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In this paper, we consider a priori error estimates for the finite volume element schemes of optimal control problems, which are
governed by linear elliptic partial differential equation.The variational discretization approach is used to deal with the control.The
error estimation shows that the combination of variational discretization and finite volume element formulation allows optimal
convergence. Numerical results are provided to support our theoretical analysis.

1. Introduction

In recent years, the optimization with partial differen-
tial equation constraints (PDEs) has received a significant
impulse. Because of wide applicability of the field, a lot
of theoretical results have been developed. Generally, it
is difficult to obtain the analytical solutions for optimal
control problems with PDEs. Factually, only approximate
solutions or numerical solutions can be expected. Therefore,
many numerical methods have been proposed to solve the
problems.

Finite elementmethod is an important numericalmethod
for the problems of partial differential equations and widely
used in the numerical solution of optimal control problems.
There are extensive studies in convergence of finite element
approximation for optimal control problems. For example,
priori error estimates for finite element discretization of
optimal control problems governed by elliptic equations are
discussed in many publications. In [1], a new approach to
error control and mesh adaptivity is described for the dis-
cretization of the optimal control problems governed by ellip-
tic partial differential equations. In [2], the error estimates for
semilinear elliptic optimal controls in the maximum norm
are presented. Chen and Liu present a priori error analysis
for mixed finite element approximation of quadratic optimal
control problems [3]. In [4], a priori error analysis for the

finite element discretization of the optimal control problems
governed by elliptic state equations is considered. Hou and
Li investigate the error estimates of mixed finite element
methods for optimal control problems governed by general
elliptic equations and derive 𝐿2 and 𝐻1 error estimates for
both the control and state variables [5].

The finite volume element method has been one of the
most commonly used numerical methods for solving partial
differential equations. The advantages of the method are that
the computational cost is less than finite elementmethod, and
themass conservation law ismaintained. So it has been exten-
sively used in computational fluid dynamics [6–12]. However,
there are only a few published results on the finite volume
element method for the optimal control problems. In [13],
the authors discussed distributed optimal control problems
governed by elliptic equations by using the finite volume
element methods. The variational discretization approach is
used to deal with the control and the error estimates are
obtained in some norms. In [14], the authors considered the
convergence analysis of discontinuous finite volumemethods
applied to distributed optimal control problems governed by
a class of second-order linear elliptic equations.

In this paper, wewill investigate the finite volume element
method for the general elliptic optimal control problem with
Dirichlet or Neumann boundary conditions. The variational
discretization approach is used to deal with the control, which
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can avoid explicit discretization of the control and improve
the approximation. In addition, we discuss the optimal con-
trol problems in polygonal domains with corner singularities.
In this situation, the solution does not admit integrable
second derivatives. The desired convergence results of finite
volume element schemes cannot be expected. Two effective
methods are proposed to compensate the negative effects of
the corner singularities. The corresponding results will be
reported in the future.

The rest of the paper is organized as follows. In Section 2,
themodel problemand the finite volume element schemes are
introduced. Section 3 presents the error estimates of the finite
volume element schemes. In Section 4, numerical results are
supplied to justify the theoretical analysis. Brief conclusions
are given in Section 5.

2. Problem Statement and Discretization

2.1. Model Problem. In this paper, we consider the following
second-order elliptic partial differential equation:

− ⋅ (𝐴𝑦) + 𝑐0𝑦 = 𝐵𝑢 + 𝑓, in Ω, (1)

where Ω ⊂ 𝑅2 is a bounded convex polygon with boundary𝜕Ω, 𝐴 = {𝑎𝑖𝑗(𝑥)} is a 2 × 2 symmetric and uniformly positive
definite matrix, 𝑐0 > 0 is a sufficient smooth function defined
on Ω, 𝐵 denotes the linear and continuous control operator,𝐵𝑢 ∈ 𝐿2(Ω), and 𝑢 and 𝑓 have enough regularity so that
this problem has a unique solution when we combine either
homogeneous Dirichlet or Neumann boundary conditions
on 𝜕Ω.

In addition, we use the following notations for the inner
products and norms on 𝐿2(Ω),𝐻1(Ω), and 𝐿∞(Ω):

(V, 𝑤) = (V, 𝑤)𝐿2(Ω) ,
‖V‖ = ‖V‖𝐿2(Ω) ,
‖V‖1 = ‖V‖𝐻1(Ω) ,
‖V‖∞ = ‖V‖𝐿∞(Ω) .

(2)

The corresponding weak formulation for (1) is

Find 𝑦 ∈ 𝐻 such that 𝑎 (𝑦, V) = (𝐵𝑢 + 𝑓, V) ,
∀V ∈ 𝐻, (3)

where

𝑎 (𝑦, V) = ∫
Ω
( 2∑
𝑖,𝑗=1

𝑎𝑖𝑗 𝜕𝑦𝜕𝑥𝑗
𝜕V𝜕𝑥𝑖 + 𝑐0𝑦V)𝑑𝑥, (4)

and

(𝐵𝑢 + 𝑓, V) = ∫
Ω
(𝐵𝑢 + 𝑓) V𝑑𝑥; (5)

𝐻 denotes either depending on the prescribed type of
boundary conditions (homogeneous Neumann or Dirichlet).

Now, we consider the following optimal control problem
for state variable 𝑦 and the control variable 𝑢:

min 𝐽 (𝑦, 𝑢) = 12 ∫Ω 𝑦 − 𝑦Ω2 𝑑𝑥 + 𝜆2 ∫Ω |𝑢|2 𝑑𝑥, (6)

over all𝐻×𝐿2(Ω) subject to elliptic state problem (3) and the
control constraints

𝑢𝑎 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑢𝑏 (𝑥) , (7)

where 𝑦Ω ∈ 𝐿2(Ω) is a given desired state and 𝜆 ≥ 0 is
a regularization parameter. We define the set of admissible
control by

𝑈𝑎𝑑 = {𝑢 ∈ 𝐿2 (Ω) : 𝑢𝑎 (𝑥) ≤ 𝑢 ≤ 𝑢𝑏 (𝑥)} , (8)

where 𝑈𝑎𝑑 is a nonempty, closed, and convex subset of𝐿2(Ω),𝑢𝑎(𝑥) ≤ 𝑢𝑏(𝑥).
From standard arguments for elliptic equations, we can

obtain the following propositions.

Proposition 1. For fixed control 𝑢 ∈ 𝐿2(Ω), the state equation
(3) admits a unique solution 𝑦 ∈ 𝐻. Moreover, there is a
constant 𝐶, which does not depend on 𝐵𝑢 + 𝑓, such that

‖𝑢‖1 ≤ 𝐶 𝐵𝑢 + 𝑓 . (9)

Proposition 2. Let 𝑈𝑎𝑑 be a nonempty, closed, bounded, and
convex set, 𝑦Ω in 𝐿2(Ω) and 𝜆 > 0; then the optimal control
problem (6) admits a unique solution (𝑦, 𝑢).

This proof follows standard techniques [15].
The adjoint state equation for 𝑧 ∈ 𝐻 is given by

𝑎 (𝑧, 𝑤) = (𝑦 − 𝑦Ω, 𝑤) , ∀𝑤 ∈ 𝐻, (10)

where the equation is the weak formulation of the following
elliptic problem:

− ⋅ (𝐴𝑧) + 𝑐0𝑧 = 𝑦 − 𝑦Ω, in Ω, (11)

with homogeneous Neumann or Dirichlet boundary condi-
tions.

Proposition 3. �e necessary and sufficient optimality con-
ditions for (6) and (7) can be expressed as the variational
inequality

(𝜆𝑢 + 𝐵∗𝑧, 𝑢 − 𝑢) ≥ 0, ∀𝑢 ∈ 𝑈𝑎𝑑. (12)

Further, the variational inequality is equivalent to

𝑢 = 𝑃[𝑢𝑎(𝑥),𝑢𝑏(𝑥)] (−𝐵∗𝑧𝜆 ) , (13)

where 𝑃[𝑢𝑎(𝑥),𝑢𝑏(𝑥)](⋅) = min{𝑢𝑏(𝑥),max{𝑢𝑎(𝑥), ⋅}} denotes the
orthogonal projection in 𝐿2(Ω) onto the admissible set of the
control and 𝐵∗ is the adjoint operator of 𝐵.
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Figure 1: Control volume with barycenter as internal point.

2.2. Discretization. Now we describe the finite volume ele-
ment discretization of the optimal control problem (6).

We consider a quasi-uniform triangulation 𝑇ℎ. Divide Ω
into a sum of finite number of small triangles 𝐾 such that
they have no overlapping internal region and a vertex of any
triangle does not belong to a side of any other triangle. At last,
we can obtain a triangulation such that Ω = ⋃𝐾∈𝑇ℎ 𝐾.

We then construct a dual mesh 𝑇∗ℎ related to 𝑇ℎ. Let 𝑃0
be a node of a triangle, 𝑃𝑖 (𝑖 = 1, 2, . . . , 6) the adjacent nodes
of 𝑃0, and 𝑀𝑖 the midpoint of 𝑃0𝑃𝑖. Choose the barycenter𝑄𝑖 of triangle 𝑃0𝑃𝑖𝑃𝑖+1 (𝑃7 = 𝑃1) as the node of the dual
mesh. Connect successively𝑀1, 𝑄1,...,𝑀6, 𝑄6,𝑀1 to form a
polygonal region𝑉, called a control volume. Figure 1 presents
a sketch of a control volume.

Let𝑈ℎ be the trial function space defined on the triangu-
lation 𝑇ℎ,

𝑈ℎ = {V ∈ 𝐶 (Ω) : V|𝐾 is linear for all 𝐾 ∈ 𝑇ℎ} , (14)

and 𝑉ℎ be the test function space defined on the dual mesh𝑇∗ℎ ,
𝑉ℎ = {V ∈ 𝐿2 (Ω) : V|𝑉 is constant for all 𝑉 ∈ 𝑇∗ℎ } . (15)

In this way, we have

𝑈ℎ = span {𝜙1, 𝜙2, . . . , 𝜙𝑁𝑛𝑜𝑑𝑒} ,
𝑉ℎ = span {𝜓1, 𝜓2, . . . , 𝜓𝑁𝑛𝑜𝑑𝑒} , (16)

where 𝜙𝑖 are the standard node basis functions with the
nodes 𝑥𝑖 and 𝜓𝑖 are the characteristic functions of the control
volume 𝑉𝑖.

Let 𝐼ℎ and 𝐼∗ℎ be the interpolation projections onto the
trial function space 𝑈ℎ and test function space 𝑉ℎ, respec-
tively. By the interpolation theory, we have for 𝑤 ∈ 𝑈ℎ ∩ 𝐻2

𝑤 − 𝐼ℎ𝑤𝑚 ≤ 𝐶ℎ2−𝑚 |𝑤|2 , 𝑚 = 0, 1;𝑤 − 𝐼∗ℎ𝑤 ≤ 𝐶ℎ |𝑤|1 . (17)

Then the finite volume element schemes for (3), (10), and
(13) are defined as follows:

𝑎ℎ (𝑦ℎ, 𝐼∗ℎ V) = (𝐵𝑢ℎ + 𝑓, 𝐼∗ℎ V) , ∀V ∈ 𝑈ℎ, (18)

𝑎ℎ (𝑧ℎ, 𝐼∗ℎ𝑤) = (𝑦ℎ − 𝑦Ω, 𝐼∗ℎ𝑤) , ∀𝑤 ∈ 𝑈ℎ, (19)

(𝜆𝑢ℎ + 𝐵∗𝑧ℎ, 𝑢 − 𝑢ℎ) ≥ 0 ∀𝑢 ∈ 𝑈𝑎𝑑,
or 𝑢ℎ = 𝑃[𝑢𝑎(𝑥),𝑢𝑏(𝑥)] (−𝐵∗𝑧ℎ𝜆 ) , (20)

where

𝑎ℎ (𝑦ℎ, 𝐼∗ℎ V)
= −∑
𝑉𝑖

[𝐼∗ℎ V∫
𝜕𝑉𝑖

𝐴∇𝑦ℎ ⋅ n𝑑𝑠 − ∫
𝑉𝑖

𝑐0𝑦ℎ𝐼∗ℎ V𝑑𝑥] . (21)

3. Error Estimates

In order to present the error estimates, we first introduce
some lemmas in preparation of the proof for the main
convergence theorem.

3.1. Some Lemmas. According to [16], we have the following
lemma, which indicates that the bilinear form 𝑎ℎ(⋅, 𝐼∗ℎ ⋅) is
coercive on 𝑈ℎ.
Lemma 4. 𝑎ℎ(⋅, 𝐼∗ℎ ⋅) is positive definite for small enough ℎ;
namely, there exist ℎ0 > 0, 𝛼 > 0 such that for 0 < ℎ ≤ ℎ0

𝑎ℎ (V, 𝐼∗ℎ V) ≥ 𝛼 ‖V‖21 , ∀V ∈ 𝑈ℎ. (22)

We seldom have a symmetric bilinear form 𝑎ℎ(⋅, 𝐼∗ℎ ⋅) even
though 𝑎(⋅, ⋅) is symmetric. The following lemma is used to
measure how far the bilinear form 𝑎ℎ(⋅, 𝐼∗ℎ ⋅) is from being
symmetric [17].

Lemma 5. �ere exist positive constants 𝐶, ℎ0 such that, for𝑢,𝑤 ∈ 𝑈ℎ and 0 < ℎ ≤ ℎ0, we have𝑎ℎ (𝑢, 𝐼∗ℎ𝑤) − 𝑎ℎ (𝑤, 𝐼∗ℎ𝑢) ≤ 𝐶ℎ ‖𝑢‖1 ‖𝑤‖1 . (23)
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Furthermore, we introduce the auxiliary functions 𝑦ℎ ∈𝑈ℎ and 𝑧ℎ ∈ 𝑈ℎ which are the solutions of the following
problems:

𝑎ℎ (𝑦ℎ, 𝐼∗ℎ V) = (𝐵𝑢 + 𝑓, 𝐼∗ℎ V) , ∀V ∈ 𝑈ℎ,
𝑎ℎ (𝑧ℎ, 𝐼∗ℎ𝑤) = (𝑦 − 𝑦Ω, 𝐼∗ℎ𝑤) , ∀𝑤 ∈ 𝑈ℎ. (24)

For the problems, we can obtain the following results.

Lemma 6. Let 𝑦ℎ and 𝑧ℎ be the solution of (18) and (19) and𝑦ℎ, 𝑧ℎ be the solution of (24). �en, we have𝑦ℎ − 𝑦ℎ1 ≤ 𝐶 𝑢ℎ − 𝑢 , (25)

𝑧ℎ − 𝑧ℎ1 ≤ 𝐶 𝑦ℎ − 𝑦 . (26)

Proof. Combining (18) and (24), we have

𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ V) = (𝐵 (𝑢 − 𝑢ℎ) , 𝐼∗ℎ V) . (27)

By taking V = 𝑦ℎ − 𝑦ℎ and using Lemma 4, we have

𝛼 𝑦ℎ − 𝑦ℎ21 ≤ (𝐵 (𝑢 − 𝑢ℎ) , 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ)) , (28)

where Lemma 4 is used. At last, we can obtain (25) with
Cauchy-Schwarz inequality. Equation (26) can be obtained
similarly.

The results in [18] can easily be extended to cover the
elliptic equations with homogeneous Neumann boundary
conditions. Now we list the useful theoretical results in the
following lemma.

Lemma 7. Let 𝑦 and 𝑧 be the solution of (4) and (10),
respectively, and 𝑦ℎ, 𝑧ℎ be the solution of (24), 𝑢, 𝑓, 𝑦Ω ∈𝐻1(Ω), and 𝐴 ∈ 𝑊2,∞. �en there exists a positive constant𝐶 > 0 and ℎ0 > 0 such that for 0 < ℎ ≤ ℎ0𝑦 − 𝑦ℎ ≤ 𝐶ℎ2,𝑦 − 𝑦ℎ1 ≤ 𝐶ℎ,𝑦 − 𝑦ℎ∞ ≤ 𝐶ℎ2 log 1ℎ ,𝑧 − 𝑧ℎ ≤ 𝐶ℎ2,𝑧 − 𝑧ℎ1 ≤ 𝐶ℎ,𝑧 − 𝑧ℎ∞ ≤ 𝐶ℎ2 log 1ℎ .

(29)

3.2. 𝐿2 Error Estimate

Theorem 8. Assume that 𝑢 and 𝑢ℎ are the solutions of (6) and
(20), respectively, 𝑢, 𝑓, 𝑦Ω ∈ 𝐻1(Ω), and 𝐴 ∈ 𝑊2,∞. �en
there exists a positive constant 𝐶 > 0 and ℎ0 > 0 such that for0 < ℎ ≤ ℎ0 𝑢 − 𝑢ℎ ≤ 𝐶ℎ2. (30)

Proof. Let us test (12) with 𝑢ℎ, and (20) with 𝑢, and sum up
the two inequalities; we have

(𝜆 (𝑢 − 𝑢ℎ) + 𝐵∗ (𝑧 − 𝑧ℎ) , 𝑢ℎ − 𝑢) ≥ 0. (31)

We further get

𝜆 𝑢 − 𝑢ℎ2 ≤ (𝐵∗ (𝑧 − 𝑧ℎ) , 𝑢ℎ − 𝑢)
= (𝑧 − 𝑧ℎ, 𝐵 (𝑢ℎ − 𝑢))
= (𝑧 − 𝑧ℎ, 𝐵 (𝑢ℎ − 𝑢))
+ (𝑧ℎ − 𝑧ℎ, 𝐵 (𝑢ℎ − 𝑢))

≤ 12𝜆 𝑧 − 𝑧ℎ2 + 𝜆2 𝑢ℎ − 𝑢2
+ (𝑧ℎ − 𝑧ℎ − 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ) , 𝐵 (𝑢ℎ − 𝑢))
+ (𝐼∗ℎ (𝑧ℎ − 𝑧ℎ) , 𝐵 (𝑢ℎ − 𝑢))

= 12𝜆 𝑧 − 𝑧ℎ2 + 𝜆2 𝑢ℎ − 𝑢2
+ (𝑧ℎ − 𝑧ℎ − 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ) , 𝐵 (𝑢ℎ − 𝑢))
+ 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ)) ,

(32)

where

𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
= 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
+ 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))

= 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
+ (𝑦 − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))

= 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
+ (𝑦 − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
− (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))

≤ 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
+ (𝑦 − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ)) .

(33)
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Combining the above equations, we can obtain

𝜆 𝑢 − 𝑢ℎ2 ≤ 12𝜆 𝑧 − 𝑧ℎ2 + 𝜆2 𝑢ℎ − 𝑢2
+ (𝑧ℎ − 𝑧ℎ − 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ) , 𝐵 (𝑢ℎ − 𝑢))
+ 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
+ (𝑦 − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))

= 12𝜆 𝑧 − 𝑧ℎ2 + 𝜆2 𝑢ℎ − 𝑢2 + 𝐸1 + 𝐸2
+ 𝐸3.

(34)

According to Lemmas 5, 6, and 7, we have

𝐸1 = (𝑧ℎ − 𝑧ℎ − 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ) , 𝐵 (𝑢ℎ − 𝑢))
≤ 𝐶ℎ 𝑧ℎ − 𝑧ℎ1 𝑢ℎ − 𝑢 ≤ 𝐶ℎ 𝑦 − 𝑦ℎ 𝑢ℎ − 𝑢
≤ 𝐶ℎ 𝑢 − 𝑢ℎ2 .

(35)

𝐸2 = 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑧ℎ − 𝑧ℎ))
− 𝑎ℎ (𝑧ℎ − 𝑧ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))

≤ 𝐶ℎ 𝑦ℎ − 𝑦ℎ1 𝑧ℎ − 𝑧ℎ1
≤ 𝐶ℎ 𝑢ℎ − 𝑢 𝑦 − 𝑦ℎ ≤ 𝐶ℎ 𝑢 − 𝑢ℎ2 .

(36)

Using Lemmas 5 and 6, we conclude

𝐸3 = (𝑦 − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ)) ≤ 𝑦 − 𝑦ℎ 𝑦ℎ − 𝑦ℎ
≤ 𝑦 − 𝑦ℎ 𝑢 − 𝑢ℎ ≤ 𝐶ℎ2 𝑢 − 𝑢ℎ .

(37)

Combining (34)–(37) and using Lemma 7, we can obtain the
desirable result

𝑢 − 𝑢ℎ ≤ 𝐶ℎ2. (38)

Theorem 9. Assume that 𝑦, 𝑧 are the solutions of (6) and
(11), respectively, and 𝑦ℎ, 𝑧ℎ are the solutions of (18) and (19),
respectively, 𝑢, 𝑓, 𝑦Ω ∈ 𝐻1(Ω), and 𝐴 ∈ 𝑊2,∞. �en there
exists a positive constant 𝐶 > 0 such that

𝑦 − 𝑦ℎ ≤ 𝐶ℎ2,𝑧 − 𝑧ℎ ≤ 𝐶ℎ2. (39)

Proof. Using the triangle inequality, we have

𝑦 − 𝑦ℎ ≤ 𝑦 − 𝑦ℎ + 𝑦ℎ − 𝑦ℎ . (40)

From Lemma 6 andTheorem 8, we can obtain

𝑦ℎ − 𝑦ℎ ≤ 𝐶 𝑢 − 𝑢ℎ ≤ 𝐶ℎ2. (41)

Using Lemma 7, we can obtain the desired result

𝑦 − 𝑦ℎ ≤ 𝐶ℎ2. (42)

Similarly, we have

𝑧 − 𝑧ℎ ≤ 𝐶ℎ2. (43)

3.3. 𝐻1 Error Estimate

Theorem 10. Assume that 𝑦, 𝑧 are the solutions of (6) and
(11), respectively, and 𝑦ℎ, 𝑧ℎ are the solutions of (18) and (19),
respectively, 𝑢, 𝑓, 𝑦Ω ∈ 𝐿2(Ω), and 𝐴 ∈ 𝑊1,∞. �en there
exists a positive constant 𝐶 > 0 such that

𝑦 − 𝑦ℎ1 ≤ 𝐶ℎ,𝑧 − 𝑧ℎ1 ≤ 𝐶ℎ. (44)

Proof. Using the triangle inequality, we have

𝑦 − 𝑦ℎ1 ≤ 𝑦 − 𝑦ℎ1 + 𝑦ℎ − 𝑦ℎ1 . (45)

From Lemma 4, we can obtain

𝛼 𝑦ℎ − 𝑦ℎ21 ≤ 𝑎ℎ (𝑦ℎ − 𝑦ℎ, 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
= (𝐵 (𝑢 − 𝑢ℎ) , 𝐼∗ℎ (𝑦ℎ − 𝑦ℎ))
≤ 12𝛼 𝑢 − 𝑢ℎ2 + 𝛼2 𝑦ℎ − 𝑦ℎ2 .

(46)

By using Lemma 7 and Theorems 8 and 9, we can obtain the
desired result

𝑦 − 𝑦ℎ1 ≤ 𝐶ℎ. (47)

Similarly, we have

𝑧 − 𝑧ℎ1 ≤ 𝐶ℎ. (48)

Remark 11. In the case𝑈𝑎𝑑 = 𝐿2(Ω), the projection equations
(13) and (20) become 𝑢 = −𝐵∗𝑧/𝜆 and 𝑢ℎ = −𝐵∗𝑧ℎ/𝜆,
respectively. Using the above theorem, we can obtain the
following error estimate:

𝑢 − 𝑢ℎ1 ≤ 𝐶ℎ. (49)
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Table 1: Errors of the control for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 1.7412E-01 - 4.4468E-02 - 2.3006 -
1/16 4.1870E-02 2.05 1.0374E-02 2.09 1.1313 1.02
1/32 1.0476E-02 2.00 2.5558E-03 2.02 5.6371E-01 1.00
1/64 2.6171E-03 2.00 6.3685E-04 2.00 2.8162E-01 1.00

Table 2: Errors of the state for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 1.1429E-03 - 3.7634E-04 - 5.3988E-03 -
1/16 2.1927E-04 2.38 8.5181E-05 2.14 1.1332E-03 2.25
1/32 5.1326E-05 2.09 2.0833E-05 2.03 2.7140E-04 2.06
1/64 1.2609E-05 2.03 5.1751E-06 2.01 6.7061E-05 2.02

3.4. 𝐿∞ Error Estimate

Theorem 12. Assume that 𝑦ℎ, 𝑧ℎ, 𝑢ℎ are the solutions of (18),
(19), and (20), respectively, 𝑢, 𝑓, 𝑦Ω ∈ 𝐻1(Ω), and 𝐴 ∈ 𝑊2,∞.
�en there exists a positive constant 𝐶 > 0 such that

𝑢 − 𝑢ℎ∞ ≤ 𝐶ℎ2 log 1ℎ ,
𝑧 − 𝑧ℎ∞ ≤ 𝐶ℎ2 log 1ℎ ,
𝑦 − 𝑦ℎ∞ ≤ 𝐶ℎ2 log 1ℎ .

(50)

Proof. Using the projection equations (13) and (20), we have𝑢 − 𝑢ℎ∞ ≤ 𝐶 𝑧 − 𝑧ℎ∞
≤ 𝐶 (𝑧 − 𝑧ℎ∞ + 𝑧ℎ − 𝑧ℎ∞)
≤ 𝐶 𝑧 − 𝑧ℎ∞ + 𝐶(log 1ℎ)

1/2 𝑧ℎ − 𝑧ℎ1
≤ 𝐶 𝑧 − 𝑧ℎ∞ + 𝐶(log 1ℎ)

1/2 𝑦 − 𝑦ℎ
≤ 𝐶ℎ2 log 1ℎ .

(51)

Similarly, we have

𝑧 − 𝑧ℎ∞ ≤ 𝐶ℎ2 log 1ℎ . (52)

4. Numerical Experiments

In this section, we report some numerical results of finite
volume element schemes for the elliptic optimal control
problems. To illustrate the theoretical analysis, the following
rate of convergence 𝑟 is defined:

𝑟 = log2 (𝑢2ℎ − 𝑢𝑢ℎ − 𝑢 ) , (53)

where 𝑢ℎ is the numerical solution with space step size ℎ and𝑢 the analytical solution. The rate approaching the number 2
would indicate second-order accuracy in space.

4.1. Experiment 1. To validate the finite volume element
schemes for the solution of elliptic optimal control problems,
test example is needed for which the exact solutions are
known in advance [15]. We consider the problems with
homogeneous Neumann boundary condition,

min 𝐽 (𝑦, 𝑢) = 12 ∫Ω 𝑦 − 𝑦Ω2 𝑑𝑥 + 12 ∫Ω |𝑢|2 𝑑𝑥, (54)

subject to

− Δ𝑦 + 𝑦 = 𝑢 + 𝑓, in Ω,
∇𝑦 ⋅ n = 0, on 𝜕Ω, (55)

whereΩ denotes unit square [0, 1]×[0, 1],𝑈𝑎𝑑=𝐿2(Ω), n is the
outer unit normal vector, and 𝑓 = 1 − sin2(2𝜋𝑥1)sin2(2𝜋𝑥2).
Under these settings, the optimal control is

𝑢 (𝑥) = sin2 (2𝜋𝑥1) sin2 (2𝜋𝑥2) . (56)

The adjoint state is

𝑧 (𝑥) = −sin2 (2𝜋𝑥1) sin2 (2𝜋𝑥2) , (57)

and the associated state is

𝑦 (𝑥) = 1. (58)

Then we can determine the function 𝑦Ω accordingly.
Errors of finite volume element schemes in 𝐿∞, 𝐿2, and𝐻1 norm are computed. Data are listed in Tables 1–3. In

Tables 1 and 3, errors in 𝐻1 norm have optimal convergence
order for both control and adjoint state. These results con-
firm our theoretical error analysis (44). In Table 2, due to
additional smoothness of the state, the𝐻1 error is𝑂(ℎ2).The
convergence results in Tables 1–3 demonstrate second-order
accuracy in 𝐿∞ and 𝐿2 norm for the control, state, and adjoint
state.
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Figure 2: The 𝐿∞, 𝐿2, and𝐻1 error for the control, state, and adjoint state under uniform refinement of the mesh.

Table 3: Errors of the adjoint state for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 1.7415E-02 - 4.4468E-02 - 2.3006 -
1/16 4.1867E-02 2.06 1.0373E-02 2.09 1.1313 1.02
1/32 1.0473E-02 1.99 2.5552E-03 2.02 5.6371E-01 1.00
1/64 2.6159E-03 2.00 6.3655E-04 2.01 2.8162E-01 1.00

Figure 2 depicts the development of the 𝐿∞, 𝐿2, and𝐻1 error for the control, state, and adjoint state under
uniform refinement of the mesh. From the figure, the
expected order 𝑂(ℎ2) in 𝐿∞ and 𝐿2 norm for the control
is observed, and the order 𝑂(ℎ) in 𝐻1 norm is shown.
Additionally, we observe convergence of order 𝑂(ℎ2) in 𝐿∞
and 𝐿2 norm for state and adjoint state. Because of better
smoothness of state, the order 𝑂(ℎ2) in 𝐻1 norm is also
observed.

We perform a simulation with space size ℎ = 1/32 for
this problem. Figure 3 presents the computed state, optimal
control, and adjoint state. Examination of Figure 3 shows that
the approximate solutions coincide with the true solutions.

At the same time, the relationship between the control and
adjoint state is preserved well.

4.2. Experiment 2. Now, we consider the optimal control
problem with homogeneous Dirichlet boundary condition
and control constraint,

min 𝐽 (𝑦, 𝑢) = 12 ∫Ω 𝑦 − 𝑦Ω2 𝑑𝑥 + 𝜆2 ∫Ω |𝑢|2 𝑑𝑥, (59)

subject to

− Δ𝑦 = 𝑢, in Ω,
𝑦 = 0, on 𝜕Ω, (60)
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Figure 3: Numerical results of Experiment 1: optimal state, optimal control, and corresponding adjoint state.

Table 4: Errors of the control for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 4.2814E-03 - 2.7687E-03 - 2.2775E-02 -
1/16 1.2186E-03 1.81 7.7173E-04 1.84 1.2642E-02 0.85
1/32 2.9931E-04 2.02 1.8098E-04 2.09 5.4512E-03 1.21
1/64 7.6218E-05 1.97 4.0938E-05 2.14 2.2949E-03 1.24

Table 5: Errors of the state for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 5.2997E-04 - 3.8069E-04 - 2.9536E-03 -
1/16 1.3047E-04 2.02 1.0869E-04 1.81 1.7383E-03 0.76
1/32 3.2119E-05 2.02 2.7098E-05 2.00 7.6992E-04 1.17
1/64 7.9037E-06 2.02 6.2918E-06 2.10 3.3199E-04 1.21

where Ω denotes the unit circle, 𝑈𝑎𝑑 = {𝑢 ∈ 𝐿2(Ω) : −0.2 ≤𝑢 ≤ 0.2}, 𝑦Ω(𝑥) = (1 − (𝑥21 + 𝑥22))𝑥1, and 𝜆 = 0.1.
The exact solution of the problem is not known in

advance. So we use the numerical results computed on a grid
with ℎ = 1/256 as reference solutions. The 𝐿∞, 𝐿2, and𝐻1 errors for state, control, and adjoint state of the above
problems have been computed. They are displayed in Tables
4–6 for the finite volume element schemes. Examination of
the tables shows that the error measures of the schemes
diminish approximately quadratically for the error in 𝐿∞ and𝐿2 norm and linearly for the error in 𝐻1 norm, which are
consistent with our theoretical analysis.

In Figure 4, the development of the 𝐿∞, 𝐿2, and𝐻1 error
for control, state, and adjoint state under uniform refinement
of the mesh is shown. Here, the expected order 𝑂(ℎ2) in 𝐿∞
and 𝐿2 norm for the control is observed. Again, we observe
convergence of order 𝑂(ℎ2) in 𝐿∞ and 𝐿2 norm for state
and adjoint state, which is consistent with our expectation
of the order of convergence. The errors in𝐻1 norm confirm
our error estimation (11). Figure 5 displays the numerical
solution computed by the finite volume element schemeswithℎ = 1/16. The results are nearly the same as those in [19].
The relationship between the control and adjoint state is also
preserved well.
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Table 6: Errors of the adjoint state for different error norms.

ℎ 𝐿∞ error 𝑟 𝐿2 error 𝑟 𝐻1 error 𝑟
1/8 5.9019E-04 - 3.9236E-04 - 3.0287E-03 -
1/16 1.6144E-04 1.87 1.1101E-04 1.82 1.7719E-03 0.77
1/32 4.2371E-05 1.93 2.8422E-05 1.97 8.0665E-04 1.13
1/64 1.0588E-05 2.00 6.9125E-06 2.04 3.6516E-04 1.14
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Figure 4: The 𝐿∞, 𝐿2, and𝐻1 error for the control, state, and adjoint state under uniform refinement of the mesh.

4.3. Experiment 3. Now we consider the optimal control
problem (59) with Ω = (−1, 1)2 \ ([−1, 0] × [0, 1]) denoting
an 𝐿-shaped domain, 𝑈𝑎𝑑 = {𝑢 ∈ 𝐿2(Ω) : −0.2 ≤ 𝑢 ≤ 0.2}.
Further, we set 𝑦Ω = 1 − (𝑥21 + 𝑥22) and 𝜆 = 0.1.

In this situation, the solution does not admit integrable
second derivatives. The desired convergence results of finite
volume element schemes cannot be expected. So we only
present the numerical solutions of the finite volume element
schemes in Figure 6, which are nearly the same as those in
[19]. On one hand, the desired convergence results may be
obtained by using graded meshes and postprocessing [20],
whichwill need more computational cost. On the other hand,
we canmodify finite volume element schemes near the corner

to obtain the second-order accuracy. The related results will
be reported in the future.

5. Conclusions

In this article, we have investigated the finite volume element
discretizations of optimal control problems governed by
linear elliptic partial differential equations and subject to
pointwise control constraints. Optimal order 𝐿2, 𝐻1, and𝐿∞ error estimates for the considered problems are obtained
and numerical experiments validate the theoretical results.
In addition, we discuss the optimal control problems in
polygonal domains with corner singularities. Two effective
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methods are proposed to compensate the negative effects of
the corner singularities. The corresponding results will be
reported in the future.
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