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In this paper, we consider a general symmetric diffusion semigroup {𝑇𝑡𝑓}𝑡≥0 on a topological space 𝑋 with a positive 𝜎-finite
measure, given, for 𝑡 > 0, by an integral kernel operator: 𝑇𝑡𝑓(𝑥) ≜ ∫

𝑋
𝜌𝑡(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦. As one of the contributions of our paper,

we define a diffusion distance whose specification follows naturally from imposing a reasonable Lipschitz condition on diffused
versions of arbitrary bounded functions.We next show that the mild assumption wemake, that balls of positive radius have positive
measure, is equivalent to a similar, and an even milder looking, geometric demand. In the main part of the paper, we establish that
local convergence of 𝑇𝑡𝑓 to 𝑓 is equivalent to local equicontinuity (in 𝑡) of the family {𝑇𝑡𝑓}𝑡≥0. As a corollary of our main result, we
show that, for 𝑡0 > 0,𝑇𝑡+𝑡0𝑓 converges locally to𝑇𝑡0𝑓, as 𝑡 converges to 0+. In the Appendix, we show that for very general metricsD
on 𝑋, not necessarily arising from diffusion, ∫

𝑋
𝜌𝑡(𝑥, 𝑦)D(𝑥, 𝑦)𝑑𝑦 󳨀→ 0 a.e., as 𝑡 󳨀→ 0+. R. Coifman andW. Leeb have assumed a

quantitative version of this convergence, uniformly in 𝑥, in their recent work introducing a family of multiscale diffusion distances
and establishing quantitative results about the equivalence of a bounded function 𝑓 being Lipschitz, and the rate of convergence of𝑇𝑡𝑓 to 𝑓, as 𝑡 󳨀→ 0+. We do not make such an assumption in the present work.

1. Introduction

Diffusion semigroups play an important role in analysis, both
theoretical and applied. Diffusion semigroups include the
heat semigroup and, more generally, as discussed in, e.g.,
[1], arise from considering large classes of elliptic second-
order (partial) differential operators on domains in Euclidean
space or on manifolds. For examples of theoretical results
involving diffusion semigroups, the interested reader may
refer to Sturm [2] and Wu [3]. Some recent applications
of diffusion semigroups to dimensionality reduction, data
representation, multiscale analysis of complex structures, and
the definition and efficient computation of natural diffusion
distances can be found in, e.g., [4–11].

A particular important issue in harmonic analysis is to
connect the smoothness of a function with the speed of
convergence of its diffused version to itself, in the limit as

time goes to zero. For the Euclidean setting, see, for example,
[12, 13]. In order to consider the smoothness of diffusing
functions inmore general settings, a distance defined in terms
of the diffusion itself seems particularly appropriate.

Defining diffusion distances is of interest in applica-
tions as well. As discussed in [5], dimensionality reduction
of data and the concomitant issue of finding structures
in data are highly important objectives in the fields of
information theory, statistics, machine learning, sampling
theory, etc. It is often useful to organize the given data as
nodes in a weighted graph, where the weights reflect local
interaction between data points. Random walks, or diffu-
sion, on graphs may then help understand the interactions
among the data points at increasing distance scales. To even
consider different distance scales, it is necessary to define
an appropriate diffusion distance on the constructed data
graph.
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2 Abstract and Applied Analysis

In this paper, we consider a general symmetric diffusion
semigroup {𝑇𝑡𝑓}𝑡≥0 on a topological space 𝑋 with a positive𝜎-finite measure (i.e., 𝑋 is a countable union of measurable
setswith finitemeasure), given, for 𝑡 > 0, by an integral kernel
operator: 𝑇𝑡𝑓(𝑥) ≜ ∫

𝑋
𝜌𝑡(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦. As part of their work

in [7, 11], Coifman and Leeb introduce a family of multiscale
diffusion distances and establish quantitative results about
the equivalence of a bounded function 𝑓 being Lipschitz,
and the rate of convergence of 𝑇𝑡𝑓 to 𝑓, as 𝑡 󳨀→ 0+ (we
are discussing some of their results using a continuous time𝑡 for convenience; most of Coifman’s and Leeb’s derivations
are done for dyadically discretized times. Moreover, most
of the authors’ results are in fact established without the
assumption of symmetry and under the weaker condition
than positivity of the kernel, namely, an appropriate 𝐿1
integrability statement (see [11])). To prove the implication
that Lipschitz implies an appropriate estimate on the rate
of convergence, Coifman and Leeb make a quantitative
assumption about the decay of

sup
𝑥

∫
𝑋

󵄨󵄨󵄨󵄨𝜌𝑡 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 𝑑 (𝑥, 𝑦) 𝑑𝑦, as 𝑡 󳨀→ 0+, (1)

for their distances 𝑑, namely, that

sup
𝑥

∫
𝑋

󵄨󵄨󵄨󵄨𝜌𝑡 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 𝑑 (𝑥, 𝑦) 𝑑𝑦 ≤ 𝐶𝑡𝛼, (2)

for some 𝛼 > 0. The authors show that their decay
assumption holds for semigroups arising in many different
settings (for which suitable decay and continuity assumptions
are made on diffusion kernels relative to an intrinsic metric𝐷 of the underlying space), and even for some examples
of nonsymmetric diffusion kernels. Coifman and Leeb also
establish that (2) above, in the case of positive diffusion
kernels, is in fact equivalent to their conclusion about the
rate of convergence of 𝑇𝑡𝑓 to 𝑓, as 𝑡 󳨀→ 0+, for a Lipschitz
function 𝑓. Additionally, Coifman and Leeb show that, in
some of the settings they consider (with decay and continuity
assumptions on the diffusion kernels relative to an intrinsic
metric), their multiscale diffusion distance is equivalent to
(localized) 𝐷(𝑥, 𝑦)𝛼, where 𝐷(𝑥, 𝑦) is the intrinsic metric of
the underlying space and 𝛼 is a positive number strictly less
than 1.The authors emphasize that 𝛼 cannot be taken to equal
1.

In the present paper, we introduce a new family of
diffusion distances generated by the diffusion semigroup{𝑇𝑡𝑓}𝑡≥0. We provide several reasons as to why we think
our definition is natural; in particular, we show that, for a
convolution diffusion kernel on R𝑛, we achieve 𝛼 = 1 in the
discussion just above; i.e., we can recover (local) Euclidean
distance to the “full” power 1.

The implication established in [7, 11] that smoothness of𝑓 implies control of the speed of convergence of 𝑇𝑡𝑓 to 𝑓
seems to us to be a more notable result than the converse
(which the authors establish without assuming the decay of
(1)). However, if 𝑓 is Lipschitz for the multiscale diffusion
distance introduced in [7, 11], as the authors themselves point
out their assumed estimate (2) almost tautologically leads to
the desired estimate for the speed of convergence of 𝑇𝑡𝑓 to 𝑓.

The main reason for our current work is that we wish
to avoid making any assumptions about the decay of (1)
and still establish a correspondence between some version of
smoothness of a function 𝑓 and convergence of 𝑇𝑡𝑓 to 𝑓, as𝑡 󳨀→ 0+. Our main contribution is to establish, under almost
no assumptions, that local equicontinuity (in 𝑡) is equivalent
to local convergence; i.e., local control of the differences𝑇𝑡𝑓(𝑥) − 𝑇𝑡𝑓(𝑦) for all 𝑡 small is equivalent to local control
of the differences 𝑇𝑡𝑓(𝑥) −𝑓(𝑥) for all small 𝑡. Here “local” is
defined relative to a representative of our family of proposed
diffusion distances.

Our paper is organized as follows. Following a notation
and assumptions section (Section 2), we define our version of
a natural diffusion distance 𝐷𝑔 in Section 3:

𝐷𝑔 (𝑥, 𝑦) ≡ sup
0<𝑡≤1

𝑔 (𝑡) 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1 , (3)

for 𝑔 a bounded, nonnegative, increasing function on (0, 1],
with lim𝑡󳨀→0+𝑔(𝑡) = 0. We are led to our definition by
requiring that a diffusion distance has the property that, for
all functions 𝑓 bounded inmagnitude by 1,𝑇𝑡(𝑓) be Lipschitz
with respect to the distance, independent of the particular𝑓 (of course, we expect the Lipschitz constant to grow as𝑡 goes to 0). This requirement arises from the intuitively
reasonable demand that diffusion be smoothing in some
sense. We then discuss some other reasons why our resulting
distance is natural. In particular, for diffusion semigroups
with convolution kernels on R𝑛 (this class includes the
Poisson and heat kernels), our distance is equivalent to (local)
Euclidean or sub-Euclidean distances for certain choices of
the function 𝑔.

In Section 4,wemake the assumption that balls of positive
radius with respect to the distance𝐷𝑔 have positive measure.
We show there is an equivalent topology, which does not
depend on the function 𝑔, for which a corresponding state-
ment about positive measure is equivalent to our assumption.
The latter requirement, in turn, seems to be a mild and
reasonable one.

In the main section, Section 5, we define our version of
local convergence of𝑇𝑡(𝑓) to𝑓, as well as local equicontinuity
of the family {𝑇𝑡𝑓}𝑡≥0. Both definitions use our distance 𝐷𝑔.
We then establish that local convergence is equivalent to local
equicontinuity. We next prove a corollary which extends an
a.e. convergence result of Stein in [1]: for 𝑡0 > 0, 𝑇𝑡+𝑡0𝑓
converges locally to 𝑇𝑡0𝑓, as 𝑡 converges to 0+.

In the Appendix, we show that, for very general metrics
D on 𝑋, not necessarily arising from diffusion,

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0 a.e., as 𝑡 󳨀→ 0+. (4)

This result is clearly a weaker statement than (2), but has the
advantage of holding under virtually no assumptions.

2. Notation and Assumptions

Let𝑋 be a topological space equipped with a positive 𝜎-finite
measure. For 𝑡 > 0, 𝜌𝑡(𝑥, 𝑦)will denote a symmetric kernel on
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𝑋×𝑋, with 𝜌𝑡(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦. We assume that 𝜌 satisfies
the semigroup property:

∫
𝑋
𝜌𝑡 (𝑥, 𝑢) 𝜌𝑠 (𝑢, 𝑦) 𝑑𝑢 = 𝜌𝑡+𝑠 (𝑥, 𝑦) , (5)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝑠, 𝑡 > 0. In addition, we assume

∫
𝑋
𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦 = 1, (6)

for all𝑥 ∈ 𝑋 and all 𝑡 > 0.Wewill refer to a kernel𝜌𝑡 satisfying
the conditions above as a symmetric diffusion kernel (at time𝑡). A typical example for 𝜌𝑡 is the heat kernel on a Riemannian
manifold (see [14], for example).

For a function 𝑓, say in 𝐿2(𝑋) (or more generally, for any𝑓 where the following definition makes sense), we define the
symmetric diffusion operator 𝑇𝑡, for 𝑡 > 0, by

𝑇𝑡𝑓 (𝑥) ≜ ∫
𝑋
𝜌𝑡 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦. (7)

We define 𝑇0 to be the identity map. Note that, for all 𝑡,‖𝑇𝑡𝑓‖𝐿1 ≤ ‖𝑓‖𝐿1 , by Fubini’s theorem, that clearly ‖𝑇𝑡𝑓‖𝐿∞ ≤‖𝑓‖𝐿∞ , and hence ‖𝑇𝑡𝑓‖𝐿𝑝 ≤ ‖𝑓‖𝐿𝑝 , for 1 ≤ 𝑝 ≤ ∞, by
interpolation.

To avoid degeneracy, e.g., each 𝑇𝑡 being the averaging
operator on a space of finite mass, we make an additional
assumption: 𝑇𝑡(𝑓) 󳨀→ 𝑓 in 𝐿2, as 𝑡 󳨀→ 0+.

The symmetric diffusion operator 𝑇𝑡 has the following
properties of a symmetric diffusion semigroup:

(i) 𝑇0 is the identity
(ii) 𝑇𝑡+𝑠 = 𝑇𝑡 ∘ 𝑇𝑠, for all 𝑠, 𝑡 ≥ 0
(iii) ‖𝑇𝑡(𝑓)‖𝐿𝑝 ≤ ‖𝑓‖𝐿𝑝 , for 1 ≤ 𝑝 ≤ ∞
(iv) 𝑇𝑡 is a self-adjoint operator on 𝐿2(𝑋)
(v) 𝑇𝑡(𝑓) 󳨀→ 𝑓 in 𝐿2, as 𝑡 󳨀→ 0+
(vi) 𝑇𝑡(𝑓) ≥ 0 if 𝑓 ≥ 0
(vii) 𝑇𝑡(1) = 1

See Stein’s book [1], in which the author derives various har-
monic analysis results for symmetric diffusion semigroups
without explicitly using kernels.

3. A Natural Diffusion Distance

We now define our diffusion distance.

Definition 1. For a bounded, nonnegative, increasing func-
tion 𝑔 on (0, 1], with lim𝑡󳨀→0+𝑔(𝑡) = 0, and 𝑔 strictly positive
on the interval (0, 1], define the distance 𝐷𝑔 by

𝐷𝑔 (𝑥, 𝑦) ≡ sup
0<𝑡≤1

𝑔 (𝑡) 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1 . (8)

It is clear that the distance 𝐷𝑔 satisfies the triangle
inequality. Note that the restriction that 𝑔 is bounded in the
above supremumhas the effect ofmaking all “large” distances
comparable to a constant, but this is not a drawback for
smoothness considerations.

We would now like to discuss why we are using this
particular diffusion distance and why we think it is a natural
choice. Our starting point is the desire that, for a reasonable
diffusion distance 𝑑(⋅, ⋅), 𝑇𝑡(𝑓) should be “smooth” for 𝑡 >0, even for “rough” functions 𝑓. This intuitive requirement
is suggested by the idea that a diffusion semigroup be
smoothing, in some sense. It would further be natural that
the smoothness decays, for a general 𝑓, as 𝑡 󳨀→ 0+. We are
thus led to impose a Lipschitz-like requirement, namely, that,
for a diffusion distance 𝑑(⋅, ⋅), and for 𝑡 > 0,

𝑐 (𝑡) ≡ sup
𝑥 ̸=𝑦,‖𝑓‖𝐿∞=1

󵄨󵄨󵄨󵄨𝑇𝑡 (𝑓) (𝑥) − 𝑇𝑡 (𝑓) (𝑦)󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝑦) < ∞. (9)

It is easy to see that

𝑐 (𝑡) = sup
𝑥 ̸=𝑦

󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1𝑑 (𝑥, 𝑦) . (10)

Note that, for any 𝑥 and 𝑦, ‖𝜌𝑡(𝑥, ⋅) − 𝜌𝑡(𝑦, ⋅)‖𝐿1 is decreasing
in 𝑡, since, for ℎ > 0,

󵄩󵄩󵄩󵄩𝜌𝑡+ℎ (𝑥, ⋅) − 𝜌𝑡+ℎ (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1
= ∫
𝑋

󵄨󵄨󵄨󵄨𝜌𝑡+ℎ (𝑥, 𝑢) − 𝜌𝑡+ℎ (𝑦, 𝑢)󵄨󵄨󵄨󵄨 𝑑𝑢
= ∫
𝑋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑋 (𝜌𝑡 (𝑥, V) 𝜌ℎ (V, 𝑢) − 𝜌𝑡 (𝑦, V) 𝜌ℎ (V, 𝑢)) 𝑑V󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑢
≤ ∫
𝑋

󵄨󵄨󵄨󵄨𝜌𝑡 (𝑥, V) − 𝜌𝑡 (𝑦, V)󵄨󵄨󵄨󵄨 (∫
𝑋
𝜌ℎ (V, 𝑢) 𝑑𝑢) 𝑑V

= ∫
𝑋

󵄨󵄨󵄨󵄨𝜌𝑡 (𝑥, V) − 𝜌𝑡 (𝑦, V)󵄨󵄨󵄨󵄨 𝑑V
= 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1 ,

(11)

using (5) and (6). Letting 𝑔(𝑡) = 1/𝑐(𝑡) we thus see that 𝑔 is
increasing, and from (10) we conclude that

𝑑 (𝑥, 𝑦) ≥ 𝑔 (𝑡) 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥,⋅) − 𝜌𝑡 (𝑦,⋅)󵄩󵄩󵄩󵄩𝐿1 , 𝑡 > 0. (12)

This last inequality motivates our Definition 1 of 𝐷𝑔. The
restriction to 𝑡 ≤ 1 is to ensure that 𝐷𝑔(𝑥, 𝑦) is finite for all𝑥 and 𝑦 and is not stringent, due to the fact that ‖𝜌𝑡(𝑥, ⋅) −𝜌𝑡(𝑦, ⋅)‖𝐿1 is decreasing in 𝑡 and that for smoothness purposes
we need to only concentrate on points 𝑥 and 𝑦which are near
each other.

A further indication of the naturality of our proposed
diffusion distance 𝐷𝑔 is that the 𝐿1 norm of the difference
of two probability densities, ‖𝜌𝑡(𝑥, ⋅) − 𝜌𝑡(𝑦, ⋅)‖𝐿1 , occurring
in the definition of𝐷𝑔, is the (scaled) total variation distance
between the probability distributions 𝜌𝑡(𝑥, ⋅) and 𝜌𝑡(𝑦, ⋅), i.e.,

12 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1 = sup
𝐴

󵄨󵄨󵄨󵄨󵄨𝜇𝑡,𝑥 (𝐴) − 𝜇𝑡,𝑦 (𝐴)󵄨󵄨󵄨󵄨󵄨 . (13)

Here, 𝜇𝑡,𝑥 is the measure given by 𝜇𝑡,𝑥(𝐴) = ∫
𝐴
𝜌𝑡(𝑥, 𝑢)𝑑𝑢,

and 𝜇𝑡,𝑦 is the measure given by 𝜇𝑡,𝑦(𝐴) = ∫
𝐴
𝜌𝑡(𝑦, 𝑢)𝑑𝑢
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for measurable 𝐴 ⊆ 𝑋; the supremum is taken over all
measurable 𝐴 ⊆ 𝑋 (see Chapter 4 of [15]).

As a final argument for the naturality of our proposed
diffusion distance, we calculate 𝐷𝑔 for a special case consid-
ered by the authors of [7] (for their own version of diffusion
distances). We take X = R𝑛, 𝑔(𝑡) = 𝑡𝛼, and assume that the
diffusion kernel has the form 𝜌𝑡(𝑥, 𝑦) = 𝑡−𝑛𝛽𝜙(𝑡−𝛽(𝑥 − 𝑦)).
Here, 𝛼, 𝛽 > 0 and 𝜙 is a nonnegative radial 𝐿1 function
whose gradient is also in 𝐿1. The case 𝛽 = 1/2 is for the heat
kernel (with the appropriate 𝜙), and the case 𝛽 = 1 is for the
Poisson kernel (with the appropriate 𝜙). Now,

󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1
= ∫

R𝑛
𝑡−𝑛𝛽 󵄨󵄨󵄨󵄨󵄨𝜙 (𝑡−𝛽 (𝑥 − 𝑢)) − 𝜙 (𝑡−𝛽 (𝑦 − 𝑢))󵄨󵄨󵄨󵄨󵄨 𝑑𝑢

= ∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝜙 (𝑤 + 𝑡−𝛽 (𝑦 − 𝑥)) − 𝜙 (𝑤)󵄨󵄨󵄨󵄨󵄨 𝑑𝑤,
(14)

where we made the change of variables 𝑤 = 𝑡−𝛽(𝑥 − 𝑢). Letℎ(𝑧) = ∫
R𝑛

|𝜙(𝑤+ 𝑧) −𝜙(𝑤)|𝑑𝑤.Then it is easy to see that ℎ is
radial and, for a “generic” 𝜙, we have the estimates: ℎ(𝑧) ∼ |𝑧|
if |𝑧| ≤ 1, and ℎ(𝑧) ∼ 1 if |𝑧| > 1. Here, | ⋅ | is the usual
Euclidean norm. Using this observation, and (14), we obtain
the following (for this special case).

Proposition 2. For |𝑥−𝑦| ≤ 1,𝐷𝑔(𝑥, 𝑦) ∼ |𝑥−𝑦|𝛼/𝛽 if 𝛼 ≤ 𝛽,
and𝐷𝑔(𝑥, 𝑦) ∼ |𝑥 − 𝑦| if 𝛼 ≥ 𝛽. For |𝑥 − 𝑦| > 1,𝐷𝑔(𝑥, 𝑦) ∼ 1.
Proof. Using the notation for the special case above, we need
to estimate sup0<𝑡≤1𝑡𝛼ℎ(𝑡−𝛽(𝑦 − 𝑥)).

Let us first consider the situation when |𝑥 − 𝑦| > 1. Then,
for 0 < 𝑡 ≤ 1, 𝑡−𝛽|𝑦 − 𝑥| ≥ 1, so sup0<𝑡≤1𝑡𝛼ℎ(𝑡−𝛽(𝑦 − 𝑥)) ∼ 1
using the estimate for ℎ mentioned before the proposition.

Next, consider the situation when |𝑥 − 𝑦| ≤ 1. Let 𝑡0 =|𝑥 − 𝑦|1/𝛽. Note that 0 < 𝑡0 ≤ 1.
When 𝑡0 ≤ 𝑡 ≤ 1, we have that 𝑡−𝛽|𝑥 − 𝑦| ≤ 1, so

𝑡𝛼ℎ (𝑡−𝛽 (𝑦 − 𝑥)) ∼ 𝑡𝛼−𝛽 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 . (15)

If 𝛼 ≤ 𝛽, the maximum of the right hand side occurs at 𝑡 = 𝑡0
and equals

𝑡𝛼0 = 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝛼/𝛽 . (16)

If 𝛼 ≥ 𝛽, the maximum of the right hand side occurs at 𝑡 = 1
and equals |𝑥 − 𝑦|.

When 0 < 𝑡 ≤ 𝑡0, we have that 𝑡−𝛽|𝑥 − 𝑦| ≥ 1, so
𝑡𝛼ℎ (𝑡−𝛽 (𝑦 − 𝑥)) ∼ 𝑡𝛼, (17)

and the maximum of the right hand side occurs at 𝑡 = 𝑡0 and
equals

𝑡𝛼0 = 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨𝛼/𝛽 . (18)

Note that if 𝛼 ≥ 𝛽, since |𝑥 − 𝑦| ≤ 1, |𝑥 − 𝑦|𝛼/𝛽 ≤ |𝑥 − 𝑦|.
Combining the above discussions for the two ranges of

values of 𝑡, the result follows.

Thus, for this special case of 𝑋 = R𝑛, 𝑔(𝑡) = 𝑡𝛼, and𝜌𝑡(𝑥, 𝑦) = 𝑡−𝑛𝛽𝜙(𝑡−𝛽(𝑥 − 𝑦)), which includes both the heat
kernel and the Poisson kernel, our definition of diffusion
distance gives (local) Euclidean or sub-Euclidean distance
(depending on the relative sizes of 𝛼 and 𝛽).This result seems
appropriate.

4. A Geometric Assumption about
the Measure on 𝑋

We make the following reasonable assumption about our
distance 𝐷𝑔: for any 𝑥0 ∈ 𝑋 and any 𝜖 > 0,

𝐵 (𝑥0, 𝜖) ≡ {𝑥 : 𝐷𝑔 (𝑥0, 𝑥) < 𝜖} , (19)

the ball of radius 𝜖 and center 𝑥0, has positive measure.
To justify the statement that this assumption is indeed

reasonable, we first define another family of subsets of𝑋. For
any 𝑥0 ∈ 𝑋, 𝑡 > 0, and 𝜖 > 0, let

𝑁(𝑥0, 𝑡, 𝜖) ≡ {𝑥 : 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑥0, ⋅)󵄩󵄩󵄩󵄩𝐿1 < 𝜖} . (20)

We then have the following equivalence of topologies
induced by the sets 𝐵(𝑥0, 𝜖) and 𝑁(𝑥0, 𝑡, 𝜖):
Proposition 3. For any 𝑥0 ∈ 𝑋 and any 𝜖 > 0, there exist𝑡 > 0 and 𝛿 > 0 such that 𝑁(𝑥0, 𝑡, 𝛿) ⊆ 𝐵(𝑥0, 𝜖). Conversely,
for any 𝑥0 ∈ 𝑋, 𝑡 > 0, and 𝜖 > 0, there exists a 𝛿 > 0 such that𝐵(𝑥0, 𝛿) ⊆ 𝑁(𝑥0, 𝑡, 𝜖).
Proof. Fix an 𝑥0 ∈ 𝑋 and an 𝜖 > 0. We first show that there
exist 𝑡 > 0 and 𝛿 > 0 such that 𝑁(𝑥0, 𝑡, 𝛿) ⊆ 𝐵(𝑥0, 𝜖).

Since we made the assumption that lim𝑡󳨀→0+𝑔(𝑡) = 0 for
the function 𝑔 used in defining the distance 𝐷𝑔, there exists
a 0 < 𝑡 < 1 with 𝑔(𝑡) < 𝜖/4. Let 𝛿 = 𝜖/(2𝑀), where 𝑀 =
sup0<𝑠≤1𝑔(𝑠) = 𝑔(1). Now, pick an arbitrary 𝑥 ∈ 𝑁(𝑥0, 𝑡, 𝛿).

For 0 < 𝑠 ≤ 𝑡, since 𝑔 in increasing, we see that

𝑔 (𝑠) 󵄩󵄩󵄩󵄩𝜌𝑠 (𝑥, ⋅) − 𝜌𝑠 (𝑥0, ⋅)󵄩󵄩󵄩󵄩𝐿1 ≤ 2𝑔 (𝑡) < 𝜖2 , (21)

Using the fact that the 𝐿1 norm of 𝜌𝑠(𝑥, ⋅) is 1 for any 𝑠 and 𝑥.
Now consider the case when 𝑡 ≤ 𝑠 ≤ 1. Note that, by

definition of𝑁(𝑥0, 𝑡, 𝛿), we have that ‖𝜌𝑡(𝑥, ⋅) − 𝜌𝑡(𝑥0, ⋅)‖𝐿1 <𝛿 = 𝜖/(2𝑀). Then, for this range of 𝑠, we observe that
𝑔 (𝑠) 󵄩󵄩󵄩󵄩𝜌𝑠 (𝑥, ⋅) − 𝜌𝑠 (𝑥0, ⋅)󵄩󵄩󵄩󵄩𝐿1

≤ 𝑀󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑥0, ⋅)󵄩󵄩󵄩󵄩𝐿1 < 𝑀𝜖(2𝑀) = 𝜖2 ,
(22)

where we have used that ‖𝜌𝑠(𝑥, ⋅) − 𝜌𝑠(𝑥0, ⋅)‖𝐿1 is decreasing
in 𝑠; see (11).

We conclude (see (8)) that

𝐷𝑔 (𝑥, 𝑥0) = sup
0<𝑠≤1

𝑔 (𝑠) 󵄩󵄩󵄩󵄩𝜌𝑠 (𝑥, ⋅) − 𝜌𝑠 (𝑦, ⋅)󵄩󵄩󵄩󵄩𝐿1 < 𝜖, (23)

and hence 𝑥 ∈ 𝐵(𝑥0, 𝜖).
For the converse, fix 𝑥0 ∈ 𝑋, 𝑡 > 0 and 𝜖 > 0. We will

show that there exists a 𝛿 > 0 such that 𝐵(𝑥0, 𝛿) ⊆ 𝑁(𝑥0, 𝑡, 𝜖).
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Since, for any 𝑥, ‖𝜌𝑠(𝑥, ⋅) − 𝜌𝑠(𝑥0, ⋅)‖𝐿1 is decreasing in 𝑠
(see (11)), we clearly have that 𝑁(𝑥0, 𝑠1, 𝜖) ⊆ 𝑁(𝑥0, 𝑠2, 𝜖) for
any 0 < 𝑠1 < 𝑠2.Thus, wemay assume 0 < 𝑡 < 1. Let 𝛿 = 𝜖𝑔(𝑡).
Then, for any 𝑥 ∈ 𝐵(𝑥0, 𝛿), we have that 𝐷𝑔(𝑥, 𝑥0) < 𝜖𝑔(𝑡).
Hence, using Definition 1 of the distance 𝐷𝑔, we obtain

𝑔 (𝑡) 󵄩󵄩󵄩󵄩𝜌𝑡 (𝑥, ⋅) − 𝜌𝑡 (𝑥0, ⋅)󵄩󵄩󵄩󵄩𝐿1 ≤ 𝐷𝑔 (𝑥, 𝑥0) < 𝜖𝑔 (𝑡) . (24)

Thus, ‖𝜌𝑡(𝑥, ⋅) − 𝜌𝑡(𝑥0, ⋅)‖𝐿1 < 𝜖, and we have that 𝑥 ∈ 𝑁(𝑥0,𝑡, 𝜖).
Returning to our assumption that, for any 𝑥0 ∈ 𝑋 and any𝜖 > 0, 𝐵(𝑥0, 𝜖) has positive measure, Proposition 3 shows that

it is equivalent to require the following: for any 𝑥0 ∈ 𝑋, 𝑡 > 0,
and 𝜖 > 0, the set 𝑁(𝑥0, 𝑡, 𝜖) has positive measure. Note that
the definition of the sets 𝑁(𝑥0, 𝑡, 𝜖) is more “universal” than
that of the balls 𝐵(𝑥0, 𝜖), since the former do not involve the
function 𝑔.

The assumption that, for any 𝑥0 ∈ 𝑋, 𝑡 > 0, and 𝜖 > 0,
the set 𝑁(𝑥0, 𝑡, 𝜖) has positive measure appears to us to be
a very natural, and mild, one. In words, this requirement is
saying that, for any time 𝑡 > 0 and any 𝜖 > 0, the set of
points in our space 𝑋 which have not diffused more than 𝜖
away (in the 𝐿1 sense) from the diffused point 𝑥0, at time 𝑡, is
not “thin” with respect to the underlying measure on𝑋. This
assumption seems reasonable in both the discrete case (each
point has positive mass, and 𝑥 = 𝑥0 is “enough”) and the
continuous case (every point 𝑥0 has “many” arbitrarily close
points in the sense of diffusion).

5. Local Convergence Is Equivalent to
Local Equicontinuity

In this section, we define local convergence and local
equicontinuity for our situation and show that the two
concepts are equivalent under our assumptions.

In what follows, 𝑇𝑡 is a symmetric diffusion operator as
defined in Section 2.

Definition 4. Let 𝑓 ∈ 𝐿𝑝, 1 ≤ 𝑝 ≤ ∞. Note that 𝑓 is actually
an equivalence class of functions on the space 𝑋. Suppose
there exists a particular representative of this equivalence
class, which we will also call 𝑓, such that this representative 𝑓
is defined at every point of 𝑋, and for every 𝜖 > 0, there exist𝑡0 > 0 and 𝛿 > 0 so that |𝑇𝑡𝑓(𝑥) − 𝑓(𝑥)| < 𝜖, for all 𝑡 with0 < 𝑡 ≤ 𝑡0 and all 𝑥 ∈ 𝐵(𝑥0, 𝛿). We then say 𝑇𝑡𝑓 converges to𝑓 locally at 𝑥0.

We also make the following.

Definition 5. Let 𝑓 ∈ 𝐿𝑝, 1 ≤ 𝑝 ≤ ∞. Suppose there exists a
particular representative of the equivalence class specified by𝑓 andwhichwewill also call𝑓, such that this representative𝑓
is defined at every point of 𝑋, and for every 𝜖 > 0, there exist𝑡0 > 0 and 𝛿 > 0 with the property that, for all 𝑥 ∈ 𝐵(𝑥0, 𝛿),
we have |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖 and for all 𝑡 with 0 < 𝑡 ≤ 𝑡0,|𝑇𝑡𝑓(𝑥) − 𝑇𝑡𝑓(𝑥0)| < 𝜖. We then say the family {𝑇𝑡𝑓}𝑡≥0 is
locally equicontinuous (in 𝑡) at 𝑥0.

Our main result is the following.

Proposition6. For𝑓 ∈ 𝐿2∩𝐿∞ and any𝑥0 ∈ 𝑋, the following
are equivalent:

(i) 𝑇𝑡𝑓 converges to (the representative) 𝑓 locally at 𝑥0
(ii) �e family {𝑇𝑡𝑓}𝑡≥0 is locally equicontinuous at 𝑥0

Moreover, if a representative 𝑓 satisfies one of these statements,
the same representative satisfies the other statement.

Proof. Wefirst show that local convergence at 𝑥0 implies local
equicontinuity at 𝑥0. We thus begin by assuming that 𝑇𝑡𝑓
converges to a representative 𝑓 locally at 𝑥0.

First, we establish continuity of this representative𝑓 at𝑥0 .
Fix 𝜖 > 0. By the assumption, there exist 1 ≥ 𝑡0 > 0 and 𝛿 > 0
such that |𝑇𝑡𝑓(𝑥)−𝑓(𝑥)| < 𝜖/3, for all 𝑡with 0 < 𝑡 ≤ 𝑡0 and all𝑥 ∈ 𝐵(𝑥0, 𝛿). Then, for any 𝑥 ∈ 𝐵(𝑥0, 𝛿), using the definition
of the distance 𝐷𝑔, we see that

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑇𝑡0𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑇𝑡0𝑓 (𝑥) − 𝑇𝑡0𝑓 (𝑥0)󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨𝑇𝑡0𝑓 (𝑥0) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨󵄨
≤ 2𝜖3 + 󵄩󵄩󵄩󵄩󵄩𝜌𝑡0 (𝑥, ⋅) − 𝜌𝑡0 (𝑥0, ⋅)󵄩󵄩󵄩󵄩󵄩𝐿1 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞
= 2𝜖3 + 𝑔 (𝑡0) 󵄩󵄩󵄩󵄩󵄩𝜌𝑡0 (𝑥, ⋅) − 𝜌𝑡0 (𝑥0, ⋅)󵄩󵄩󵄩󵄩󵄩𝐿1 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞𝑔 (𝑡0)
≤ 2𝜖3 + 𝐷𝑔 (𝑥, 𝑥0)𝑔 (𝑡0)

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞ .

(25)

Since we assumed that 𝑔(𝑡) > 0 if 𝑡 > 0, we have that 𝛿󸀠 =
min(𝛿, (𝜖/3)(𝑔(𝑡0)/‖𝑓‖𝐿∞)) > 0. Thus, if 𝑥 ∈ 𝐵(𝑥0, 𝛿󸀠),

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨 < 2𝜖3 + 𝜖3
𝑔 (𝑡0)󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞𝑔 (𝑡0) = 𝜖, (26)

and continuity of 𝑓 at 𝑥0 is shown.
Next, note that
󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑇𝑡𝑓 (𝑥0)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑓 (𝑥0) − 𝑇𝑡𝑓 (𝑥0)󵄨󵄨󵄨󵄨 .

(27)

Let 𝑡0 and 𝛿 > 0 be as above, i.e., |𝑇𝑡𝑓(𝑥) − 𝑓(𝑥)| < 𝜖/3,
for all 𝑡 with 0 < 𝑡 ≤ 𝑡0 and all 𝑥 ∈ 𝐵(𝑥0, 𝛿). Since we have
already shown that 𝑓 is continuous at 𝑥0, there exists a 𝛿󸀠󸀠 > 0
such that |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖/3 for 𝑥 ∈ 𝐵(𝑥0, 𝛿󸀠󸀠). Let 𝛿󸀠󸀠󸀠 =
min(𝛿, 𝛿󸀠󸀠). Then, for 𝑥 ∈ 𝐵(𝑥0, 𝛿󸀠󸀠󸀠) and 0 < 𝑡 ≤ 𝑡0, we see
that |𝑇𝑡𝑓(𝑥) − 𝑇𝑡𝑓(𝑥0)| < 𝜖. Hence, the local equicontinuity
of the family {𝑇𝑡𝑓}𝑡≥0 at 𝑥0 follows.

Conversely, we now show that local equicontinuity at 𝑥0
implies local convergence at 𝑥0. We thus begin by assuming
that the family {𝑇𝑡𝑓}𝑡≥0 is equicontinuous at 𝑥0.

Fix 𝜖 > 0. By the assumption, there exist 1 ≥ 𝑡0 > 0 and𝛿 > 0 such that, for the representative 𝑓, |𝑓(𝑥)−𝑓(𝑥0)| < 𝜖/5
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and |𝑇𝑡𝑓(𝑥) − 𝑇𝑡𝑓(𝑥0)| < 𝜖/5, for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) and all 𝑡
with 0 < 𝑡 ≤ 𝑡0. In Section 4, we made the assumption that
all balls of positive radius have positive measure. Using Stein’s
Maximal Theorem (see Chapter III, §3 in [1]), lim𝑡󳨀→0+𝑇𝑡𝑓 =𝑓 a.e. So there is a 𝑦0 ∈ 𝐵(𝑥0, 𝛿) such that lim𝑡󳨀→0+𝑇𝑡𝑓(𝑦0) =𝑓(𝑦0). Now, for 𝑥 ∈ 𝐵(𝑥0, 𝛿),

󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑇𝑡𝑓 (𝑦0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑦0) − 𝑓 (𝑦0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑓 (𝑦0) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨 .

(28)

We estimate the first term on the right hand side of the
above inequality as follows:

󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑇𝑡𝑓 (𝑦0)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥) − 𝑇𝑡𝑓 (𝑥0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑇𝑡𝑓 (𝑥0) − 𝑇𝑡𝑓 (𝑦0)󵄨󵄨󵄨󵄨 < 2𝜖5 , (29)

for all 0 < 𝑡 ≤ 𝑡0, since 𝑥, 𝑦0 ∈ 𝐵(𝑥0, 𝛿). For the second term,
we use that lim𝑡󳨀→0+𝑇𝑡𝑓(𝑦0) = 𝑓(𝑦0): there exists a 𝑡1 > 0
such that |𝑇𝑡𝑓(𝑦0)−𝑓(𝑦0)| < 𝜖/5, for all 𝑡 satisfying 0 < 𝑡 ≤ 𝑡1.
Finally, for the third term, we see that

󵄨󵄨󵄨󵄨𝑓 (𝑦0) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑓 (𝑦0) − 𝑓 (𝑥0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑓 (𝑥0) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨 < 2𝜖5 , (30)

since 𝑥, 𝑦0 ∈ 𝐵(𝑥0, 𝛿).
Thus, for all 𝑡 with 0 < 𝑡 ≤ min(𝑡0, 𝑡1), and for any 𝑥 ∈𝐵(𝑥0, 𝛿), we obtain that |𝑇𝑡𝑓(𝑥) −𝑓(𝑥)| < 𝜖, which concludes

the proof of the converse.

In the proof above, we used Stein’s MaximalTheorem (see
Chapter III, §3 in [1]) to state that lim𝑡󳨀→0+𝑇𝑡𝑓 = 𝑓 a.e. Stein’s
a.e. convergence result, for 𝑓 ∈ 𝐿2 say, is the main place in
our paper where the symmetry of the operators 𝑇𝑡 is needed:
Stein requires symmetry to prove his Maximal Theorem.

We immediately have the following.

Corollary 7. Let𝑓 ∈ 𝐿2∩𝐿∞. Fix 𝑡0 > 0.�en for any𝑥0 ∈ 𝑋,𝑇𝑡(𝑇𝑡0𝑓) = 𝑇𝑡+𝑡0𝑓 converges locally to 𝑇𝑡0𝑓 at 𝑥0.
Proof. By Proposition 6, it suffices to show that {𝑇𝑡+𝑡0𝑓}𝑡≥0 is
locally equicontinuous at 𝑥0. Fix 𝜖 > 0. Let 𝐺(𝑡) = 𝑔(𝑡) for0 < 𝑡 ≤ 1 and 𝐺(𝑡) = 𝑔(1) for 𝑡 > 1. For any 𝑡 ≥ 0, we have
that

󵄨󵄨󵄨󵄨󵄨𝑇𝑡+𝑡0𝑓 (𝑥) − 𝑇𝑡+𝑡0𝑓 (𝑥0)󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩󵄩𝜌𝑡+𝑡0 (𝑥, ⋅) − 𝜌𝑡+𝑡0 (𝑥0, ⋅)󵄩󵄩󵄩󵄩󵄩𝐿1 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞
= 𝐺 (𝑡 + 𝑡0) 󵄩󵄩󵄩󵄩󵄩𝜌𝑡+𝑡0 (𝑥, ⋅) − 𝜌𝑡+𝑡0 (𝑥0, ⋅)󵄩󵄩󵄩󵄩󵄩𝐿1𝐺 (𝑡 + 𝑡0)

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞
≤ 𝐷𝑔 (𝑥, 𝑥0)𝐺 (𝑡 + 𝑡0)

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞ ≤ 𝐷𝑔 (𝑥, 𝑥0)𝐺 (𝑡0)
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿∞ ,

(31)

using the definition of the distance 𝐷𝑔 and the function𝐺, that 𝐺 is increasing, and inequality (11). Then, for 𝛿 =(𝐺(𝑡0)/‖𝑓‖𝐿∞ )𝜖, we see that 𝑥 ∈ 𝐵(𝑥0, 𝛿) implies that|𝑇𝑡+𝑡0𝑓(𝑥) − 𝑇𝑡+𝑡0𝑓(𝑥0)| ≤ 𝜖, and we have shown local
equicontinuity at 𝑥0.

Using our notation, Stein in [1] mentions that
lim𝑡󳨀→0+𝑇𝑡+𝑡0𝑓(𝑥) = 𝑇𝑡0𝑓(𝑥) for almost all 𝑥, since he
proves that 𝑇𝑡𝑓 is a real-analytic function of 𝑡 > 0 for
almost all 𝑥. Corollary 7 extends Stein’s result (under our
assumptiondiscussed in Section 4) to show local convergence
with respect to the distance 𝐷𝑔.
6. Conclusions and Future Work

In this paper, we have defined a diffusion distance which is
natural if one imposes a reasonable Lipschitz condition on
diffused versions of arbitrary bounded functions. We have
next shown that the mild assumption that balls of positive
radius have positive measure is equivalent to a similar, and
an even milder looking, geometric demand. In the main
part of the paper, we establish that local convergence of𝑇𝑡𝑓 to (a representative) 𝑓 at a point is equivalent to local
equicontinuity of the family {𝑇𝑡𝑓}𝑡≥0 at that point.

It maywell be useful to have a quantitative estimate on the
rate of convergence of𝑇𝑡𝑓 to𝑓under the assumption that𝑓 is
Lipschitz, say, with respect to some distance 𝑑 (where 𝑑 may
be our 𝐷𝑔). As essentially pointed out in the papers [7, 11], a
key issue is whether, and how rapidly,

sup
𝑥

∫
𝑋
𝜌𝑡 (𝑥, 𝑦) 𝑑 (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0, as 𝑡 󳨀→ 0+. (32)

In the Appendix below, we show that, for very general
metricsD on𝑋, not necessarily arising from diffusion,

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0 a.e., as 𝑡 󳨀→ 0+. (33)

This result is certainly far from establishing the convergence
in (32), much less a quantitative estimate.

We plan to continue exploring for which (diffusion)
distances the convergence in (32) holds and an estimate can
be obtained.

Appendix

Proposition 8. Let D be a metric on 𝑋 with the following
properties:

(1) sup𝑥,𝑦∈𝑋D(𝑥, 𝑦) < ∞
(2) 𝑋 is separable with respect to the metric D, i.e., it

contains a countable dense subset
(3) �ere exists a 𝛿 > 0 so that 𝑚[𝐵(𝑥, 𝛿)] < ∞ for every𝑥 ∈ 𝑋 (the bound need not be uniform in 𝑥). Here,𝑚[𝐵(𝑥, 𝛿)] denotes the measure of the ball 𝐵(𝑥, 𝛿) ≡{𝑦 : D(𝑥, 𝑦) < 𝛿}

�en,

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0 a.e., as 𝑡 󳨀→ 0+. (A.1)
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To prove the proposition, we first establish the following.

Lemma 9. For any 𝑥0 ∈ 𝑋, if 𝑟 > 0 is such that 𝑚[𝐵(𝑥0, 𝑟)] <∞, then

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦 󳨀→ D (𝑥0, 𝑥) ,

as 𝑡 󳨀→ 0+,
(A.2)

for almost all 𝑥 ∈ 𝐵(𝑥0, 𝑟).
Proof. Let 𝑓(𝑦) = D(𝑥0, 𝑦)𝜒(𝑦), where 𝜒(𝑦) is the charac-
teristic function of the ball 𝐵(𝑥0, 𝑟). Since 𝑚[𝐵(𝑥0, 𝑟)] < ∞,
we see that 𝑓 ∈ 𝐿2(𝑋). Using Stein’s Maximal Theorem (see
Chapter III, §3 in [1]), we conclude that

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦 󳨀→ 𝑓 (𝑥) a.e. in 𝑋,

as 𝑡 󳨀→ 0+, i.e.,
∫
𝐵(𝑥0 ,𝑟)

𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦 󳨀→
D (𝑥0, 𝑥) 𝜒 (𝑥) a.e. in 𝑋.

(A.3)

In particular, for some set𝐶 ⊆ 𝐵(𝑥0, 𝑟), with𝑚[𝐵(𝑥0, 𝑟)\𝐶] =0,
𝑥 ∈ 𝐶 󳨐⇒ ∫

𝐵(𝑥0 ,𝑟)
𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦 󳨀→

D (𝑥0, 𝑥) , as 𝑡 󳨀→ 0+.
(A.4)

We would be done if the integration were over all of 𝑋, not
just 𝐵(𝑥0, 𝑟).

To this end, we apply Stein’s Maximal Theorem to the 𝐿2
function 𝜒(𝑦) to see that there is a set 𝐷 ⊆ 𝐵(𝑥0, 𝑟), with𝑚[𝐵(𝑥0, 𝑟) \ 𝐷] = 0, so that
𝑥 ∈ 𝐷 󳨐⇒ ∫

𝐵(𝑥0,𝑟)
𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦 󳨀→ 𝜒 (𝑥) = 1,

as 𝑡 󳨀→ 0+.
(A.5)

For 𝑥 ∈ 𝐷, since

1 = ∫
𝑋
𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦

= ∫
𝐵(𝑥0 ,𝑟)

𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦 + ∫
𝐵𝑐(𝑥0,𝑟)

𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦,
(A.6)

we conclude that

∫
𝐵𝑐(𝑥0,𝑟)

𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0, as 𝑡 󳨀→ 0+, (A.7)

where 𝐵𝑐(𝑥0, 𝑟) is the complement of 𝐵(𝑥0, 𝑟).
Since we assumed that sup𝑥,𝑦∈𝑋D(𝑥, 𝑦) < ∞, we obtain

that, for every 𝑥 ∈ 𝐷,

∫
𝐵𝑐(𝑥0 ,𝑟)

𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦
≤ 𝑐∫
𝐵𝑐(𝑥0,𝑟)

𝜌𝑡 (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0.
(A.8)

Combining (A.4) and (A.8), we conclude that, for 𝑥 ∈ 𝐶∩𝐷 ⊆ 𝐵(𝑥0, 𝑟),
∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦
= ∫
𝐵(𝑥0 ,𝑟)

𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦
+ ∫
𝐵𝑐(𝑥0,𝑟)

𝜌𝑡 (𝑥, 𝑦)D (𝑥0, 𝑦) 𝑑𝑦 󳨀→
D (𝑥0, 𝑥) + 0 = D (𝑥0, 𝑥) , as 𝑡 󳨀→ 0+.

(A.9)

Note that the set 𝐶 ∩ 𝐷 is of full measure in 𝐵(𝑥0, 𝑟):
𝑚[𝐵 (𝑥0, 𝑟) \ (𝐶 ∩ 𝐷)]

≤ 𝑚 [𝐵 (𝑥0, 𝑟) \ 𝐶] + 𝑚 [𝐵 (𝑥0, 𝑟) \ 𝐷] = 0. (A.10)

The lemma is proved.

We now turn to proving the proposition. Choose a
positive integer 𝑁 so that 1/𝑁 < 𝛿, where 𝛿 > 0 is such that𝑚[𝐵(𝑥, 𝛿)] < ∞ for every 𝑥 ∈ 𝑋 (Assumption (3)). Clearly,
for every 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝑋,

𝑚[𝐵(𝑥, 1𝑛)] ≤ 𝑚 [𝐵 (𝑥, 𝛿)] < ∞. (A.11)

Let {𝑥𝑘}∞𝑘=1 be a countable, dense subset of 𝑋 relative to the
distanceD (Assumption (2)). For every 𝑘 = 1, 2, . . ., and 𝑛 =𝑁,𝑁 + 1, . . ., apply Lemma 9 to obtain a set 𝐸(𝑘, 𝑛) such that𝐸(𝑘, 𝑛) ⊆ 𝐵(𝑥𝑘, 1/𝑛), 𝑚[𝐵(𝑥𝑘, 1/𝑛) \ 𝐸(𝑘, 𝑛)] = 0, and, for𝑥 ∈ 𝐸(𝑘, 𝑛),

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥𝑘, 𝑦) 𝑑𝑦 󳨀→ D (𝑥𝑘, 𝑥) ,

as 𝑡 󳨀→ 0+.
(A.12)

Let

𝐸𝑛 = ∞⋃
𝑘=1

𝐸 (𝑘, 𝑛) . (A.13)

Since {𝑥𝑘}∞𝑘=1 is dense in 𝑋,

∞⋃
𝑘=1

𝐵(𝑥𝑘, 1𝑛) = 𝑋. (A.14)

Hence,

𝑋 = ∞⋃
𝑘=1

[𝐸 (𝑘, 𝑛) ∪ (𝐵 (𝑥𝑘, 1𝑛) \ 𝐸 (𝑘, 𝑛))]

= [∞⋃
𝑘=1

𝐸 (𝑘, 𝑛)] ∪ [∞⋃
𝑘=1

(𝐵(𝑥𝑘, 1𝑛) \ 𝐸 (𝑘, 𝑛))]

= 𝐸𝑛 ∪ [∞⋃
𝑘=1

(𝐵(𝑥𝑘, 1𝑛) \ 𝐸 (𝑘, 𝑛))] .

(A.15)
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Since

𝑚[∞⋃
𝑘=1

(𝐵(𝑥𝑘, 1𝑛) \ 𝐸 (𝑘, 𝑛))]

≤ ∞∑
𝑘=1

𝑚[(𝐵(𝑥𝑘, 1𝑛) \ 𝐸 (𝑘, 𝑛))] = 0,
(A.16)

we see that

𝑚[𝐸𝑐𝑛] = 0. (A.17)

Now, let

𝐸 = ∞⋂
𝑛=𝑁

𝐸𝑛. (A.18)

Since 𝐸𝑐 = ⋃∞𝑛=𝑁 𝐸𝑐𝑛 and 𝑚[𝐸𝑐𝑛] = 0, we see that 𝑚[𝐸𝑐] = 0.
To finish the proof of the proposition, we will show that,

for every 𝑥 ∈ 𝐸, hence a.e.,
∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 󳨀→ 0, as 𝑡 󳨀→ 0+. (A.19)

Fix 𝑥 ∈ 𝐸. Choose any 𝜖 > 0. Let𝐾 ≥ 𝑁 be such that 1/𝐾 < 𝜖.
Since 𝑥 ∈ 𝐸 = ⋂∞𝑛=𝑁 𝐸𝑛, we see that 𝑥 ∈ 𝐸𝐾 = ⋃∞𝑘=1 𝐸(𝑘,𝐾).
Thus, 𝑥 ∈ 𝐸(𝑘0, 𝐾) ⊆ 𝐵(𝑥𝑘0 , 1/𝐾) for some 𝑘0. But then, by
definition of the set 𝐸(𝑘0, 𝐾),

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥𝑘0 , 𝑦) 𝑑𝑦 󳨀→ D (𝑥𝑘0 , 𝑥) ,

as 𝑡 󳨀→ 0+.
(A.20)

Now, using the triangle inequality,

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦
≤ ∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑥𝑘0) 𝑑𝑦

+ ∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥𝑘0 , 𝑦) 𝑑𝑦

= D (𝑥, 𝑥𝑘0) + ∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥𝑘0 , 𝑦) 𝑑𝑦.

(A.21)

Hence,

lim sup
𝑡󳨀→0+

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 ≤ 2D (𝑥, 𝑥𝑘0)

< 2𝐾 < 2𝜖.
(A.22)

Since 𝜖 > 0 is arbitrary,
lim sup
𝑡󳨀→0+

∫
𝑋
𝜌𝑡 (𝑥, 𝑦)D (𝑥, 𝑦) 𝑑𝑦 = 0, (A.23)

and we are done.
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