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In this paper, we are concerned with the solution of the third-order nonlinear differential equation 𝑓 + 𝑓𝑓 + 𝛽𝑓(𝑓 − 1) =
0, satisfying the boundary conditions 𝑓(0) = 𝑎 ∈ R, 𝑓(0) = 𝑏 < 0, and 𝑓(𝑡) → 𝜆, as 𝑡 → +∞, where 𝜆 ∈ {0, 1} and
0 < 𝛽 < 1. The problem arises in the study of the opposing mixed convection approximation in a porous medium. We prove
the existence, nonexistence, and the sign of convex and convex-concave solutions of the problem above according to the mixed
convection parameter 𝑏 < 0 and the temperature parameter 0 < 𝛽 < 1.

1. Introduction

Owing to their numerous applications in industrial manufac-
turing processes, the convection phenomena about heated or
cooled surfaces embedded in fluid-saturated porous media
have attracted considerable attention during the last few
decades. In this paper, our interest focuses on the analysis of
the boundary value problemsP𝜆(𝑎,𝑏)

𝑓 + 𝑓𝑓 + 𝛽𝑓 (𝑓 − 1) = 0
𝑓 (0) = 𝑎, 𝑎 ∈ R

𝑓 (0) = 𝑏 < 0
𝑓 (𝑡) → 𝜆 as 𝑡 → +∞

P𝜆(𝑎,𝑏)

where 𝜆 ∈ {0, 1}. This problem derives from the study
of mixed convection boundary layer near a semi-infinite
vertical plate embedded in a saturated porous medium, with
a prescribed power law of the distance from the leading edge
for the temperature.The parameter 𝛽 is a temperature power-
law profile and 𝑏 is the mixed convection parameter, namely,
𝑏 = 𝑅𝑎/𝑃𝑒−1, with 𝑅𝑎 the Rayleigh number and 𝑃𝑒 the Péclet

number. The interested reader can consult references [1, 2]
for more details on the physical derivation and the numerical
treatments.

Mathematical results about the problemP𝜆(𝑎,𝑏) with 𝜆 =
1 can be found in [3–7]. The case where 𝑎 ≥ 0, 𝑏 ≥ 0, 𝛽 > 0
and 𝜆 ∈ {0, 1} was treated by Aı̈boudi and al. in [3], and
the results obtained generalize the ones of [6]. In [4], Brighi
and Hoernel established some results about the existence and
uniqueness of convex and concave solution of P1(𝑎,𝑏) where−2 < 𝛽 < 0 and 𝑏 > 0. These results can be recovered from
[8], where the general equation 𝑓 + 𝑓𝑓 + g(𝑓) = 0 is
studied.

In [5], some theoretical results can be found about the
problem P1(0,𝑏) with −2 < 𝛽 < 0, 𝑏 = 1 + 𝜀, and 𝜀 <
−1. In particular, the authors prove that there exist 𝜀∗ ∈
(−1.807, −1.806) and 𝜀∗ ∈ (−1.193, −1.192), such that

(i) P1(0,𝑏) has no convex solution for any 𝛽 < 0 and each
𝜀 ≤ 𝜀∗.

(ii) P1(0,𝑏) has a convex solution for each 𝛽 < 0 and each
𝜀 ∈ [𝜀∗, −1).

In [7] one can find an interesting new result about the
existence of convex solutions of P1(0,𝑏) where 0 < 𝛽 <
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1 under some conditions. In [5, 7], the method used by
the authors allows them to prove the existence of a convex
solution for the case 𝑎 = 0 and seems difficult to generalize
for 𝑎 ̸= 0.

The problemP𝜆(𝑎,𝑏) with 𝛽 = 0 is the well known Blasius
problem. For a broad view, see [9]. See also [10].

Great interest is given to analytical studies of similarity
solutions because of their applications in different fields,
for example, in magnetohydrodynamic (see [11–13]) or in
boundary layer flows (see [8, 14]).

The main goal of this paper is to study the question of
existence and nonexistence of the solutions ofP𝜆(𝑎,𝑏) with 0 <
𝛽 < 1 and 𝜆 ∈ {0, 1}. We will focus our attention on convex
and convex-concave solutions of the equation

𝑓 + 𝑓𝑓 + 𝛽𝑓 (𝑓 − 1) = 0. (1)

As usual, to get a convex or convex-concave solution of
P𝜆(𝑎,𝑏), we use the shooting technique which consists of
finding the values of a parameter 𝑐 ≥ 0 for which the solution
of (1) satisfying the initial conditions 𝑓(0) = 𝑎, 𝑓(0) = 𝑏,
and 𝑓(0) = 𝑐 exists on [0, +∞) and is such that 𝑓(𝑡) → 𝜆
as 𝑡 → +∞. We denote by 𝑓𝑐 the solution of the following
initial value problem and by [0, 𝑇𝑐) the right maximal interval
of existence:

𝑓 + 𝑓𝑓 + 𝛽𝑓 (𝑓 − 1) = 0
𝑓 (0) = 𝑎
𝑓 (0) = 𝑏 < 0
𝑓 (0) = 𝑐 ≥ 0

P(𝑎,𝑏,𝑐)

2. On Blasius Equation

In this section, we recall some basic properties of the subso-
lutions and 𝜀-subsolutions of the Blasius equation. Let 𝐼 ⊂ R

be an interval and 𝑓 : 𝐼 → R be a function.

Definition 1. We say that 𝑓 is a subsolution of the Blasius
equation 𝑓 +𝑓𝑓 = 0 if 𝑓 is of class𝐶3 and if 𝑓 +𝑓𝑓 ≤ 0
on 𝐼.
Definition 2 (let 𝜀 > 0). We say that 𝑓 is an 𝜀-subsolution of
the Blasius equation 𝑓 + 𝑓𝑓 = 0 if 𝑓 is of class 𝐶3 and if
𝑓 + 𝑓𝑓 ≤ −𝜀 on 𝐼.
Proposition 3 (let 𝑡0 ∈ R). There does not exist nonpositive
concave subsolution of the Blasius equation on the interval
[𝑡0, +∞).
Proof. See [8], Proposition 2.11.

Proposition 4 (let 𝜀 > 0 and 𝑡0 ∈ R). There does not exist any
𝜀-subsolution of the Blasius equation on the interval [𝑡0, +∞).
Proof. See [8], Proposition 2.18.

3. Preliminary Results

Proposition 5. Let 𝑓 be a solution of (1) on some maximal
interval 𝐼 = (𝑇−, 𝑇+).

(1) If 𝐹 is any antiderivative of 𝑓 on 𝐼, then (𝑓𝑒𝐹) =
−𝛽𝑓(𝑓 − 1)𝑒𝐹.

(2) Assume that 𝑇+ = +∞ and that 𝑓(𝑡) → 𝜆 ∈ R as
𝑡 → +∞. If moreover 𝑓 is of constant sign at infinity,
then 𝑓(𝑡) → 0 as 𝑡 → +∞.

(3) If 𝑇+ = +∞ and if 𝑓(𝑡) → 𝜆 ∈ R as 𝑡 → +∞, then
𝜆 = 0 or 𝜆 = 1.

(4) If 𝑇+ < +∞, then 𝑓 and 𝑓 are unbounded near 𝑇+.
(5) If there exists a point 𝑡0 ∈ 𝐼 satisfying 𝑓(𝑡0) = 0 and

𝑓(𝑡0) = 𝜇, where 𝜇 = 0 or 1, then, for all 𝑡 ∈ 𝐼, we
have 𝑓(𝑡) = 𝜇(𝑡 − 𝑡0) + 𝑓(𝑡0).

Proof. The first item follows immediately from (1). For the
proof of items (2)-(5), see [8], Proposition 3.1 with 𝑔(𝑥) =
𝛽𝑥(𝑥 − 1).
Lemma 6. Let 𝛽 ∈ (0, 1] and 𝑓 be a solution of (1) on some
maximal interval 𝐼 = (𝑇−, 𝑇+). If there exists 𝑡0 ∈ 𝐼 such that

𝑓 (𝑡0) > 1 and
𝑓 (𝑡0) (1 − 𝑓 (𝑡0)) ≤ 𝑓 (𝑡0) ≤ 0,

(2)

then 𝑇+ = +∞ and 𝑓(𝑡) → 1 as 𝑡 → +∞. Moreover, 𝑓 <
0 on [𝑡0, +∞).
Proof. See [3], Lemma 9.

4. The Boundary Value Problem in the Convex
and Convex-Concave Case with 0<𝛽<1

In the following, we take 𝑎, 𝑏 ∈ R and 𝜆 ∈ {0, 1} with 𝑏 < 0
and 0 < 𝛽 < 1. We are interested here in convex and convex-
concave solutions of the boundary value problem P𝜆(𝑎,𝑏).
As mentioned in the introduction, we will use the shooting
method to find these solutions. Define the following sets:

𝐶1 = {𝑐 ≥ 0 : 𝑓𝑐 ≤ 0 and 𝑓𝑐 ≥ 0 on [0, 𝑇𝑐)} ,
𝐶2 = {𝑐 ≥ 0 : ∃𝑡𝑐 ∈ [0, 𝑇𝑐) , ∃𝜀𝑐 > 0 s.t 𝑓𝑐

< 0 on (0, 𝑡𝑐) , 𝑓𝑐 > 0 on (𝑡𝑐, 𝑡𝑐 + 𝜀𝑐) and 𝑓𝑐
> 0 on (0, 𝑡𝑐 + 𝜀𝑐)} ,

𝐶3 = {𝑐 ≥ 0 : ∃𝑠𝑐 ∈ [0, 𝑇𝑐) , ∃𝜀𝑐 > 0 s.t 𝑓𝑐
> 0 on (0, 𝑠𝑐) , 𝑓𝑐 < 0 on (𝑠𝑐, 𝑠𝑐 + 𝜀𝑐) and 𝑓𝑐
< 0 on (0, 𝑠𝑐 + 𝜀𝑐)} .

(3)

Remark 7. It is easy to prove that 𝐶2 and 𝐶3 are disjoint
nonempty open subsets of [0, +∞) and that there exist 𝑐0 >
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𝑐∗ > 0 such that 𝐶2 = (𝑐0, +∞), 𝐶3 = [0, 𝑐∗), and 𝐶1 ∪ 𝐶2 ∪𝐶3 = [0, +∞) (see Appendix A of [8] with 𝑔(𝑥) = 𝛽𝑥(𝑥 − 1)
and 𝛽 > 0).
Lemma 8 (let 𝛽 > 0). Then, 𝑓𝑐 is a convex solution of the
boundary value problemP0(𝑎,𝑏) if and only if 𝑐 ∈ 𝐶1.
Proof. See Appendix A of [8] with 𝑔(𝑥) = 𝛽𝑥(𝑥 − 1) and 𝛽 >
0.
Lemma 9 (let 𝛽 > 0). If 𝑐 ∈ 𝐶3, then 𝑇𝑐 < +∞. Moreover, 𝑓𝑐
is convex-concave, decreasing and 𝑓𝑐 (𝑡) → −∞ as 𝑡 → 𝑇𝑐.
Proof. If 𝑐 ∈ 𝐶3 then there exists 𝑠𝑐 ∈ [0, 𝑇𝑐) such that𝑓𝑐 (𝑠𝑐) <0 and 𝑓𝑐 (𝑠𝑐) = 0. From Proposition 5, items (1) and (3), we
have𝑓𝑐 (𝑡) < 0 and𝑓𝑐 (𝑡) < 0 for all 𝑡 ∈ (𝑠𝑐, 𝑇𝑐), and𝑓𝑐 (𝑇) →−∞ as 𝑡 → 𝑇𝑐.Thus,𝑓𝑐 is convex-concave solution on [0, 𝑇𝑐)
and 𝑓𝑐 (𝑡) → −∞ as 𝑡 → 𝑇𝑐.

Let us assume that 𝑇𝑐 = +∞; then there exists 𝑡0 ∈
(𝑠𝑐, +∞) such that 𝑓𝑐 and 𝑓𝑐 are negative on 𝑡 ∈ (𝑡0, +∞)
and we obtain 𝑓𝑐 + 𝑓𝑐𝑓𝑐 = −𝛽𝑓𝑐 (𝑓𝑐 − 1) < 0 on (𝑡0, +∞).
Hence, 𝑓𝑐 is a nonpositive concave subsolution of the Blasius
equation on (𝑡0, +∞). This contradicts the Proposition 3 and
thus 𝑇𝑐 < +∞.

Remark 10. From Proposition 5, items (1), (3), and (5), if 𝑐 ∈
𝐶2, then there are only three possibilities for the solution of
the initial value problemP(𝑎,𝑏,𝑐):

(1) 𝑓𝑐 is convex and 𝑓𝑐 (𝑡) → +∞ as 𝑡 → 𝑇𝑐 (with 𝑇𝑐 ≤+∞).
(2) There exists a point 𝑡0 ∈ [0, 𝑇𝑐) such that 𝑓𝑐 (𝑡0) = 0

and 𝑓𝑐 (𝑡0) > 1.
(3) 𝑓𝑐 is a convex solution ofP1(𝑎,𝑏).

The next proposition shows that case (1) cannot hold.

Proposition 11 (let 𝛽 > 0). There does not exist 𝑐 ≥ 0, such
that 𝑓𝑐 is convex on its right maximal interval of existence
[0, 𝑇𝑐) and 𝑓𝑐 (𝑡) → +∞ as 𝑡 → 𝑇𝑐.
Proof. Assume that 𝑓𝑐 is convex on its right maximal interval
of existence [0, 𝑇𝑐) and 𝑓𝑐 (𝑡) → +∞ as 𝑡 → 𝑇𝑐. Then there
exists 𝑡0 ∈ [0, 𝑇𝑐) such that, for all 𝑡 ∈ [𝑡0, 𝑇𝑐), 𝑓𝑐 (𝑡) > 1 and

𝑓𝑐 (𝑡) + 𝑓𝑐 (𝑡) 𝑓𝑐 (𝑡) = −𝛽𝑓𝑐 (𝑡) (𝑓𝑐 (𝑡) − 1)
< −𝛽𝑓𝑐 (𝑡0) (𝑓𝑐 (𝑡0) − 1) = −𝜀.

(4)

Consequently, 𝑓𝑐 is a 𝜀-subsolution of the Blasius equation on
[𝑡0, 𝑇𝑐). Therefore from Proposition 4 we have 𝑇𝑐 < +∞.

Furthermore, there exists 𝑡1 ∈ [𝑡0, 𝑇𝑐) such that 𝑓𝑐(𝑡1) =
𝛼 > 0 and 𝑓𝑐 (𝑡1) > 1, and then 𝑓𝑐 (𝑡) + 𝑓𝑐(𝑡)𝑓𝑐 (𝑡) < 0 and
𝑓𝑐(𝑡) > 𝑓𝑐(𝑡1) = 𝛼 for all 𝑡 ∈ [𝑡1, 𝑇𝑐). Thus,

𝑓𝑐 (𝑡) < −𝛼𝑓𝑐 (𝑡) (5)

for all 𝑡 ∈ [𝑡1, 𝑇𝑐). Next, integrating (5) on [𝑡1, 𝑡] for 𝑡1 < 𝑡 <
𝑇𝑐, we obtain 𝑓𝑐 (𝑡) − 𝑓𝑐 (𝑡1) < −𝛼(𝑓𝑐 (𝑡) − 𝑓𝑐 (𝑡1)) and using
Proposition 5, item (4), yields a contradiction as 𝑡 → 𝑇𝑐.

5. The 𝑎 ≤ 0 Case
Lemma 12 (let 0 < 𝛽 < 1 and 𝑎 ≤ 0). If 𝑐 ≥ 0 and if there
exists 𝑡0 ∈ [0, 𝑇𝑐) such that 𝑓𝑐 (𝑡0) = 0 and 𝑓𝑐 (𝑡0) > 1, then
𝑓𝑐(𝑡0) > 0.
Proof. Let 𝑐 ≥ 0 and assume that there exists 𝑡0 ∈ [0, 𝑇𝑐) such
that 𝑓𝑐 (𝑡0) = 0 and 𝑓𝑐 (𝑡0) > 1.

Let us consider the function 𝐻𝑐 = 𝑓𝑐 + 𝑓𝑐(𝑓𝑐 − 𝛽). Since
𝐻𝑐 = (1 − 𝛽)𝑓2𝑐 ≥ 0 on [0, 𝑇𝑐), then 𝐻𝑐 is nondecreasing on
[0, 𝑇𝑐) and hence

0 ≤ 𝐻𝑐 (0) = 𝑐 + 𝑎 (𝑏 − 𝛽) < 𝐻𝑐 (𝑡0)
= 𝑓𝑐 (𝑡0) (𝑓𝑐 (𝑡0) − 𝛽) . (6)

Thus, 𝑓𝑐(𝑡0) > 0.
For the rest of this section we will set 𝑎∗ =

−√(1 − 𝑏2)/(𝛽 − 2𝑏).
Proposition 13 (let 0 < 𝛽 < 1). If either 𝑏 ≤ −1 or 𝑏 ∈ (−1, 0]
and 𝑎 ≤ 𝑎∗, then the boundary value problem P1(𝑎,𝑏) has no
convex solution.

Proof. Suppose that 𝑏 ≤ −1 and that 𝑓𝑐 is a convex solution of
the boundary value problemP1(𝑎,𝑏). Then, there exists 𝑡∗ > 0
such that 𝑓𝑐(𝑡∗) = 0.

Let𝐾𝑐 = 2𝑓𝑐𝑓𝑐 − 𝑓2𝑐 + 𝑓2𝑐 (2𝑓𝑐 − 𝛽). From (1), we obtain
𝐾𝑐 = 2(2 − 𝛽)𝑓𝑐𝑓2𝑐 < 0 on (0, 𝑡∗). Therefore,𝐾𝑐 is decreasing
on (0, 𝑡∗) and hence 𝐾𝑐(0) > 𝐾𝑐(𝑡∗). It follows that

𝑓2𝑐 (𝑡∗) > −2𝑎𝑐 + 𝑏2 + 𝑎2 (𝛽 − 2𝑏) ≥ 𝑏2, (7)

which implies that 𝑓𝑐 (𝑡∗) > 1. This is a contradiction. The
same contradiction is obtained where 𝑏 ∈ (−1, 0] and 𝑎 ≤
𝑎∗.
Theorem 14. Let 0 < 𝛽 < 1 and 𝑎, 𝑏 ∈ Rwith 𝑏 < 0 and 𝑎 ≤ 0
and 0 < 𝛽 < 1.

(1) The boundary value problem P0(𝑎,𝑏) has at least one
convex solution.

(2) If either 𝑏 ≤ −1 or 𝑏 ∈ (−1, 0] and 𝑎 ≤ 𝑎∗, then the
boundary value problemP1(𝑎,𝑏) has no convex solution
and has infinitely many convex-concave solutions.

Proof. The first result follows from Remark 7 and Lemma 8.
The second result follows from Remark 7, Remark 10, Propo-
sition 11, Proposition 13, and Lemma 6.

6. The 𝑎>0 Case
Let 𝑎, 𝑏 ∈ R with 𝑏 < 0 and 𝑎 > 0. We assume 0 < 𝛽 < 1 and
consider the solution 𝑓𝑐 of the initial value problem 𝑃(𝑎,𝑏,𝑐) on
the right maximal interval of existence [0, 𝑇𝑐).

Let us set 𝑏∗ = max{−(1/2)𝑎2, −𝛽/(1 − 𝛽)}.
Lemma 15 (let 0 < 𝛽 < 1. let 𝑐 ≥ 0). If 𝑏 ∈ (𝑏∗, 0) and if there
exists 𝑡∗ ∈ (0, 𝑇𝑐) such that 𝑡∗ is the first pointwhere𝑓𝑐 (𝑡∗) = 0,
then 𝑓𝑐 (𝑡∗) < 0 and 𝑓𝑐 (𝑡∗) < 0.
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Proof. Let 𝑡∗ ∈ (0, 𝑇𝑐) be such that 𝑓𝑐 > 0 on [0, 𝑡∗) and𝑓𝑐(𝑡∗) = 0. Suppose that 𝑓𝑐 > 0 on [0, 𝑡∗). Then, necessarily,
we have 𝑓𝑐 < 0 on [0, 𝑡∗). Moreover, since 𝑓𝑐 is increasing
and 𝑏 > 𝑏∗, we also have 𝑓𝑐 > −𝛽/(1 − 𝛽) on [0, 𝑡∗).

Let𝐸𝑐 = 𝑓𝑐 +𝑓𝑐𝑓𝑐 . From (1), we have𝐸𝑐 = (1−𝛽)𝑓2𝑐 +𝛽𝑓𝑐 .
Consequently, 𝐸𝑐 < 0 on [0, 𝑡∗) and since 𝐸𝑐(𝑡∗) = 𝑓𝑐 (𝑡∗) ≥
0, it follows that 𝐸𝑐 > 0 on [0, 𝑡∗). Integrating from 0 to 𝑡∗
gives

0 < ∫
𝑡
∗

0

𝐸𝑐 (𝑡) d𝑡 = 𝑓𝑐 (𝑡∗) − 𝑏 − 1
2𝑎
2. (8)

Thus 𝑓𝑐 (𝑡∗) > 𝑏 + (1/2)𝑎2 ≥ 0 which is a contradiction.
Therefore, there exists 𝑡0 ∈ [0, 𝑡∗) such that 𝑓𝑐 > 0 on

(0, 𝑡0) and 𝑓𝑐 (𝑡0) = 0. From Proposition 5, items (1) and (5),
we have either 𝑓𝑐 (𝑡0) < 0 or 𝑓𝑐 (𝑡0) > 1. The second case
cannot happen. Assume, for the sake of contradiction, that
𝑓𝑐 (𝑡0) > 1. Then 𝑓𝑐 ≥ 0 and 𝑓𝑐 > 0 on [0, 𝑡0], so that we
have 𝑓𝑐(𝑡0)(1 − 𝑓𝑐 (𝑡0)) ≤ 𝑓𝑐 (𝑡0) ≤ 0. From Lemma 6, we
obtain that 𝑇𝑐 = +∞, 𝑓𝑐 (𝑡) → 1 as 𝑡 → +∞, and 𝑓𝑐 < 0
on [𝑡0, +∞). It follows that 𝑓𝑐 is a positive convex-concave
solution of the boundary value problem P1(𝑎,𝑏) on [0, +∞),
which contradicts the existence of 𝑡∗. Consequently, we have𝑓𝑐 (𝑡0) < 0. This implies that 𝑓𝑐 < 0 on [0, 𝑡0] and that 𝑐 ∈ 𝐶3.
By virtue of Lemma 9, we see that 𝑓𝑐 remains negative after
𝑡0. The proof is complete.

Lemma 16 (let 0 < 𝛽 < 1). If there exists 𝑡0 ∈ [0, 𝑇𝑐) such that𝑓𝑐 (𝑡0) = 0 and 𝑓𝑐 (𝑡0) > 1, then 𝑓𝑐(𝑡0) > 0.
Proof. Assume that there exists 𝑡0 ∈ [0, 𝑇𝑐) such that 𝑓𝑐 (𝑡0) =0, 𝑓𝑐 (𝑡0) > 1, and 𝑓𝑐(𝑡0) < 0. Then, there would exist 𝑡1 < 𝑡0
such that 𝑓𝑐(𝑡1) = 0.

Let 𝐻𝑐 = 𝑓𝑐 + 𝑓𝑐(𝑓𝑐 − 𝛽). From (1), we have 𝐻𝑐 =
(1 − 𝛽)𝑓2𝑐 ≥ 0 on [0, 𝑇𝑐). Therefore, 𝐻𝑐 is nondecreasing
on [0, 𝑇𝑐). Since 𝐻𝑐(𝑡0) = 𝑓𝑐(𝑡0)(𝑓𝑐 (𝑡0) − 𝛽) < 0, we get
𝑓𝑐 (𝑡1) = 𝐻𝑐(𝑡1) < 0. But, this and Proposition 5, item (1),
imply that 𝑓𝑐 remains negative on (𝑡1, 𝑇𝑐), a contradiction.
Hence 𝑓𝑐(𝑡0) > 0.
Lemma 17. If 0 < 𝛽 < 1 and 𝑏 ∈ (𝑏∗, 0), then there exists
𝑐0 ∈ 𝐶2 such that if 𝑐 ≥ 𝑐0 then 𝑓𝑐 is a convex-concave solution
ofP1(𝑎,𝑏).

Proof [let 𝑐 ∈ 𝐶2]. From Remark 10 and Proposition 11, we
see that either 𝑓𝑐 is a convex solution ofP1(𝑎,𝑏) or there exists
𝑡0 ∈ [0, 𝑇𝑐) such that 𝑓𝑐 (𝑡0) = 0 and 𝑓𝑐 (𝑡0) > 1. Now, as we
have seen in the proof of Lemma 15, in the second case, 𝑓𝑐 is
a convex-concave solution ofP1(𝑎,𝑏).

Let 𝑐 ∈ 𝐶2 be such that 𝑓𝑐 is a convex solution ofP1(𝑎,𝑏).
Therefore, we have 𝑏 < 𝑓𝑐 < 1 on [0, +∞) and, from
Lemma 15, we have 𝑓𝑐 > 0. It follows that

(𝑓𝑐 + 𝑓𝑐 (𝑓𝑐 − 1)) = (1 − 𝛽) 𝑓𝑐 (𝑓𝑐 − 1)

≥ −1
4 (1 − 𝛽)

(9)

on [0, +∞). Integrating between 0 and 𝑡 ≥ 0, and using the
fact that 𝑓𝑐 > 0, we obtain

𝑓𝑐 (𝑡) ≥ −1
4 (1 − 𝛽) 𝑡 + 𝑎 (𝑏 − 1) + 𝑐

− 𝑓𝑐 (𝑡) (𝑓𝑐 (𝑡) − 1)

≥ −1
4 (1 − 𝛽) 𝑡 + 𝑎 (𝑏 − 1) + 𝑐.

(10)

Integrating once again we get

∀𝑡 ≥ 0, (11)

1 > 𝑓𝑐 (𝑡) ≥ −1
8 (1 − 𝛽) 𝑡2 + (𝑎 (𝑏 − 1) + 𝑐) 𝑡 + 𝑏. (12)

Let us set 𝑃𝑐(𝑡) = −(1/8)(1 − 𝛽)𝑡2 + (𝑎(𝑏 − 1) + 𝑐)𝑡 + 𝑏 − 1. We
have 𝑃𝑐(𝑡) < 0 for all 𝑡 ≥ 0. It means that 𝑃𝑐 has no positive
roots.Thus 𝑐 cannot be too large, because, on the contrary, its
discriminant Δ = (𝑎(𝑏 − 1) + 𝑐)2 + (1/2)(1 − 𝛽)(𝑏 − 1) and
𝑎(𝑏 − 1) + 𝑐 would be positive, and hence the polynomial 𝑃𝑐
would have two positive roots, a contradiction.

Therefore, there exists 𝑐0 > 0 such that 𝑓𝑐 is convex-
concave solution of the problem P1(𝑎,𝑏) for 𝑐 ≥ 𝑐0. This
completes the proof.

Theorem 18. Let 𝑎, 𝑏 ∈ R, with 𝑏 < 0, 𝑎 > 0, and 0 < 𝛽 < 1.
(1) The boundary value problem P0(𝑎,𝑏) has at least one

convex solution. If in addition 𝑏 ∈ (𝑏∗, 0), then any
convex solution ofP0(𝑎,𝑏) is positive.

(2) If 𝑏 ∈ (𝑏∗, 0), then the boundary value problemP1(𝑎,𝑏)
has infinitely many positive convex-concave solutions.

Proof. The first part of (1) follows from Remark 7 and
Lemma 8.The second part follows fromLemma 15, because if
there was a point 𝑡∗ such that 𝑓𝑐 > 0 on [0, 𝑡∗) and 𝑓𝑐(𝑡∗) = 0
then 𝑓𝑐 (𝑡∗) < 0, a contradiction. The second result follows
from Remark 7, Remark 10, Proposition 11, Lemma 16, and
Lemma 6.

7. Conclusion

In this work, in particular in Theorems 14 and 18, we have
presented some new and important results about the bound-
ary value problemsP0(𝑎,𝑏) and P1(𝑎,𝑏), which we summarize
below. The parameters 𝛽 and 𝑏 satisfy 0 < 𝛽 < 1 and 𝑏 < 0.
The constants 𝑎∗ and 𝑏∗ are defined in Sections 5 and 6.

(1) For 𝑎 ≤ 0 :
(a) The boundary value problemP0(𝑎,𝑏) has at least

one convex solution.
(b) If either 𝑏 ≤ −1 or 𝑏 ∈ (−1, 0] and 𝑎 ≤ 𝑎∗,

then the boundary value problemP1(𝑎,𝑏) has no
convex solution and has infinitely many convex-
concave solutions.

(2) For 𝑎 > 0 :
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(a) If 𝑏 ∈ (𝑏∗, 0), then the boundary value problem
P0(𝑎,𝑏) has at least one positive convex solution.

(b) If 𝑏 ∈ (𝑏∗, 0), then the boundary value problem
P1(𝑎,𝑏) has infinitely many positive convex-
concave solutions.

Numerical simulations prompt us to formulate the fol-
lowing conjecture.

Conjecture 19. Let 𝑎, 𝑏 ∈ R, with 𝑏 ≤ −1, 𝑎 > 0, and 0 < 𝛽 <
1. The boundary value problemP1(𝑎,𝑏) has no convex solution.

To finish, we give the following proposition concerning
the case 𝑎 = 0.
Proposition 20 (let 𝛽 < 2). If 𝑏 ≤ −1, then the boundary
value problemP1(0,𝑏) has no convex solution.

Proof. Assume that 𝑓𝑐 is a convex solution of the boundary
value problem P1(0,𝑏). Then, there exists 𝑡∗ ≥ 0, such that
𝑓𝑐 < 0 on (0, 𝑡∗), 𝑓𝑐(𝑡∗) = 0, and 𝑓𝑐 (𝑡∗) > 0. Consider again
the function

𝐾𝑐 = 2𝑓𝑐𝑓𝑐 − 𝑓2𝑐 + 𝑓2𝑐 (2𝑓𝑐 − 𝛽) . (13)

We have 𝐾𝑐 = 2(2 − 𝛽)𝑓𝑐𝑓2𝑐 < 0 on (0, 𝑡∗). Thus, 𝐾𝑐 is
a decreasing function and hence 𝐾𝑐(0) > 𝐾𝑐(𝑡∗). It follows
that 𝑓2𝑐 (𝑡∗) > 𝑏2 which implies that 𝑓𝑐 (𝑡∗) > 1, which is a
contradiction.
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