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Optimality conditions are studied for set-valuedmapswith set optimization. Necessary conditions are given in terms of 𝑆-derivative
and contingent derivative. Sufficient conditions for the existence of solutions are shown for set-valued maps under generalized
quasiconvexity assumptions.

1. Introduction

In recent years, a great attention has been paid to set-valued
optimization problems; many authors (see, e.g., [1–7]) have
concentrated on the problems with and without constraints:

minimize 𝐹 (𝑥) ,
𝑥 ∈ 𝑀,

minimize 𝐹 (𝑥) ,

𝐺 (𝑥) ∩ (−𝐾𝑍) ̸= 0,
𝑥 ∈ 𝑀,

(1)

where 𝐹 and 𝐺 are set-valued maps defined between two
Banach spaces𝑋, 𝑌 and𝑋, 𝑍, respectively,𝐾𝑍 is the pointed
closed convex cone of 𝑍, and𝑀 is a nonempty subset of𝑋.

Studies on these problems consider two types of solutions:
vector solution, given by a vector optimization, and set
solution, given by a set optimization.

The vector solution cannot be often used in practice, since
it depends only on special element of image set of solution
and the other elements are ignored; therefore the solution
concept in vector optimization is sometimes improper. In
order to avoid this drawback, Kuroiwa [8] introduced in the
first time the concept of set solution by using practically rel-
evant order relations for sets. This leads to solution concepts

for set-valued optimization problems based on comparisons
among values of the set-valued objective map. Hernández et
al. [9] gives some links between solutions concepts in vector
and set optimization.

Taa [7] gives necessary and sufficient conditions for
unconstraint vector optimization in terms of 𝑆-derivatives.
Jahn and Khan [3] establish optimality conditions for uncon-
strained vector optimization under generalized convexity
assumptions. Alonso-Durán and Rodŕıguez-Maŕın [10] give
optimality conditions for the considered problems in set
optimization using directional derivatives under pseudocon-
vexity assumptions and with the notion of the contingent
derivative. In this paper we study necessary conditions for
both problems in terms of 𝑆-derivatives with set optimization
and we derive sufficient conditions under weaker notion of
pseudoconvexity assumptions that are given in [3].

This paper is divided into three sections. In the first Sec-
tion we collect some of the concepts required for the paper.
Section 2 is devoted to the necessary optimality conditions for
the unconstrained and the constrained set optimization and
Section 3 deals with the sufficient optimality conditions in set
optimization.

2. Preliminaries

Let 𝑋, 𝑌, and 𝑍 be real normed spaces, where 𝑌 and 𝑍 are
partially ordered by convex pointed cones with nonempty
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interiors 𝐾𝑌 and 𝐾𝑍, respectively. 𝑌∗ and 𝑍∗ will denote the
continuous duals of 𝑋 and 𝑌, respectively. The collection of
nonempty subsets of 𝑌 will be denoted by ℘(𝑌).

Let 𝐹 : 𝑋 󴁂󴀱 𝑌 be a set-valued map. We recall that the
effective domain and the graph of 𝐹 are defined by

dom (𝐹) fl {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ̸= 0} ,

Gr (𝐹) fl {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐹 (𝑥)} .
(2)

Let 𝐺 : 𝑋 󴁂󴀱 𝑍 be a set-valued map and let us suppose that
dom𝐹 = dom𝐺 = 𝑀 with𝑀 ̸= 0.

Research in set-valued optimization has concentrated on
the problems with and without constraints:

minimize 𝐹 (𝑥)
𝑥 ∈ 𝑀.

(3)

minimize 𝐹 (𝑥)

𝐺 (𝑥) ∩ (−𝐾𝑍) ̸= 0,
𝑥 ∈ 𝑀.

(4)

A solution 𝑥 ∈ 𝑀 for these problems with the criterion
of vector optimization is defined as a generalization of the
notion established by Pareto. We recall this concept in the
following definition. Let 𝐹(𝑀) = ⋃

𝑥∈𝑀
𝐹(𝑥).

Definition 1. Let 𝑥 ∈ 𝑀. It is said that 𝑥 is

(i) a minimum solution for (3) and we denote 𝑥 ∈
min(𝐹,𝐾𝑌) (or 𝑥 ∈ min(𝐹)), if there exists 𝑦 ∈ 𝐹(𝑥)
such that

(𝐹 (𝑀) − 𝑦) ∩ (−𝐾𝑌) = {0} ; (5)

(ii) a weak minimum solution for (3) and we denote 𝑥 ∈
Wmin(𝐹, 𝐾𝑌) (or 𝑥 ∈ Wmin(𝐹)), if there exists 𝑦 ∈
𝐹(𝑥) such that

(𝐹 (𝑀) − 𝑦) ∩ (−int (𝐾𝑌)) = 0. (6)

Let≤𝑙 (<𝑙, resp.) be the following relation defined between
two nonempty subsets 𝐴, 𝐵 of 𝑌:

𝐴≤𝑙 𝐵 ⇐⇒ 𝐵 ⊂ 𝐴 + 𝐾𝑌,

(resp. 𝐴 <𝑙 𝐵 ⇐⇒ 𝐵 ⊂ 𝐴 + int (𝐾𝑌)) .
(7)

Using the above relations, Kuroiwa [8], in a natural way,
introduced the following notion of l-minimal set (weakly l-
minimal set, resp.).

Definition 2. Let S ⊂ ℘(𝑌). It is said that 𝐴 ∈ S is

(i) a lower minimal (or l-minimal) set ofS, if 𝐵 ∈ S and
𝐵≤𝑙 𝐴 imply𝐴≤𝑙 𝐵. The family of l-minimal sets ofS
is denoted by l-min(S, 𝐾𝑌) (or l-min(S));

(ii) a lower weak minimal (or l- wminimal) set of S, if
𝐵 ∈ S and 𝐵<𝑙 𝐴 imply 𝐴<𝑙 𝐵. The family of weakly
l-minimal sets ofS is denoted by l-Wmin(S, 𝐾𝑌) (or
l-Wmin(S)).

In this way, the problems (3) and (4) can be written in set
optimization with the following forms:

l-minimize 𝐹 (𝑥)
𝑥 ∈ 𝑀.

(SP1)

l-minimize 𝐹 (𝑥)

𝐺 (𝑥) ∩ (−𝐾𝑍) ̸= 0,
𝑥 ∈ 𝑀.

(SP2)

In these cases, 𝑥 is a l-minimum (l- wminimum, resp.)
solution of 𝐹, if 𝑥 ∈ 𝑀 (with 𝐺(𝑥) ∩ −𝐾𝑍 ̸= 0 in the problem
(SP2)) and 𝐹(𝑥) is a l-minimal (l-wminimal, resp.) set of the
family of images of 𝐹, that is, the family

F = {𝐹 (𝑥) | 𝑥 ∈ 𝑀} . (8)

The next proposition supplies a characterization of l-
wminimum (see [10, Proposition 18]).

Proposition 3. 𝑥 ∈ 𝑀 is an l-wminimal solution of (SP1) if
and only if for each 𝑥 ∈ 𝑀 one of the following conditions is
satisfied:

(i) 𝐹(𝑥) <𝑙 𝐹(𝑥) and 𝐹(𝑥) <𝑙 𝐹(𝑥).
(ii) There exists 𝑦 ∈ 𝐹(𝑥) such that (𝐹(𝑥) − 𝑦) ∩
(−int(𝐾𝑌)) = 0.

Let us recall the following definition.

Definition 4. Let (𝑥, 𝑦) ∈ Gr(𝐹). The contingent derivative
𝐷𝐹(𝑥, 𝑦) is the set-valued map from𝑋 into 𝑌 defined by 𝑦 ∈
𝐷𝐹(𝑥, 𝑦)(𝑥) if there exist sequences (𝑡𝑛) → 0+, (𝑥𝑛, 𝑦𝑛) →
(𝑥, 𝑦) such that

𝑦 + 𝑡𝑛𝑦𝑛 ∈ 𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) , ∀𝑛 ∈ N. (9)

The following definition has been introduced by Shi [6].
It is an extension of the set-valued derivative in Definition 4.

Definition 5. Let (𝑥, 𝑦) ∈ Gr(𝐹). The 𝑆-derivative 𝑆𝐹(𝑥, 𝑦) is
the set-valued map from𝑋 into 𝑌 defined by 𝑦 ∈ 𝑆𝐹(𝑥, 𝑦)(𝑥)
if there exist sequences (𝑡𝑛) ⊂ ]0, +∞[, (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) such
that

𝑡𝑛𝑥𝑛 󳨀→ 0,

𝑦 + 𝑡𝑛𝑦𝑛 ∈ 𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) ,
∀𝑛 ∈ N.

(10)

Remark 6. Let (𝑥, 𝑦) ∈ Gr(𝐹). It is easy to see the following:
(i) The set-valued derivatives 𝐷𝐹(𝑥, 𝑦) and 𝑆𝐹(𝑥, 𝑦) are

positively homogeneous with closed graphs.
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(ii) (0, 0) ∈ Gr(𝐷𝐹(𝑥, 𝑦)) ⊂ Gr(𝑆𝐹(𝑥, 𝑦)).
(iii) 𝐷𝐹(𝑥, 𝑦) = 𝑆𝐹(𝑥, 𝑦) whenever the graph of 𝐹 is

convex in𝑋 × 𝑌.

For sufficient condition for l-wminimal solution of prob-
lems (SP1) and (SP2), we need certain convexity assumptions
which are taken from [3, 4].

Definition 7. Let Γ ⊂ 𝑌 and (𝑥, 𝑦) ∈ Gr(𝐹). 𝐹 is called Γ-
contingently quasiconvex at (𝑥, 𝑦), if, for every 𝑥 ∈ 𝑀, the
condition (𝐹(𝑥)−𝑦)∩Γ ̸= 0 ensures that𝐷𝐹(𝑥, 𝑦)(𝑥−𝑥)∩Γ ̸=
0.

Definition 8. We say that 𝐹 is 𝐾𝑌-pseudoconvex at (𝑥, 𝑦) ∈
Gr(𝐹) if and only if

𝐹 (𝑥) − 𝑦 ⊂ 𝐷𝐹 (𝑥, 𝑦) (𝑥 − 𝑥) + 𝐾𝑌. (11)

Remark 9. Let Γ ⊂ 𝑌. The Γ-contingent quasiconvexity
reduces to the𝐾𝑌-pseudoconvexity.

3. Necessary Optimality Conditions

According to derived necessary condition, we recall the
following notion of the strict l-wminimum and the concept
of the𝐾𝑌-wminimal property given in [10].

Definition 10. Let 𝑥 be an l-wminimum solution of (SP1).
𝑥 is called strict l-wminimum of (SP1), if there exists a
neighbourhood 𝑈 of 𝑥 such that 𝐹(𝑥) ̸<𝑙 𝐹(𝑥) for all 𝑥 ∈
𝑈 ∩ 𝑀.

Definition 11 (domination property). A subset 𝐴 ⊂ 𝑌 has
the 𝐾𝑌-wminimal property if for all 𝑦 ∈ 𝐴 there exists
𝑎 ∈Wmin(𝐴) such that 𝑎 − 𝑦 ∈ (−int(𝐾𝑌)) ∪ {0}.

Thefollowing Lemmahas been established in [10]without
proof; we give a simple proof for reader’s convenience.

Lemma 12. Let 𝑥, 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝐹(𝑥). If 𝐹(𝑥) ̸<𝑙 𝐹(𝑥),
𝑊min(𝐹(𝑥)) = {𝑦}, and𝐹(𝑥) has the𝐾𝑌-wminimal property,
one has

(𝐹 (𝑥) − 𝑦) ∩ (−int (𝐾𝑌)) = 0. (12)

Proof. Suppose the contrary; then there exist 𝑦 ∈ 𝐹(𝑥) and
𝑘 ∈ int(𝐾𝑌) such that

𝑦 = 𝑦 + 𝑘 ∈ 𝐹 (𝑥) + int (𝐾𝑌) . (13)

Since Wmin(𝐹(𝑥)) = {𝑦} and 𝐹(𝑥) have the 𝐾𝑌-wminimal
property we get

𝑦1 − 𝑦 ∈ int (𝐾𝑌) ∪ {0} ∀𝑦1 ∈ 𝐹 (𝑥) , (14)

that is,

𝑦1 ∈ 𝑦 + int (𝐾𝑌) ∪ {0} ∀𝑦1 ∈ 𝐹 (𝑥) . (15)

From (13) we have

𝑦1 ∈ 𝐹 (𝑥) + int (𝐾𝑌) , ∀𝑦1 ∈ 𝐹 (𝑥) , (16)

and hence

𝐹 (𝑥) ⊂ 𝐹 (𝑥) + int (𝐾𝑌) , (i.e., 𝐹 (𝑥) <𝑙𝐹 (𝑥)) . (17)

This contradicts 𝐹(𝑥) ̸<𝑙 𝐹(𝑥).
Necessary conditions for the problem (SP1) are given in

the following.

Theorem 13. Let 𝑥 be a strict l-wminimum of (SP1). If
Wmin(𝐹(𝑥)) = {𝑦} and 𝐹(𝑥) has the𝐾𝑌-wminimal property,
then

𝑆𝐹 (𝑥, 𝑦) (𝑥) ∩ (−int (𝐾𝑌)) = 0, ∀𝑥 ∈ 𝑀. (18)

Proof. Suppose the contrary; then there exist 𝑥 ∈ 𝑀 and 𝑦 ∈
𝑌 such that

𝑦 ∈ 𝑆𝐹 (𝑥, 𝑦) (𝑥) ∩ (−int (𝐾𝑌)) , (19)

and hence there exist (𝑡𝑛)𝑛∈N > 0 and (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) such
that

𝑡𝑛𝑥𝑛 󳨀→ 0,

𝑡𝑛𝑦𝑛 ∈ 𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) − 𝑦,
∀𝑛 ∈ N,

(20)

and from the hypothesis we have that 𝑥 is a strict l-
wminimum of (SP1); then there exists a neighbourhood𝑈 of
𝑥 such that 𝐹(𝑥) ̸<𝑙 𝐹(𝑥) for all 𝑥 ∈ 𝑈∩𝑀. Since 𝑥+𝑡𝑛𝑥𝑛 → 𝑥
then there exists 𝑛0 ∈ N such that 𝑥 + 𝑡𝑛𝑥𝑛 ∈ 𝑈 ∩ 𝑀 for all
𝑛 ≥ 𝑛0 and then

𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) ̸<𝑙𝐹 (𝑥) , ∀𝑛 ≥ 𝑛0, (21)

by Lemma 12 and hypothesis we get

[𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) − 𝑦] ∩ (−int (𝐾𝑌)) = 0, ∀𝑛 ≥ 𝑛0. (22)

On the other hand, 𝑦 ∈ −int(𝐾𝑌); then there exists 𝑛1 ∈ N

such that

𝑡𝑛𝑦𝑛 ∈ −int (𝐾𝑌) , ∀𝑛 ≥ 𝑛1, (23)

and for (20) we have

[𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) − 𝑦] ∩ (−int (𝐾𝑌)) ̸= 0 ∀𝑛 ≥ 𝑛1. (24)

This contradicts (22) for all 𝑛 ≥ max(𝑛0, 𝑛1).
As an immediate consequence we have the following

corollary.

Corollary 14. Let 𝑥 be an l- wminimum of (SP1). Let 𝑦 ∈
𝐹(𝑥). Let us suppose that there exists a neighbourhood 𝑈 of 𝑥
such that for each 𝑥 ∈ 𝑈∩𝑀 one of the following conditions is
satisfied:

(a) 𝑦 ∉ 𝐹(𝑥) + int(𝐾𝑌) or
(b) 𝑦 ∈ 𝑊min(𝐹(𝑥), 𝐾𝑌).
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Then,

(i) 𝑥 is a strict 𝑙-wminimum of (SP1);
(ii) 𝑆𝐹(𝑥, 𝑦)(𝑥) ∩ (−int(𝐾𝑌)) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑀.

Proof. It is obvious that (b) ⇒ (a) ⇒ 𝐹(𝑥) ̸<𝑙 𝐹(𝑥). Then if
there exists a neighbourhood 𝑈 of 𝑥 such that for each 𝑥 ∈
𝑈∩𝑀 the condition (a) holds, we deduce from Definition 10
that (i) holds. On the other hand if (a) holds we have

(𝐹 (𝑥) − 𝑦) ∩ (−int (𝐾𝑌)) = 0, ∀𝑥 ∈ 𝑈 ∩𝑀. (25)

By using similar arguments as inTheorem 13, we establish (ii).

Another consequences of Theorem 13 and Corollary 14
are given in the following corollaries.

Corollary 15. Let 𝑥 be a strict l-wminimum of (SP1). If
𝐹(𝑥) ̸<𝑙 𝐹(𝑥), Wmin(𝐹(𝑥)) = {𝑦}, and 𝐹(𝑥) has the 𝐾𝑌-
wminimal property, then

𝐷𝐹 (𝑥, 𝑦) (𝑥) ∩ (−int (𝐾𝑌)) = 0, ∀𝑥 ∈ 𝑀. (26)

Corollary 16. Let𝑥 be an l-wminimumof (SP1). Let𝑦 ∈ 𝐹(𝑥).
Let us suppose that there exists a neighbourhood 𝑈 of 𝑥 such
that for each 𝑥 ∈ 𝑈 ∩ 𝑀 one of the following conditions is
satisfied:

(a) 𝑦 ∉ 𝐹(𝑥) + int(𝐾𝑌) or
(b) 𝑦 ∈ 𝑊min(𝐹(𝑥), 𝐾𝑌).

Then

(i) 𝑥 is a strict 𝑙-wminimum of (SP1);
(ii) 𝐷𝐹(𝑥, 𝑦)(𝑥) ∩ (−int(𝐾𝑌)) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑀.

Remark 17. If 𝑥 is a strict l-wminimum solution of (SP1) and
𝑦 ∈ Wmin(𝐹(𝑥)), Theorem 13 and Corollaries 14 and 16
are not guaranteed if the other conditions are not satisfied.
Indeed, let us recall the example considered in Alonso-Durán
and Rodŕıguez-Maŕın [10]: let 𝐹 : (0, 2) 󴁂󴀱 R2 be defined by

𝐹 (𝑥)

=
{
{
{

{(𝑦, 𝑧) ∈ R2 | (𝑦 − 2𝑥 + 2)2 + 𝑧2 ≤ 𝑥2} , if 𝑥 ≤ 1,
{(𝑦, 𝑧) ∈ R2 | (𝑦 − 2𝑥 + 2)2 + 𝑧2 ≤ (2 − 𝑥)2} , if 𝑥 > 1.

(27)

Let 𝐾𝑌 = R2
+
. Then 𝑥 = 1 is a strict l-wminimum of 𝐹 and

𝑦 = (−1, 0) ∈Wmin(𝐹(1)). But observe that Wmin(𝐹(𝑥)) ̸=
{𝑦} and for all neighbourhoods𝑈 of 𝑥 there exists 𝑥 ∈ 𝑈∩𝑀
such 𝑦 ∈ 𝐹(𝑥) + int(𝐾𝑌) and 𝑦 ∉Wmin(𝐹(𝑥)). On the other
hand for all 𝑘 ∈ −int(𝐾𝑌) and 𝑥 ∈ 𝑀 we take 𝑡𝑛 = 0 for each
𝑛 ∈ N, then for every sequence (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑘) we have

(−1, 0) + 𝑡𝑛𝑦𝑛 ∈ 𝐹 (1 + 𝑡𝑛𝑥𝑛) , ∀𝑛 ∈ N, (28)

that is

𝐷𝐹 (1, (−1, 0)) (𝑥) ∩ (−int (𝐾𝑌)) ̸= 0, ∀𝑥 ∈ 𝑀. (29)

Hence

𝑆𝐹 (1, (−1, 0)) (𝑥) ∩ (−int (𝐾𝑌)) ̸= 0, ∀𝑥 ∈ 𝑀. (30)

In the following we are going to prove necessary optimal-
ity conditions for (SP2) in terms of contingent derivative.

In the sequel the couple (𝐹, 𝐺) is a set-valued map from
𝑋 into 𝑌 × 𝑍 defined by

(𝐹, 𝐺) (𝑥) = (𝐹 (𝑥) , 𝐺 (𝑥)) . (31)

Let 𝑧 ∈ 𝐺(𝑥) ∩ (−𝐾𝑍) and we consider the following problem
(SP3) with respect to 𝐾𝑌 × (𝐾𝑍 + 𝑧):

l-minimize (𝐹, 𝐺) (𝑥) ,
subject to 𝑥 ∈ 𝑀.

(SP3)

The following result compares the set of strict l-
wminimum solution of (SP2) to the set of strict l-wminimum
solution of (SP3).

Proposition 18. If 𝑥 is a strict l-wminimal solution of (SP2)
then for all 𝑧 ∈ 𝐺(𝑥)∩(−𝐾𝑍), 𝑥 is a strict 𝑙-wminimal solution
of (SP3) with respect to 𝐾𝑌 × (𝐾𝑍 + 𝑧),

Proof. Suppose the contrary; then, for every neighbourhood
𝑈 of 𝑥, there exists 𝑥 ∈ 𝑈 ∩𝑀 such that

(𝐹, 𝐺) (𝑥) ⊂ (𝐹, 𝐺) (𝑥) + int (𝐾𝑌 × 𝐾𝑍 + 𝑧) , (32)

then,

𝐹 (𝑥) ⊂ 𝐹 (𝑥) + int (𝐾𝑌) ,

𝐺 (𝑥) ⊂ 𝐺 (𝑥) + int (𝐾𝑍 + 𝑧) ,
(33)

and since 𝑧 ∈ 𝐺(𝑥), we get

𝐹 (𝑥) ⊂ 𝐹 (𝑥) + int (𝐾𝑌) ,
0 ∈ 𝐺 (𝑥) + 𝐾𝑍.

(34)

Thus for every neighbourhood𝑈 of 𝑥 there exists 𝑥 ∈ 𝑈 ∩𝑀
such that

𝐹 (𝑥) <𝑙 𝐹 (𝑥) ,

𝐺 (𝑥) ∩ (−𝐾𝑍) ̸= 0.
(35)

This contradicts 𝑥 is a strict l-wminimal solution of (SP2).

Let us formulate necessary conditions for the problem
(SP2). In the sequel we consider the following subset of𝑀:

𝑆 = {𝑥 ∈ 𝑀 | 𝐺 (𝑥) ∩ (−𝐾𝑍) ̸= 0} . (36)

Theorem 19. Let 𝑥 be a strict 𝑙-wminimum solution of (SP2)
and 𝑧 ∈ 𝐺(𝑥) ∩ (−𝐾𝑍). If 𝐹(𝑥) has the𝐾𝑌-wminimal property
and𝑊min(𝐹(𝑥), 𝐾𝑌) = {𝑦}, then

𝐷(𝐹, 𝐺) (𝑥, 𝑦, 𝑧) (𝑥) ∩ (−int (𝐾𝑌 × (𝐾𝑍 + 𝑧))) = 0,
∀𝑥 ∈ 𝑀.

(37)
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Proof. Suppose the contrary; then there exist 𝑥 ∈ 𝑀 and
(𝑦, 𝑧) ∈ 𝑌 × 𝑍 such that

(𝑦, 𝑧) ∈ 𝐷 (𝐹, 𝐺) (𝑥, 𝑦, 𝑧) (𝑥)

∩ (−int (𝐾𝑌 × (𝐾𝑍 + 𝑧))) ,
(38)

and hence there exist (𝑡𝑛)𝑛∈N → 0+ and (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) →
(𝑥, 𝑦, 𝑧) such that

𝑡𝑛 (𝑦𝑛, 𝑧𝑛) ∈ (𝐹, 𝐺) (𝑥 + 𝑡𝑛𝑥𝑛) − (𝑦, 𝑧) , ∀𝑛 ∈ N. (39)

On the other hand, (𝑦, 𝑧) ∈ −int(𝐾𝑌 × (𝐾𝑍 + 𝑧)), then there
exists 𝑛1 ∈ N such that

𝑡𝑛𝑦𝑛 ∈ −int (𝐾𝑌) ,

𝑧𝑛 ∈ −int (𝐾𝑍 + 𝑧) ,
∀𝑛 ≥ 𝑛1,

(40)

and hence

𝑡𝑛𝑦𝑛 ∈ −int (𝐾𝑌) ,

𝑧 + 𝑡𝑛𝑧𝑛 ∈ −𝐾𝑍 + (1 − 𝑡𝑛) 𝑧,
∀𝑛 ≥ 𝑛1,

(41)

as 𝑡𝑛 → 0+ there exists 𝑛2 ∈ N such that 1 − 𝑡𝑛 > 0 for every
𝑛 ≥ 𝑛2, then (1 − 𝑡𝑛)𝑧 ∈ −𝐾𝑍. Let 𝑁 = max(𝑛1, 𝑛2), by (39)
we get

[𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) − 𝑦] ∩ (−int (𝐾𝑌)) ̸= 0,

𝐺 (𝑥 + 𝑡𝑛𝑥𝑛) ∩ (−𝐾𝑍) ̸= 0
∀𝑛 ≥ 𝑁.

(42)

From hypothesis we have 𝑥 is a strict l-wminimum solution
of (SP2); then there exists a neighbourhood 𝑈 of 𝑥 such that
𝐹(𝑥) ̸<𝑙 𝐹(𝑥) for all 𝑥 ∈ 𝑈 ∩ 𝑆. Since 𝑥 + 𝑡𝑛𝑥𝑛 → 𝑥 then there
exists 𝑛0 ∈ N such that 𝑥 + 𝑡𝑛𝑥𝑛 ∈ 𝑈 ∩𝑀 for all 𝑛 ≥ 𝑛0; thus
𝑥 + 𝑡𝑛𝑥𝑛 ∈ 𝑈 ∩ 𝑆 for all 𝑛 ≥ max(𝑛0, 𝑁); hence,

𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) ̸<𝑙 𝐹 (𝑥) ∀𝑛 ≥ max (𝑛0, 𝑁) , (43)

and, by Lemma 12 and hypothesis, we get

[𝐹 (𝑥 + 𝑡𝑛𝑥𝑛) − 𝑦] ∩ (−int (𝐾𝑌)) = 0

∀𝑛 ≥ max (𝑛0, 𝑁) .
(44)

This contradicts (42).

As an immediate consequence we have the following
corollary.

Corollary 20. Let 𝑥 be an 𝑙-wminimum of (SP2) and 𝑧 ∈
𝐺(𝑥) ∩ (−𝐾𝑍). Let 𝑦 ∈ 𝐹(𝑥). Let us suppose that there exists a
neighbourhood 𝑈 of 𝑥 such that for each 𝑥 ∈ 𝑈 ∩ 𝑆 one of the
following conditions is satisfied:

(a) 𝑦 ∉ 𝐹(𝑥) + int(𝐾𝑌) or

(b) 𝑦 ∈ 𝑊min(𝐹(𝑥), 𝐾𝑌).
Then

(i) 𝑥 is a strict 𝑙-wminimum of (SP2);
(ii) 𝐷(𝐹, 𝐺)(𝑥, 𝑦, 𝑧)(𝑥) ∩ (−int(𝐾𝑌 × (𝐾𝑍 + 𝑧))) =
0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑀.

4. Sufficient Optimality Conditions

It is well known from vector optimization that we can
derive sufficient condition under Γ-contingently quasiconvex
assumptions. Next, we establish sufficient condition with
similar assumptions for set optimization. The following
terminology is used. Let 𝑌∗ denote the dual space of 𝑌, and
let

𝐾+
𝑌
= {𝑢 ∈ 𝑌∗ | 𝑢 (𝑦) ≥ 0, ∀𝑦 ∈ 𝐾𝑌} (45)

denote the nonnegative dual cone of 𝐾𝑌.
The next theorem provides a sufficient condition for the

l-wminimum solution of (SP2).

Theorem 21. Let (𝑥, 𝑦, 𝑧) ∈ 𝐺𝑟(𝐹, 𝐺) and 𝑀 − 𝑥 ⊂
dom[𝐷(𝐹, 𝐺)(𝑥, 𝑦, 𝑧)]. Assume that there are 𝑢 ∈ 𝐾+

𝑌
\ {0𝑌∗}

and V ∈ 𝐾+
𝑍
such that V(𝑧) = 0 and

𝑢 (𝑦) + V (𝑧) ≥ 0,

for every (𝑦, 𝑧) ∈ 𝐷 (𝐹 + 𝐾𝑌, 𝐺 + 𝐾𝑍) (𝑥, 𝑦, 𝑧) (𝑥 − 𝑥) ∀𝑥 ∈ 𝑀.
(46)

If (𝐹+𝐾𝑌, 𝐺+𝐾𝑍) : 𝑀̂ 󴁂󴀱 𝑌×𝑍 is Γ-contingently quasiconvex
at (𝑥, 𝑦, 𝑧) with

𝑀̂ = {𝑥 ∈ 𝑀 | 𝐺 (𝑥) ∩ (−𝐾𝑍 + 𝑐𝑜𝑛𝑒 (𝑧) − 𝑐𝑜𝑛𝑒 (𝑧))

̸= 0} ,

Γ = (−int (𝐾𝑌)) × (−𝐾𝑍 + 𝑐𝑜𝑛𝑒 (𝑧) − 𝑐𝑜𝑛𝑒 (𝑧)) ,

(47)

then 𝑥 is an 𝑙-wminimal solution of (SP2) on 𝑀̂.

Proof. Let us show that, for every 𝑥 ∈ 𝑀̂,

𝐷(𝐹 + 𝐾𝑌, 𝐺 + 𝐾𝑍) (𝑥, 𝑦, 𝑧) (𝑥 − 𝑥) ∩ Γ = 0. (48)

Assume the contrary; then there exist 𝑥󸀠 ∈ 𝑀̂ and (𝑦󸀠, 𝑧󸀠) ∈
𝑌 × 𝑍 such that

(𝑦󸀠, 𝑧󸀠) ∈ 𝐷 (𝐹 + 𝐾𝑌, 𝐺 + 𝐾𝑍) (𝑥, 𝑦, 𝑧) (𝑥󸀠 − 𝑥) ,

𝑦󸀠 ∈ −int (𝐾𝑌) ,

𝑧󸀠 ∈ −𝐾𝑍 + cone (𝑧) − cone (𝑧) .

(49)

Since 𝑢 ∈ 𝐾+
𝑌
\ {0𝑌∗}, V ∈ 𝐾+𝑍, and V(𝑧) = 0, we have

𝑢 (𝑦󸀠) + V (𝑧󸀠) < 0. (50)

This contradicts (46).
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On the other hand, we have that (𝐹 + 𝐾𝑌, 𝐺 + 𝐾𝑍) is Γ-
contingently quasiconvex at (𝑥, 𝑦, 𝑧); thus (48) ensures that
there is no 𝑥 ∈ 𝑀̂ such that

(𝐹 (𝑥) + 𝐾𝑌, 𝐺 (𝑥) + 𝐾𝑍) − (𝑦, 𝑧) ∩ Γ ̸= 0, (51)

that is

(𝐹 (𝑥) + 𝐾𝑌 − 𝑦) ∩ (−int (𝐾𝑌)) ̸= 0,

(𝐺 (𝑥) + 𝐾𝑍 − 𝑧) ∩ (−𝐾𝑍 + cone (𝑧) − cone (𝑧)) ̸= 0.
(52)

Hence for every 𝑥 ∈ 𝑀̂ there exists 𝑦 ∈ 𝐹(𝑥) such that

(𝐹 (𝑥) − 𝑦) ∩ (−int (𝐾𝑌)) = 0, (53)

by Proposition 3, and we deduce that 𝑥 is a l-wminimal
solution of (SP2) on 𝑀̂.

As an immediate consequence we have the following
corollary.

Corollary 22. Under the setting of Theorem 21, if the map
(𝐹, 𝐺) : 𝑀̂ 󴁂󴀱 𝑌 × 𝑍 is 𝐾𝑌 × 𝐾𝑍-pseudoconvex at (𝑥, 𝑦, 𝑧)
then 𝑥 is a 𝑙-wminimal solution of (SP2) on 𝑀̂.

From Theorem 21, we obtain the following sufficient
optimality condition for (SP1).

Theorem23. Let (𝑥, 𝑦) ∈ 𝐺𝑟(𝐹) and𝑀−𝑥 ⊂ dom[𝐷𝐹(𝑥, 𝑦)].
Assume that there exists 𝑢 ∈ 𝐾+

𝑌
\ {0𝑌∗} such that

𝑢 (𝑦) ≥ 0,

for every 𝑦 ∈ 𝐷 (𝐹 + 𝐾𝑌) (𝑥, 𝑦) (𝑥 − 𝑥) ∀𝑥 ∈ 𝑀.
(54)

If 𝐹 + 𝐾𝑌 : 𝑀 󴁂󴀱 𝑌 is Γ-contingently quasiconvex at (𝑥, 𝑦)
with, Γ = −int(𝐾𝑌), then 𝑥 is an 𝑙-wminimal solution of (SP1).

The following two corollaries of the above result are
immediate.

Corollary 24. Let (𝑥, 𝑦) ∈ 𝐺𝑟(𝐹) and 𝑀 − 𝑥 ⊂
dom[𝐷𝐹(𝑥, 𝑦)]. Assume that

𝐷(𝐹 + 𝐾𝑌) (𝑥, 𝑦) (𝑥 − 𝑥) ∩ (−int (𝐾𝑌)) = 0,
∀𝑥 ∈ 𝑀.

(55)

If 𝐹 + 𝐾𝑌 : 𝑀 󴁂󴀱 𝑌 is Γ-contingently quasiconvex at (𝑥, 𝑦)
with, Γ = −int(𝐾𝑌), then 𝑥 is an l-wminimal solution of (SP1).

Corollary 25. Let (𝑥, 𝑦) ∈ 𝐺𝑟(𝐹) and 𝑀 − 𝑥 ⊂
dom[𝐷𝐹(𝑥, 𝑦)]. Assume that

𝐷(𝐹 + 𝐾𝑌) (𝑥, 𝑦) (𝑥 − 𝑥) ∩ (−int (𝐾𝑌)) = 0,
∀𝑥 ∈ 𝑀.

(56)

If 𝐹 : 𝑀 󴁂󴀱 𝑌 is 𝐾𝑌-pseudoconvex at (𝑥, 𝑦), then 𝑥 is an l-
wminimal solution of (SP1).

5. Conclusions

This paper deals with a set-valued optimization problem
which involves a set-valued objective and set-valued con-
straints. Since such problems involve set-valued maps, opti-
mality conditions are often given using various notions of set-
valued derivatives. In this paper, we use the notion of the so-
called 𝑆-derivative (and also the contingent derivative) to give
necessary optimality conditions for the considered problems.
For the sufficient optimality conditions, certain generalized
notion of convexity is employed.
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ditions for set-valued maps with set optimization,” Nonlinear
Analysis, vol. 70, pp. 3057–3064, 2009.


