Hindawi

Abstract and Applied Analysis

Volume 2018, Article ID 7034124, 8 pages
http://dx.doi.org/10.1155/2018/7034124

Research Article

Generalized Fractional Integral Operators Involving

Mittag-Leffler Function

Hafte Amsalu@® and D. L. Suthar

Department of Mathematics, Wollo University, PO. Box 1145, Dessie, Ethiopia

Correspondence should be addressed to Hafte Amsalu; yohanahafte@gmail.com

Received 2 March 2018; Accepted 11 April 2018; Published 3 June 2018

Academic Editor: Khalil Ezzinbi

Copyright © 2018 Hafte Amsalu and D. L. Suthar. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to study various properties of Mittag-Leffler (M-L) function. Here we establish two theorems which give the
image of this M-L function under the generalized fractional integral operators involving Fox’s H-function as kernel. Corresponding
assertions in terms of Euler, Mellin, Laplace, Whittaker, and K-transforms are also presented. On account of general nature of M-L
function a number of results involving special functions can be obtained merely by giving particular values for the parameters.

1. Introduction and Preliminaries

M-L Function. In 1903, Mittag-Leffler [1] introduced the
function E, (z), defined by

o) 1 . .
E)L (Z) = ;mz ()t € C) ; R (A) > 0. (1)

A further, two-index generalization of this function was given
by Wiman [2] as

e 1

Erp2) = ,;,r (An+ ) 2

(A, Be0), (2)
where R(A) > 0 and R(pB) > 0.

By means of the series representation a generalization of
M-L function (2) is introduced by Prabhakar [3] as

S G))
Y _ _ \P'Jn _n
Eip () = nz::‘)l“ (An+ B) R )

where A, 3,y € C (R(A) > 0). Further, it is an entire function
of order [R(M)] 7"

Generalized Fractional Integral Operator. Now, we recall
the definition of generalized fractional integral operators

involving Fox’s H-function as kernel, defined by Saxena and
Kumbhat [4] means of the following equations:

RELf ) = ra ot [ o -
0
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where U and V represent the expressions
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respectively, with 7,0 > 0. The sufficient conditions of
operators are given below:
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(i) R(u + r7(by/B)) > -q"'s Rl + roby/B)) > -q”*
R(e+a+r7(b;/B;))) > -p L (G=1,...,m);

(iii) f(x) € Lp(0,00);

(iv) |argk| < Am/2,A > 0,

where A = ZJ 1 B; Z] mil Bj+z;'1:1 Aj_25:n+1 Aj>
0.

An interest in the study of the fractional calculus associated
with the Mittag-Lefller function and H-function, its applica-
tion in the form of differential, and integral equations of, in
particular, fractional orders (see [5-10]).

H-Function. Symbol H,"(x) stands for well known Fox H-
function [11], in operator (4) and (5) defined in terms of
Mellin-Barnes type contour integral as follows:

(a4,) | _ 1
H™ (z) = H™" [z | VPP :| = J x (s)2'ds, (7)
pa P
(bpBy) | 27
where
o= H;.';lr(b]. +B;s) [TL T (1-a,— Ays) ©
1P:n+1r (a,- + A,-s) ?:m-f—lr (1 - bj - BJ'S)

mn,p,q € Ngwith1 <m <q,0<n<p A,B € R,
a,b; € RyorC,i=1,2,...,p;j=1,2,. ..,qsuchthatA (b;+
k) #Bj(a;—1-1) (k,] € Npsi=1,2,...,mj= 1,2,...,m).

For the conditions of analytically continuations together
with the convergence conditions of H-function, one can see
[12, 13]. Throughout the present paper, we assume that these
conditions are satisfied by the function.

2. Images of M-L Function Involving the
Generalized Fractional Integral Operators

In this section, we consider two generalized fractional inte-
gral operators involving the Fox’s H-function as the kernels
and derived the following theorems.

Theorem 1. Let A, 3,9,y € C, x > 0, R(A) > 0, R(Y) > 0,
f(x) € Lp(0,00), 1 < p < 2, |argk| < Am/2, A > 0,a €
C; then the fractional integration RiY of the product of M-L
function exists, under the condition

q
bj -1,
m<”+”(3_j)>>_q ’ 9
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then there holds the following formula:

RYY ( £ lEyl; (at” )) (x)

_ foi (Y)n (ax

AN Hm,n+2 k
ST (An+ ) n! ) |

p+2,g+1
(10)

(p+9+1+wn)
—7 |, (-av)

(“p’Ap)’(l - -
(_M Cwre U) (6,8,

r

Proof. Let € be the left-hand side of (10); using (3) and (4), we
have

0= rx—p.—roc—l J-O ty+9—l (xr _ tr)fx
(1)
), (ax”)" dt.

1 s
2mi JLX(S) kD) dSF(/\n + ) n!

Tr1

Changing the order of the integration valid under the condi-
tion given with the theorem, we obtain

_ —y nxloo 1
- Z /\n+ﬁ 2711.[)(()
(12)

X tr otvus
. ksxrtxfrrs {J ty+9+vn+rrsfl (1 _ 7) dt} ds.
0 X

(1/r)

Let the substitution ¢ /x” = w; then t = xw'"’"” in the above

term; we get

_ 91 Mxvn o
=x ,;,F(A”*’ﬂ)”!ZniJ-LX(S)kx .
13

y {Jl w(l/r)(y+9+vn+r'rs)—1 (1 _ w)tx+vs dw} ds.
0
Using beta function for (13), the inner integral reduces to

_ 91 VHL s
Zl"()Ln+,8)n' ax’) 2m’LX(S)k

(14)

I“(((/A+9+vn)/r)+rs)1"(cx+1+vs)d
T(((u+9+wn)/r)+a+1+(t+0)s) )

Interpreting the right-hand side of (14), in view of the
definition (7), we arrive at the result (10). O

Theorem 2. Let A, 3,9,y € C, x > 0, R(A) > 0, R(Y) < 1,
f(x) € Lp(0,00), 1 < p < 2, |argk| < Am/2, A > 0, and
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a € C; then the fractional integration K7 of the product of
M-L function exists, under the condition

pliHq =1,

b.
m<a+rv(—]>>>—q_l,
B; (15)
Rle+ta+rr ﬁ >-p!
B; p

and then the following formula holds:

K (°E) 5 (at™)) (x)

_9 —1/ n m,n+2
Z /\n+ﬂ nl ) XHpge | K 16

(e+9+wn) T> (o 0) ]

(ap’Ap)’<1 -

-
(—oc - (8+9—+Wl),‘r + v) , (bq,Bq)

r

Proof. Let g be the left-hand side of (16); using (3) and (5), we
have

o= rxe Jjo tfsf{%rocfl (tr _ xr)oc
(1),
oL (An+ B)n!

17)

o [ @y dsz (ax™)" dt.

Changing the order of the integration valid under the condi-
tion given with the theorem statement, we obtain

= (y) 1 —S —rTS
- Z1"()m+/3)n‘ 2mi .[ X (s

o) xr a—vs
% {J- tfefsfvnwrsfl (1 _ _) dt} ds.
x tr

Letting the substitution x"/t" = u, then t = x/uV" in the
above term and, using beta function, we get

(18)

N g

I'(((e+9+wn)/r)—1s)T(ax+1—vs)
TF'(((e+9+wm)/r)+a+1—(t+v)s)

(19)

Interpreting the right-hand side of (19), in view of definition
(7), we arrive at the result (16). O

3. Integral Transforms of Fractional Integral
Involving M-L Function

In this section, Mellin, Laplace, Euler, Whittaker, and K-
transforms of the results established in Theorems 1 and 2 have
been obtained.

Euler Transform (Sneddon [14]). The Euler transform of a
function f(t) is defined as

1
B{f ();a,b} = L (L - 0P (), oo

a,beC, R >0, R®) >0.

Theorem 3. Let A, 3,9,y,¢,d € C, R(c) > 0, R(d) > 0,
RO) >0, RA) >0, p +q " = 1; f(x) € Lp(0,00),1< p <
2, largk| < Am/2, A >0, p ' +q ' = LR+ rz(b;/B))) >

—q_l; R(x + rv(bj/Bj)) > —q_l; (j=1,...,m); then

B (R (£ E) 5 ar”)) s

OZO: (),(@")  T(+9-1+wn)
IF(An+B)n!T(c+d+9—1+wn)

}:r(d)

n=0

Hp k] @

(ap,Ap),(l . M)(“)

9+1
<_M _“,T+v> ’(bq’B[])

r

Proof. Using (10) and (20) gives

poc (9-1 py v < (y), @
SRR

mn+2
X Hp+2,q+1 k |

(22)
(ap’Ap) J (1 -

<_w_a,f+v),(b,3q)

ordeiom ) oy

r q

1
% J tc+9+vn—1—1 (1 _ t)d—l dr
0



_i (1), (@"'T(c+9+wm—-1)T(d)
ST (Mn+p) n! T(c+d+9+wm—1)

n=0

mn+2
X Hp+2,q+1 k |

(23)

(ap’Ap) , (1 _ M,.L-) , (o, v)

V+1
(_M_a,m),(bq,Bq)

r

Now, we obtain the result (23). This completes the proof of
the theorem. O

Theorem 4. Let A, 3,9,y,¢,d € C,a > 0, R(c) > 0, R(d) >
0,RN) >0, R1-9) <1, p ' +q" =1 f(x) € Lp(0,00),
1<p<2argkl < At/2,A>0,p +q " = L Re+a+
r;(bj/Bj)) >-p 5 R(a+rvb;/B)) > -q 5 (j=1,...,m);
then

B {K;”; (t*SEK’ﬁ (at*”)) .c, d} -T(d)

o I'(c—9-wn)
I'(c+d-9-wn)

. Hm,n+2 k | (24)

(), (1- 20

<—<x - w, T+ v) R (bq, Bq)

r

Proof. In similar manner, in proof of Theorem 3, we obtain
the result (24). ]

Mellin Transform (Debnath and Bhatta [15]). The Mellin
transform of a function f(t) is defined as

M{f(t)}(s)zJ-Ooots’lf(t)dt, R(s)>0. (25

Theorem 5. All conditions follow from that stated in
Theorem 1 with R(s) > R(v); the following result holds:

i (g ) 0= B e @)

n=0
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m,n+2
x Hp+2,q+1 k l

(p+9+1+wn)

(aP,AP),<1— T | (—a,v)

-
9+1
<_M_a,m),(bq,3q)

’
N
(s+9+wm-1)
(26)
Proof. From (10) and (25), it gives
MARES (£ E] 4 ()} () = f—(”" (a")
or B a ZT (An+ p)n!
% Hm,n+2 k |
p+2,g9+1
(27)
(p+9+1+wm)
A1 -—————,7 ], (-0,
(ap p) ( " 7|, (-, 0)
(p+9+1+wn)
(—% -a, T+, (bq,Bq)
M (t9+m_1)
Now, evaluating the Mellin transform of t”*”"~! using formula
given by Mathai et al. [16]. we arrive at (26). O

Theorem 6. All conditions follow from what is stated in
Theorem 2 with R(1 — 9) < 1, R(s) > R(v); the following
result holds:

M {Ki‘: (tiSEK’ﬁ (atw))} (s)

& ()))n n mn+
= ;W (@") x Hyly | K|
(28)
(aP,AP), (1 - w,r) , (o, v)

-
(—oc - M,T + v> , (bq,Bq)

r

[ S
(s—e-9-w)

Proof. In similar manner, in proof of Theorem 5, we obtain
the result (28). ]
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Laplace Transform (Sneddon [14]). The Laplace transform of
a function f(t), denoted by F(s), is defined by the equation

F(s) = (Lf) (s) = L{f (1);s) = Loo () dt, -

R (s) > 0.

Provided the integral (29) is convergent and that the function,
f(¢), is continuous for t > 0 and of exponential order as t —
00, (29) may be symbolically written as

L{f®t);s}
=L Y {F(s);t}.

F(s) =

or f(t)

The following result is well known:

(30)

JOO St gy = %) R(p)>1 R(s)>1. (3D
0

Theorem 7. All conditions follow from what is stated in
Theorem I with R(s) > 0 and RO + vn) > 0; the following
result holds:

LR (¢ (o) sof

_ 79 -y
ZF(An+[3 n'(as YT (9 +vn)
x Hyot | kel (32)

(py+9+1+wn)
—7 |, (%)

(“p’Ap)’(l_ ;
<_w Cart U),(bq,Bq)

r

Proof. we can develop similar line by using result of Laplace
integral (31). O

Theorem 8. All conditions follow from what is stated in

Theorem 2 with R(s) > 0 and R(1 -9 —wn) > 0; the following
result holds:

L {KW (t EX;; (at_v))} (s)

(as™)'T(1-9-wn)

EENEL
ZI‘ /\n+ﬁ

<H | ) o

(aP’AP)’<1 - M—+m),r>,(—(x,v)

-
(e+9+wn)
(ca- €200 ) (o)

Proof. In a similar manner, in proof of Theorem 7, we obtain
the result (33). O

Whittaker Transform (Whittaker and Watson [17]). Due to
Whittaker transform, the following result holds:

o0
J' o241
0

_ Tr12+w+T1/2-w+{)
F(1-x+¢) ’

W, (t)dt
(34)

where R(w={) > —1/2and Wx,w(t) is the Whittaker confluent
hypergeometric function:

I'(—2w)

Wae () = (1/2-x - w) My ()
(35)
I Qw)
m -0 (2)s
where M, ,(2) is defined by

- 1
M, (2) = Z/Peet B (5 +w-y2w+ l;z). (36)

Theorem 9. Following what is stated in Theorem I for condi-
tions on parameters, with Rlw + (9 + { +vn—1)] > 1/2, then
the following result holds:

LOO efwt/zt(flwxyw (¢t) { RIS (te’l E} P (at”))} dt

1 9- (Z An+ﬁ)n' (P—V)

XF(w+9+(+vn—1/2)F(9—w+(§+vn—1/2)
T(O-x+{+wn)

(37)

m,n+2
XHpl 0 | K

(ap>Ap) , (1 - M’T> ,(—a,v)

(_w_“,ﬂv>,(b,34)

r 9

Proof. Using (10) and (34), it gives

JOOO e—fpt/zt(—lwx)w (o) { R (t‘g’1 E} s (aty))} dt



(V) (@) 2
- X H;n+g+q+1

k|

(aP’AP)’(l _ (‘u+9+—rl+vn),_[) , (—a, v)

V+1
(_u_a,m>,(bq,3q)

r

(o)
—t/2 (9 -1)-1
X L e PPOTm Ty (gt dt

(38)
Assume that t = k, = dt = dk/¢; we get
© (V) (a)n +2
— n Hm,n k
,;)r (An+ B)nt” Pr2att |
(u+9+1+wn)
(aP,AP) N1-——F7 ), (-, 0) (39)

r

r
9+1
(_M -, T+ U) ’(bq)Bq)

% (PI—S—(—M J.O e—k/zk(9+(+vn—1)—1WX)w (k) dk.

Interpreting the right-hand side of (39), using (34), we arrive
at the result (37). O
Theorem 10. Following what is stated in Theorem 2 for condi-

tions on parameters, with R{w + (=9+{ —vn—1)] > 1/2, then
the following result holds:

o0
J o2y
0

(<pt){ (5 (7))} at

9( v
Z /\n+ﬁ )n! (a¢”)

><l“(a)—9+(—1/n+1/2)1“(—9—w+(—1/n+1/2)
F(1-9-x+{-n)

(40)

mn+2
XHy e | K

(ap,Ap),<1 - (8+9+m),r>,(—(x,v)

(e+9+wn)
(—cx— %,T+U>,(bq,3q)

Proof. In a similar manner, in proof of Theorem 9, we obtain
the result (40). ]
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K-Transform (Erdélyi et al. [18]). This transform is defined by
the following integral equation:

R, [fx);p] = g[pv]
© (41)
= |, ()" () £ ()

where R(p) > 0; K,(x) is the Bessel function of the second
kind defined by ([18], p. 332)

/2
K, (2) = (%)1 W, (22), (42)

where W, ,(-) is the Whittaker function defined in Erdélyi et
al. [18].

The following result given in Mathai et al. ([16], p. 54, eq.
2.37) will be used in evaluating the integrals:

J 77K, (ax)dx = 2°a pF<P+U>,
0 2 (43)

R(a)>0; R(p+v)>0.

Theorem 11. Following what is stated in Theorem 1 for condi-
tions on parameters, with R(w) > 0; R((p+9+vn—-1)x€) > 0,
then the following result holds:

LOO tp_lKe (wt) {Rg:‘ (tS_IEK,p (at"))} dt
+ 2y
2P9-3 (1PS)ZF(AH+,B)”'< <;>>

r((p+9+vn—1)i€)

2

X H;n;g:rqil k| (44)

(a,A,), (1 . M)w v

<_w—cx,r+v>’(b B,)

r q

Proof. Using (10) and (44), it gives
00 w5y
L P 'K, (wt) {Rz;j‘ (ts‘l K, (atv)>]» dt

< (y) (a) m,n+2
Z T (An+ B)n! XHplogn | K1

(45)

(u+9+1+wn)
—7 |, (-, 0)

(“p’Ap)’(l - ;
(M _a,,+v),(bq,3q)

r

o
x J t(p+9+vn—1)—1K€ (wt) dt,
0
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and we get

Y) (a) mn+2 k|
I (An+B)n! Hpaqen

M8

n:O

(aP,AP),<1 - M,T),(—(x, v) (46)

(-M_a,ﬂv),(b,gq)

r q

x 2p+9+vn—3w(1—p—9—m)r ( (P +9+ ’)2’1 - 1) * €) )

Interpreting the right-hand side of (46), we arrive at the result
(44). O

Theorem 12. Following what is stated in Theorem 2 for condi-

tions on parameters, with R(w) > 0; R((p -9 —wn) £ €) > 0,
then the following result holds:

JO 'K, (wt){ ”‘(t EKﬁ(at’y))}dt

)

n=0

(p-9-w)+e o (47)
r(f X Hp+2,+qz+1 k|
(e+9+wn) )
)A > 1_ ) > \T WK,
(ap p) < " 7|, (-, 0)

(e+9 )
(—oc— ¥,1+v>,(bq,3q)

Proof. In a similar manner, in proof of Theorem 11, we obtain
the result (47). O

4. Properties of Integral Operators

Here, we established some properties of the operators as
consequences of Theorems1and 2. These properties show
compositions of power function.

Theorem 13. Following all the conditions on parameters as
stated in Theorem 1 with R(y + 9) > 0, then the following
result holds true:

xVRET [ £ lEVﬁ (atv)] (x)
(48)
— RI‘ Yo [t‘//*s IEY ( )] (x).

7
Proof. From (10), the left-hand side of (48), we have
R [E7EY  (at)] ()
S (a) 9+w+vn—1 m,n+2
g
(49)
+9+1+
) (10T
r
(p+9+1+wn) '
(—% —oT+V |, (bq,Bq)
and again, by (10), the right-hand side of (48) follows:
R# Yo [t‘//*s IEY ( )] (x)
© Y) (a 9+1//+1m—1 m,n+2
H" k
r;)r /\n + [; x pt2,g9+1 |
(50)

(ap’Ap) , <1 _ (M+9+—r1+m)’1>,(_a) v)

<_w_“,m>,(b,3q)

r q

It seems that Theorem 13 readily follows due to (49) and (50).
O

Theorem 14. Following all the conditions on parameters as

stated in Theorem 2 with R( + 9) > 0, then the following
result holds true:

x VKLY [t EKﬁ (at_")] (x)

(51)
= K& [t_9_wa (at_v)] (x)
X,r LB :
Proof. From (12), the left-hand side of (51), we have
X YKE (OB 5 (at )] (0
_ —w—S—vn mn+2
Z 4T (An + /3) n XHyiagn | K|
(52)

(aP,AP), (1 - (8+9+Wl),r>,(—oc,v)

(e+9+wvn)
(—oc— %,T+U>,(bq,3q)



Again by (12), the right-hand side of (51) follows:

K [£9VE (at™)] ()

< (@)"

ZF()m+,8)n'

—w—s—m m,n+2
x Hp+2,q+1 k |

(53)

(ap,Ap), 1- (€+9—+W),T),(—(x,v)

-
(e+9+wvn)
(ca- €220 ) (o,

It seems that Theorem 14 readily follows due to (52) and (53).
O

5. Conclusions

In this article, we have investigated and studied two classes
of generalized fractional integral operators involving Fox’s
H-function as kernel due to Saxena and Kumbhat which
are applied on M-L function. We discussed the actions of
fractional integral operators under Euler, Mellin, Laplace,
Whittaker, and K-transforms and results are given in better
pragmatic series solutions. The majority of the results derived
here are general in nature and compact forms are fairly
helpful in deriving a variety of integral formulas in the theory
of integral operators which arises in a range of problems of
applied sciences like kinematics, diffusion equation, kinetic
equation, fractal geometry, anomalous diffusion, propagation
of seismic waves, turbulence, etc. We may obtain other special
functions such as M-L function and Bessel-Maitland function
(see, e.g., ([19-21]) as its special cases and, therefore, various
unified fractional integral presentations can be obtained as
special cases of our results.
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