
0

𝑒−𝑦𝑦L+M−I𝑑𝑦)(∫1
0

𝑥L−I (𝑥 − 1)M−I 𝑑𝑦)= Γ (L + M) 𝐵 (L, M) .
(14)

Due to the extension of the Gamma function [23], we do not
need the additional condition fromLemma 2 in [12] that L+M
has to be positive stable. Since Γ(L + M) is well-defined, it is
invertible and we obtain the desired result.
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The following lemma taken from [12] gives us an integral
representation of the Pochhammer matrix symbol.

Lemma 2. Let L, M and M − L be positive stable matrices such
that LM = ML. Then the following identity holds:(L)𝑘 (M)−1𝑘 = Γ (L)−1 Γ (M − L)−1⋅ (∫1

0
𝑡L+(𝑘−1)I (1 − 𝑡)M−L−I 𝑑𝑡) Γ (M) , (15)

for every 𝑘 ∈ N.

Proof. Using Lemma 1 and the fact that L and M commute, we
get(L)𝑘 (M)−1𝑘 = Γ (L)−1 Γ (L + 𝑘I) Γ (M) Γ (M + 𝑘I)−1= Γ (L)−1 Γ (L + 𝑘I) Γ (M + 𝑘I)−1 Γ (M) = Γ (L)−1⋅ Γ (M − L)−1 Γ (M − L) Γ (L + 𝑘I) Γ (M + 𝑘I)−1 Γ (M)= Γ (L)−1 Γ (M − L)−1 𝐵 (L + 𝑘I, M − L) Γ (M)= Γ (L)−1 Γ (M − L)−1 (∫1

0
𝑡L+(𝑘−1)I (1 − 𝑡)M−L−I 𝑑𝑡)⋅ Γ (M) .

(16)

We remark that the Beta function is well-defined, because M−
L is positive stable.

We define the confluent hypergeometric function with
matrix parameters as

1𝐹1 (L;M; 𝑧) = ∞∑
𝑘=0

(L)𝑘 (M)−1𝑘 𝑧𝑘𝑘! (17)

for 𝑧 ∈ C, where (M+ 𝑘I) invertible for every 𝑘 ≥ 0 (see [15]).
This function is also often called first Kummer function and
the notationM(L, M, 𝑧) = 1𝐹1(L; M; 𝑧) can be found elsewhere.
Now let L and M be commuting matrices. We obtain the
integral representation.

Lemma 3. If M − L is positive stable, then we have

1𝐹1 (L; M; 𝑧) = Γ (L)−1 Γ (M − L)−1⋅ (∫1
0

𝑒𝑧𝑡𝑡L−I (1 − 𝑡)M−L−I 𝑑𝑡) Γ (M) (18)

for all 𝑧 ∈ C.

Proof. By Lemma 2, we get

1𝐹1 (L;M; 𝑧) = ∞∑
𝑘=0

Γ (L)−1 Γ (M − L)−1
⋅ (∫1
0

𝑡L+(𝑘−1)I (1 − 𝑡)M−L−I 𝑑𝑡) Γ (M) 𝑧𝑘𝑘! = Γ (L)−1

⋅ Γ (M − L)−1(∫1
0

𝑡L−I ∞∑
𝑘=0

(𝑡𝑧)𝑘𝑘! (1 − 𝑡)M−L−I 𝑑𝑡)⋅ Γ (M) .
(19)

If L commuteswith M, it consequently commuteswith (M+𝑘I)−1 for all integers 𝑘 ≥ 0 and we get𝑑𝑑𝑧 1𝐹1 (L; M; 𝑧) = ∞∑
𝑘=1

(L)𝑘 (M)−1𝑘 𝑧𝑘−1(𝑘 − 1)!= ∞∑
𝑘=0

(L)𝑘+1 (M)−1𝑘+1 𝑧𝑘𝑘!= ∞∑
𝑘=0

(L + I)𝑘 L (M + I)−1𝑘 M
−1 𝑧𝑘𝑘!= (∞∑

𝑘=0

(L + I)𝑘 (M + I)−1𝑘 𝑧𝑘𝑘! ) LM
−1

= 1𝐹1 (L + I; M + I; 𝑧) LM−1.
(20)

Since (L+𝑘I) commutes with (M+𝑘I)−1 for all integers 𝑘 ≥ 0,
we obtain𝑑𝑘𝑑𝑧𝑘 1𝐹1 (L;M; 𝑧) = 1𝐹1 (L + 𝑘I; M + 𝑘I; 𝑧) (L)𝑘 (M)−1𝑘 . (21)

Note that this property holds especially for diagonal matrices
M. We define the second Kummer function with matrix
parameters as

U (L, 𝑏I, 𝑧) = Γ (1 − 𝑏) 1𝐹1 (L; 𝑏I; 𝑧)⋅ Γ (L + (1 − 𝑏) I)−1 + 𝑧1−𝑏Γ (𝑏 − 1)⋅ 1𝐹1 ((1 − 𝑏) I + L; (2 − 𝑏) I; 𝑧)⋅ Γ (L)−1 (22)

for 𝑧 ∈ C, where 𝑏 ∈ R \ Z−. Moreover, we introduce the
matrix function

FK (𝑧) = Γ (12) 1𝐹1 (−12K; 12I; 𝑧22 ) Γ (12 (I − K))−1
+ |𝑧| Γ (−1/2)√2 1𝐹1 (12 (I − K) ; 32I; 𝑧22 )

⋅ Γ (−12K)−1 ,
(23)

for 𝑧 ∈ C and matrices K having only eigenvalues with neg-
ative real part. Obviously, FK(𝑧) = U(−(1/2)K, (1/2)I, 𝑧2/2).
Analogously to the definition in [24, p. 39], we call

DK (𝑧) = 2K/2𝑒−𝑧2/4FK (𝑧) (24)
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the parabolic cylinder function with matrix parameters. We
remark that𝑑𝑑𝑧FK (𝑧) = Γ (12) 1𝐹1 (12 (2I − K) ; 32 I; 𝑧22 ) (−K)

⋅ Γ (12 (I − K))−1 + Γ (−1/2)√2⋅ 1𝐹1 (12 (I − K) ; 32I; 𝑧22 )
⋅ Γ (−12K)−1 sgn (𝑧) + Γ (−1/2)√2⋅ 1𝐹1 (12 (3I − K) ; 52I; 𝑧22 ) 13 (K − I)
⋅ Γ (−12K)−1 𝑧2,

(25)

for 𝑧 ∈ R \ {0}. In 𝑧 = 0 the function FK(𝑧) is obviously not
differentiable; however we can observe that

𝜕+FK (𝑧)𝑧=0 = Γ (−1/2)√2 Γ (−12K)−1 ,𝜕−FK (𝑧)𝑧=0 = −Γ (−1/2)√2 Γ (−12K)−1 . (26)

3. Asymptotic Behaviour of
the Second Kummer Function

Now we focus on the asymptotic behaviour of the second
Kummer function with matrix parameters. Analogously to
the case with real-valued parameters (see [21, p. 35] or [22,
p. 106]), we compute the Mellin-Barnes integral using the
residue theorem. The proof of the following lemma has two
steps. First, we define integral over a curve depending on𝑅 > 0 and apply the residue theorem.The sum of the residues
converges to an expression containing the second Kummer
function.Then, by parametrizing the curve and taking limits,
we obtain another representation for the integral.

Lemma4. LetL be a positive stable, diagonalizablematrix and𝑏 ∈ R \ Z−. For 𝑧 ∈ C with |arg(𝑧)| < 3𝜋/2 and 𝑐 < ∞, the
following holds:12𝜋𝑖 ∫𝑐+𝑖∞

𝑐−𝑖∞
Γ (−𝑠) Γ (L + 𝑠I) Γ (L + (1 − 𝑏 + 𝑠) I)⋅ |𝑧|−𝑠 𝑑𝑠 = |𝑧|LU (L, 𝑏I, 𝑧) Γ (L) Γ (L + (1 − 𝑏) I) . (27)

Proof. Let𝜆1, . . . , 𝜆𝑁 denote the eigenvalues of L and suppose
we have the eigenvalue decomposition L = TΛT−1 where Λ =
diag((𝜆1, . . . , 𝜆𝑁)⊺). Since L is positive stable, all eigenvalues
have nonnegative real part and, hence, all singularities of

Γ(𝜆𝑖+𝑠) are on the negative real axis. Let𝛼, 𝛽 and𝑅 be positive
real numbers. For each eigenvalue, let us consider the integral

I𝜆𝑖,𝑅 = 12𝜋𝑖 ∮
C𝜆𝑖

Γ (−𝑠) Γ (𝜆𝑖 + 𝑠I) Γ (𝜆𝑖 + (1 − 𝑏 + 𝑠))⋅ |𝑧|−𝑠 𝑑𝑠, (28)

where C𝜆𝑖 is taken around a rectangular contour so that the
poles at 𝑠 = −𝜆𝑖 − 𝑘 and at 𝑠 = −𝜆𝑖 − (1 − 𝑏 + 𝑘) are inside and
all other poles are outside the contour for all 𝑖 ∈ 1, . . . , 𝑁 and𝑘 = 0, 1, 2, . . . , ⌊𝑅⌋. So, according to the residue theorem, we
get

I𝜆𝑖,𝑅 = |𝑧|𝜆𝑖 ⌊𝑅⌋∑
𝑘=0

Γ (𝜆𝑖 + 𝑘) Γ (1 − 𝑏 − 𝑘) (− |𝑧|)𝑘𝑘!+ |𝑧|𝜆𝑖 |𝑧|1−𝑏⋅ ⌊𝑅⌋∑
𝑘=0

Γ (𝜆𝑖 + 1 − 𝑏 + 𝑘) Γ (𝑏 − (𝑘 + 1)) (− |𝑧|)𝑘𝑘! . (29)

We remark thatL+𝑘Ihas the eigenvalue decomposition T(Λ+𝑘I)T−1. Defining the matrix

I𝑅 = T diag ((I𝜆1 ,𝑅, . . . ,I𝜆𝑁,𝑅)⊺) T−1, (30)

we can write

I𝑅 = |𝑧|L ⌊𝑅⌋∑
𝑘=0

Γ (L + 𝑘I) Γ (1 − 𝑏 − 𝑘) (− |𝑧|)𝑘𝑘! + |𝑧|L⋅ |𝑧|1−𝑏⋅ ⌊𝑅⌋∑
𝑘=0

Γ (L + (1 − 𝑏 + 𝑘) I) Γ (𝑏 − (𝑘 + 1)) (− |𝑧|)𝑘𝑘! . (31)

In the next step, we use the relationship Γ(L + 𝑘I) = (L)𝑘Γ(L)
for Gamma matrix functions and the identity(−1)𝑘 Γ (1 − 𝑏 − 𝑘) = Γ (1 − 𝑏)(𝑏)𝑘 (32)

for Gamma functions. We denote I = lim𝑅→∞I𝑅 and
obtain

I = |𝑧|L ∞∑
𝑘=0

(L)𝑘(𝑏)𝑘 |𝑧|𝑘𝑘! Γ (L) Γ (1 − 𝑏) + |𝑧|L |𝑧|1−𝑏
⋅ ∞∑
𝑘=0

(L + (1 − 𝑏) I)𝑘(2 − 𝑏)𝑘 |𝑧|𝑘𝑘! Γ (L + (1 − 𝑏) I) Γ (𝑏 − 1)= |𝑧|L 1𝐹1 (L; 𝑏I; 𝑧) Γ (L) Γ (1 − 𝑏) + |𝑧|L |𝑧|1−𝑏⋅ 1𝐹1 (L + (1 − 𝑏) I; (2 − 𝑏) I; 𝑧) Γ (L + (1 − 𝑏) I)⋅ Γ (𝑏 − 1) .
(33)
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AsL and L+(1−𝑏)I commute, also thematrix exponential and
hence their Gammamatrix function commute.Therefore, we
get

I = |𝑧|LU (L, 𝑏I, 𝑧) Γ (L) Γ (L + (1 − 𝑏) I) . (34)

Now we want to find an integral representation for I.
Therefore, we examine the contourC𝜆𝑖 for 𝑅 → ∞ for each
eigenvalue 𝜆𝑖. Hence, we parametrize the contour and write
the integral as

I𝜆𝑖,𝑅 = I𝜆𝑖,C1 + I𝜆𝑖,C2 + I𝜆𝑖,C3 + I𝜆𝑖 ,C4 , (35)

where we use the abbreviations

I𝜆𝑖,C1 = 12𝜋𝑖 ∫−𝑅
𝑐

Γ (−𝑥 − 𝑖𝛼) Γ (𝜆𝑖 + 𝑥 + 𝑖𝛼)⋅ Γ (𝜆𝑖 + 1 − 𝑏 + 𝑥 + 𝑖𝛼) |𝑧|−𝑥−𝑖𝛼 𝑑𝑥,
I𝜆𝑖,C2 = − 12𝜋𝑖 ∫𝑐+𝑖𝛼

𝑐−𝑖𝛽
Γ (𝑅 − 𝑡) Γ (𝜆𝑖 − 𝑅 + 𝑡)⋅ Γ (𝜆𝑖 + 1 − 𝑏 − 𝑅 + 𝑡) |𝑧|𝑅−𝑡 𝑑𝑡,

I𝜆𝑖,C3 = 12𝜋𝑖 ∫𝑐
−𝑅

Γ (−𝑥 + 𝑖𝛽) Γ (𝜆𝑖 + 𝑥 − 𝑖𝛽)⋅ Γ (𝜆𝑖 + 1 − 𝑏 + 𝑥 − 𝑖𝛽) |𝑧|−𝑥+𝑖𝛽 𝑑𝑥,
I𝜆𝑖,C4 = 12𝜋𝑖 ∫𝑐+𝑖𝛼

𝑐−𝑖𝛽
Γ (−𝑠) Γ (𝜆𝑖 + 𝑠) Γ (𝜆𝑖 + 1 − 𝑏 + 𝑠)⋅ |𝑧|−𝑠 𝑑𝑠.

(36)

In the next step, we show that I𝜆𝑖,C1 → 0 and I𝜆𝑖,C3 → 0.
Following [21], we use the Stirling formula|Γ (𝑢 + 𝑖V)| ≲ √2𝜋 |V|𝑢−1/2 𝑒−(𝜋/2)|V| (37)

for the Gamma function with |𝑢| finite and |V| large (see [25,
p. 223]). Altogether, we get|Γ (−𝑥 − 𝑖𝛼)| ≲ √2𝜋𝛼−𝑥−1/2𝑒−(𝜋/2)𝛼,Γ (𝜆𝑖 + 𝑥 + 𝑖𝛼)≲ √2𝜋 (𝛼 + Im (𝜆𝑖))Re(𝜆𝑖)+𝑥−1/2 𝑒−(𝜋/2)(𝛼+Im(𝜆𝑖)),Γ (𝜆𝑖 + 1 − 𝑏 + 𝑥 + 𝑖𝛼)≲ √2𝜋 (𝛼 + Im (𝜆𝑖))Re(𝜆𝑖)+1−𝑏+𝑥−1/2 𝑒−(𝜋/2)(𝛼+Im(𝜆𝑖)).

(38)

Therefore,IC1

 ≤ √2𝜋∫−𝑅
𝑐

|Γ (−𝑥 + 𝑖𝛼)| Γ (𝜆𝑖 + 𝑥 − 𝑖𝛼)⋅ Γ (𝜆𝑖 + 1 − 𝑏 + 𝑥 − 𝑖𝛼) |𝑧|−𝑥 𝑒𝛼 arg(𝑧)𝑑𝑥≲ √2𝜋∫−𝑅
𝑐

𝛼−𝑥−1/2 (𝛼 + Im (𝜆𝑖))2Re(𝜆𝑖)+2𝑥−𝑏⋅ 𝑒−𝜋 Im(𝜆𝑖) |𝑧|−𝑥 𝑒−𝛼(3𝜋/2−arg(𝑧))𝑑𝑥
(39)

and, hence,

lim
𝛼→∞

I𝜆𝑖 ,C1  = 0, (40)

provided arg(𝑧) < 3𝜋/2. Almost analogously, it can be shown
that

lim
𝛽→∞

I𝜆𝑖,C3  = 0. (41)

In the last step, we analyse I𝜆𝑖,C2 . We define

J𝜆𝑖,𝑅 = 12𝜋𝑖 ∫𝑐+𝑖∞
𝑐−𝑖∞

Γ (𝑅 − 𝑡) Γ (𝜆𝑖 − 𝑅 + 𝑡)⋅ Γ (𝜆𝑖 + 1 − 𝑏 − 𝑅 + 𝑡) |𝑧|𝑅−𝑡 𝑑𝑡. (42)

Since 𝑡 is complex valued, we proceed slightly differently than
before. Using the Stirling formula again and the well-known
identity |Γ(𝑧)| ≤ |Γ(Re(𝑧))|, we obtain

lim
𝑅→∞

J𝑅 = 0. (43)

Finally, we combine

I = lim
𝑅→∞

T diag ((I𝜆1 ,𝑅, . . . ,I𝜆𝑁,𝑅)⊺) T−1 = T⋅ diag ((I𝜆1 ,C4 , . . . ,I𝜆𝑁,C4)⊺) T−1 = 12𝜋𝑖⋅ ∫𝑐+𝑖∞
𝑐−𝑖∞

Γ (−𝑠) Γ (L + 𝑠I) Γ (L + (1 − 𝑏 + 𝑠) I)⋅ |𝑧|−𝑠 𝑑𝑠
(44)

with the result from the residue theorem.

Let us suppose that L has the eigenvalue decomposition
L = TΛT−1. Then, we get

lim
𝑐→∞

𝑒−𝑐L = T lim
𝑐→∞

diag ((𝑒−𝜆1𝑐, . . . , 𝑒−𝜆𝑁𝑐)⊺) T−1= T0𝑁×𝑁T
−1 = 0𝑁×𝑁, (45)

where 0𝑁×𝑁 is an 𝑁 × 𝑁 matrix with zero in all entries. Now
we take a closer look at the asymptotic behaviour whenever|𝑧| → ∞.

Theorem 5. Let L be a positive stable, diagonalizable matrix.
For |𝑧| → ∞ the second Kummer function behaves as

U (L, 𝑏I, 𝑧) ∼ |𝑧|−L . (46)

Proof. We proceed in a similar way to the classical case (see
[21, p. 58]). Fix 𝑅 > 0. We define a contour integral

I𝑅 = 12𝜋𝑖⋅ ∮
C+
𝑅

Γ (−𝑠) Γ (L + 𝑠I) Γ (L + (1 − 𝑏 + 𝑠) I) |𝑧|−𝑠 𝑑𝑠 (47)
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where the curveC+𝑅 is constructed such that all poles of Γ(−𝑠)
lie inside and the poles of Γ(L + 𝑠I) and Γ(L + (1 − 𝑏 + 𝑠)I)
outside. This is possible, because examining the residues of
the Gamma matrix function, we getΓ (L + 𝑠I) = ∫∞

0
𝑒−𝑡𝑡L+𝑠I−I𝑑𝑡

= ∫1
0

∞∑
𝑘=0

𝑡L+(𝑠+𝑘−1)I (−1)𝑘𝑘! 𝑑𝑡
+ ∫∞
1

𝑒−𝑡𝑡L+𝑠I−I𝑑𝑡
= ∞∑
𝑘=0

∫1
0

𝑒(L+𝑠I+(𝑘−1)I)ln(𝑡) (−1)𝑘𝑘! 𝑑𝑡
+ ∫∞
1

𝑒−𝑡𝑡L+𝑠I−I𝑑𝑡
= ∞∑
𝑘=0

(∫0
−∞

𝑒(L+𝑠I+𝑘I)𝑢𝑑𝑢) (−1)𝑘𝑘!+ ∫∞
1

𝑒−𝑡𝑡L+𝑠I−I𝑑𝑡
= ∞∑
𝑘=0

(−1)𝑘𝑘! (L + 𝑠I + 𝑘I)−1
+ ∫∞
1

𝑒−𝑡𝑡L+𝑠I−I𝑑𝑡.

(48)

Obviously, Γ(L + 𝑠I) has simple poles whenever det(L + (𝑠 +𝑘)I) = 0 for 𝑘 ∈ N. Hence, Γ(L+𝑠I) is singular if 𝑠 = −𝜆𝑖−𝑘 for
all eigenvalues 𝜆1, . . . , 𝜆𝑁 of L. As |I𝑅| is bounded for large|𝑧|, we can write

I = lim
𝑅→∞

I𝑅= (∞∑
𝑘=0

Γ (L + 𝑘I) Γ (1 − 𝑏 − 𝑘) (− |𝑧|)−𝑘𝑘! ) (49)

by the residue theorem. Obviously, for |𝑧| → ∞, the integral
I converges to the unit matrix. On the other hand we already
know from Lemma 4 that

I = |𝑧|LU (L, 𝑏I, 𝑧) Γ (L) Γ (L + (1 − 𝑏) I) . (50)

and, hence,

U (L, 𝑏I, 𝑧) = |𝑧|−LIΓ (L)−1 Γ (L + (1 − 𝑏) I)−1 . (51)

Moreover,Theorem 5 give us lim𝑥→∞U(L, 𝑏I, 𝑥) = 0𝑁×𝑁
for 𝑥 ∈ R, if L is positive stable and diagonalizable. Therefore,

lim
𝑥→∞

FK (𝑥) = lim
𝑥→∞

U(−12K, 12I, 𝑥22 ) = 0𝑁×𝑁 (52)

holds for negative stable matrices K.

4. The Weber Matrix Differential Equation

The Weber matrix differential equation provides us with an
example for the use of parabolic cylinder functions with
matrix parameters.

Lemma 6. The general solution of the Weber matrix differen-
tial equation𝑦 (𝑥) + (K + (12 − 𝑥24 ) I)𝑦 (𝑥) = 0, 𝑥 ≥ 0 (53)

has the form 𝑦 (𝑥) = DK (−𝑥) c0 + DK (𝑥) c1 (54)

with c0, c1 ∈ R𝑁.

Proof. First, we substitute𝑦 (𝑥) = 𝑒𝑥2/4𝑢 (𝑥) (55)

into equation (53) and obtain𝑒𝑥2/4 (𝑢 (𝑥) + 𝑥𝑢 (𝑥) + (K + I) 𝑢 (𝑥)) = 0. (56)

Multiplying the equality on both sides by 𝑒−𝑥2/4, we receive a
matrix differential equation that can be solved by a classical
power series approach. Then, we take as a solution𝑢 (𝑥) = ∞∑

𝑘=0

c𝑘𝑥𝑘, c𝑘 ∈ R
𝑁 ∀𝑘 ∈ N. (57)

If the series is a solution, then the coefficients satisfy the
recurrence relation

c𝑘+2 = 1(𝑘 + 2) (𝑘 + 1) (𝑘I − (K + I)) c𝑘, 𝑘 ≥ 0, (58)

separately for even and odd 𝑘 starting with c0, c1 ∈ R𝑁. First,
we obtain the identity

c2𝑘 = 1(2𝑘)! 𝑘−1∏
𝑗=0

(2𝑗I − (K + I)) c0,
c2𝑘+1 = 1(2𝑘 + 1)! 𝑘−1∏

𝑗=0

((2𝑗 + 1) I − (K + I)) c1 (59)

by induction and we arrive at𝑢 (𝑥)= c0 + ∞∑
𝑘=1

1(2𝑘)! 𝑘−1∏
𝑗=0

(2𝑗I − (K + I)) 𝑥2𝑘c0 + 𝑥c1
+ ∞∑
𝑘=1

1(2𝑘 + 1)! 𝑘−1∏
𝑗=0

((2𝑗 + 1) I − (K + I)) 𝑥2𝑘+1c1,𝑥 ≥ 0.
(60)
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Using the identity

𝑘−1∏
𝑗=0

(2𝑗I − (K + I)) = 22𝑘 (−12 (K + I))
𝑘
,

𝑘−1∏
𝑗=0

((2𝑗 + 1) I − (K + I)) = 22𝑘 (12 (I − (K + I)))
𝑘
, (61)

we finally write𝑢 (𝑥) = 1𝐹1 (−(K + I)2 ; 12I; 𝑥22 ) c0

+ 𝑥 1𝐹1 (12 (I − (K + I)) ; 32I; 𝑥22 ) c1

(62)

for 𝑥 ≥ 0. Choosing the constants
c0 = Γ (12) Γ (12 (I − K))−1 c̃0,
c1 = Γ (−1/2)√2 Γ (−12K)−1 c̃0, (63)

we observe that FK(𝑥) solves equation (56). Obviously, FK(−𝑥)
is another solution and we write𝑢 (𝑥) = FK (−𝑥) c̃0 + FK (𝑥) c̃1. (64)

A proper choice of the constants and a resubstitution give us
the desired result.

5. Conclusions

Our analysis of the asymptotic behaviour of the second
Kummer function with matrix parameters may help to
understand better the asymptotic behaviour of other matrix
special functions.Themethod is a generalization of the classi-
cal Mellin-Barnes approach that is also used to analyse the
properties of other special functions such as the Gauss hyper-
geometric function. Moreover, matrix special functions have
an interesting application inmathematical finance. In overall,
our findings might be useful to develop new regime switching
models in an Ornstein-Uhlenbeck setting.
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