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This paper is devoted to studying the existence and stability of implicit Volterra difference equations in Banach spaces. The proofs
of our results are carried out by using an appropriate extension of the freezing method to Volterra difference equations in Banach
spaces. Besides, sharp explicit stability conditions are derived.

1. Introduction

In this paper, we study the existence and stability of solu-
tions for a class of abstract functional difference equations
described in the form

𝑥 (𝑘) = 𝑘∑
𝑗=0

𝐾(𝑘, 𝑘 − 𝑗) 𝑥 (𝑗) + 𝑓 (𝑘) , 𝑘 ≥ 1, (1)

in a Banach space (𝑋, ‖ ⋅ ‖), 𝑓 ∈ 𝑙∞(𝑍+, 𝑋), the space of
bounded sequences equipped with the norm ‖ ⋅ ‖ on 𝑙∞, and𝐾(𝑘, 𝑗) is a function defined on 0 ≤ 𝑗 ≤ 𝑘 < ∞, whose values
are bounded operators in𝑋. In addition, for any fixed integer𝜏 ≥ 0, 𝐾(𝜏, ⋅) is summable and bounded on 𝑍+, the set of
nonnegative integers.

A solution of (1) is a sequence defined on 𝑍+ and
satisfying (1) for all finite 𝑘 > 0. The study of existence and
stability of solutions for implicit Volterra difference equations
of nonconvolution type, defined in abstract spaces, is a
complicated problem. However, with appropriate conditions
on 𝑓(⋅) and 𝐾(𝑘, ⋅), one can use the freezing method for
abstract Volterra difference equations, so the difficulty is
overcome.

Existence and uniqueness problems for the Volterra
difference equations were discussed by some authors (e.g.,
see [1, 2]). Existence and stability of Volterra difference
equations have been studied by many authors (Federson et
al. [3], Murakami and Nagabuchi [4], Györi and Horvath [5],

Mingarelli [1], Gonzalez et al. [6], Kolmanovskii et al. [7], and
Song and Baker [8]).

The main technique in the theory of stability and bound-
edness of Volterra difference equations is the direct Lyapunov
method and its variants. In contrast, many alternative meth-
ods to Lyapunov’s function have been successfully applied
to the stability analysis of Volterra difference equations;
for example, in Federson et al. [3], the Kurzweil-Henstok
integral formalism is applied to establish the existence of
solutions to integral equations of Volterra type. In Murakami
and Nagabuchi [4], sufficient stability properties and the
asymptotic almost periodicity for linear Volterra difference
equations in Banach spaces are derived. Gonzalez et al.
[6] considered an implicit Volterra difference equation in
a Hilbert space and obtained sufficient conditions so that
the solutions exist and have a bounded behavior. The
coefficients of the considered equations are sequences of
real numbers. In Mingarelli [1], Volterra-Stieltjes integral
equations are studied, which can be considered as generalized
Volterra difference equations. In Banás and Sadarangani [2],
a class of operator-integral equations of Volterra-Stieltjes type
which create a generalization of numerous integral equations
appearing in mathematical literature is studied. In Györi
and Horvath [5], sufficient conditions are presented under
which the solutions to a linear nonconvolution Volterra
difference equation converge to limits, which are given by
a limit formula. In Kolmanovskii et al. [7], stability and
boundedness problems of some classes of scalar Volterra
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nonlinear difference equations are investigated.Their stability
conditions are formulated in terms of the characteristic
equations. In Song and Baker [8], the fixed point theory is
used to establish sufficient conditions to ensure the stability of
the zero solution of an implicit nonlinear Volterra difference
equation. However, in the above-mentioned articles, Volterra
equations with convolution kernels are mainly considered.

In this paper, formulating the Volterra discrete equations
in the phase space 𝑙𝑝(𝑍+, 𝑋), where 𝑋 is an appropriate
Hilbert space, and assuming that the kernel operator is
completely continuous, we obtain sufficient conditions for the
existence and uniqueness problem. The suggested approach
is based on the “freezing” method to abstract difference
equations (Medina and Gil’ [9]), as well as on the concept
of analytical pencils (analytic operator-valued functions of
a complex argument). See, for example, [10–13]. In Med-
ina [14], a class of nonlinear discrete-time Volterra equa-
tions in Banach spaces is considered. Using a linearization
method, sufficient conditions of existence and boundedness
are established. In fact, assuming that the kernels are Causal
Operators, the existence and boundedness of solutions are
derived. Consequently, themethodology and the correspond-
ing results obtained in [14] are absolutely different compared
with the results of this article.

Consider an 𝑋-valued Volterra-Stieltjes equation of the
form

𝑥 (𝑡) = ∫𝑡
0
𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝜇 (𝑠) + 𝑓 (𝑡) , 𝑡 ≥ 0, (2)

where 𝐾 : [0,∞) × [0,∞) × 𝑋 → 𝑋 and 𝑓 : 𝐿𝜇,∞ → 𝐿𝜇,∞.
A solution of this equation is a function 𝑥 ∈ 𝐿𝜇,∞, which is
locally 𝜇-integrable in the Riemann-Stieltjes sense.

If 𝜇(𝑡) = 𝑘 − 1, 𝑘 − 1 < 𝑡 ≤ 𝑘, for 𝑘 = 1, 2, . . .,
then we can restrict our attention to functions 𝑥 ∈ 𝐿𝜇,∞
which are piecewise constants with 𝑥(𝑡) = 𝑥𝑘 for 𝑘 − 1 <𝑡 ≤ 𝑘, 𝑘 = 1, 2, . . .. We can identify such a function 𝑥
with a sequence (𝑥1, 𝑥2, . . .) in the space ℓ∞. In this case, the
Volterra-Stieltjes original equation is equivalent to a Volterra
difference equation

𝑥 (𝑗) = 𝑗∑
𝑘=1

𝐾(𝑗, 𝑘, 𝑥 (𝑘)) + 𝑓 (𝑗) , 𝑗 = 2, 3, . . . . (3)

Consequently, [1, 2, 15, 16] are highly appropriate to our
research.

Remark 1. Wewant to point out that the freezingmethod was
introduced by V. M. Alekseev for linear ordinary differential
equations (see Bylov et al. [17]) and extended to difference
systems by Gil’ and Medina [18].

Our aim in this paper is to make new contributions to the
development of the theory of existence and qualitative prop-
erties of solutions for the nonconvolution Volterra difference
equations described by Volterra operators in Banach spaces.

The remainder of this article is organized as follows: In
Section 2, we establish a preliminary result to a class of
convolution Volterra difference equations which will be fun-
damental to formulating the corresponding nonconvolution

problem in Banach spaces. In Section 3, sufficient conditions
on the existence and stability of solutions of nonconvolution
Volterra difference equations are established. In Section 4,
we illustrate the main result studying an interesting prob-
lem. Finally, Section 5 is devoted to the discussion of our
results.

2. Preliminary Results

To prove our main results, it is convenient to establish some
known qualitative results for a class of convolution Volterra
difference equations (see [7, 8, 11, 19–25]).

Let 𝐾(𝑖), 𝑖 = 0, 1, 2, . . ., be bounded linear operators in a
Banach space𝑋 with norm ‖ ⋅ ‖.

Consider the convolution Volterra difference equation

𝑥 (𝑘) = 𝑘∑
𝑗=1

𝐾(𝑘 − 𝑗) 𝑥 (𝑗) + ℎ (𝑘) ; 𝑘 = 1, 2, . . . (4)

where 𝐾(0) = 0, ℎ = {ℎ(𝑖)}∞𝑖=1, and ℎ(𝑖) ∈ 𝑋 is a given
sequence.

Assume that lim𝑘→∞ 𝑘√‖𝐾(𝑘)‖<∞ and lim𝑘→∞ 𝑘√‖ℎ(𝑘)‖<∞.
To solve (4), put

𝑇 (𝑧) = ∞∑
𝑗=1

𝐾(𝑗) 𝑧𝑗,
𝑓 (𝑧) = ∞∑

𝑗=1

ℎ (𝑗) 𝑧𝑗, (𝑧 ∈ C) .
(5)

Consider the equation

𝑦 (𝑧) = 𝑇 (𝑧) 𝑦 (𝑧) + 𝑓 (𝑧) . (6)

In a neighborhood 𝜔 of zero, let 𝐼 − 𝑇(𝑧) be boundedly
invertible. Then

𝑦 (𝑧) = (𝐼 − 𝑇 (𝑧))−1 𝑓 (𝑧) , (𝑧 ∈ 𝜔) . (7)

Hence it follows that 𝑦(𝑧) is infinitely many times differen-
tiable at zero.

Differentiating (6) 𝑗 times, we get

𝑦(𝑗) (𝑧) = 𝑗∑
𝑖=0

𝐶𝑖𝑗𝑇(𝑗−𝑖) (𝑧) 𝑦(𝑖) (𝑧) + 𝑓(𝑗) (𝑧) . (8)

Since 𝐾(𝑖) = 𝑇(𝑖)(0)/𝑖!, substituting 𝑧 = 0 into the later
equality, we obtain the following relations:

𝑏 (𝑗) = 𝑗∑
𝑖=0

𝐾(𝑗 − 𝑖) 𝑏 (𝑖) + ℎ (𝑗) ;
(𝐾 (0) = 0; 𝑗 = 1, 2, . . .) ,

(9)
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where 𝑏(𝑗) = 𝑦(𝑗)(0)/𝑗!.Therefore, we arrive at (7). Hence, the
sequence 𝑥(𝑘) = 𝑏(𝑘) is a solution to (7). According to (7), we
obtain

𝑥 (𝑗) = 1𝑗! 𝑑𝑗𝑦 (𝑧)𝑑𝑧𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0

= 1𝑗! 𝑑𝑗𝑑𝑧𝑗 (1 − 𝑇 (𝑧))−1 𝑓 (𝑧)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0 .
(10)

Thanks to the Cauchy formula

𝑥 (𝑗) = 12𝜋𝑖 ∫𝛾 1𝑧𝑗+1 (1 − 𝑇 (𝑧))−1 𝑓 (𝑧) 𝑑𝑧,
(𝑗 = 1, 2, . . .) ,

(11)

where 𝛾 is a smooth contour surrounding zero, provided that𝐼 − 𝑇(𝑧) is boundedly invertible and 𝑓 is regular inside 𝛾 and
on 𝛾. Thus, the next result can be established.

Theorem 2 (see [19, 25]). Inside 𝛾 and on 𝛾, let 𝐼 − 𝑇(𝑧) be
boundedly invertible and 𝑓 be regular. Then a solution of (4) is
given by formula (11).

Remarks 3. Theorem 2 will play a fundamental role to
establish the existence and stability of the solution of non-
convolution equations of kind (1). In doing so, we will use the
freezing method.

Definition 4 (see [7, 8, 22–24]). We will say that (1) is stable
if, for any 𝑓 ∈ 𝑙∞(𝑍+, 𝑋), a solution 𝑥 of (1) satisfies the
inequality

‖𝑥‖𝑙∞ ≤ 𝑐0 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ , (12)

where the constant 𝑐0 does not depend on 𝑓.
Let𝐻 be a separable Hilbert space and𝐴 a linear compact

operator in 𝐻. If {𝑒𝑘}∞𝑘=1 is an orthogonal basis in 𝐻 and the
series ∑∞𝑘=1(𝐴𝑒𝑘, 𝑒𝑘) converges, then the sum of the series is
called the trace of the operator 𝐴 and is denoted by

Trace (𝐴) = Tr (𝐴) = ∞∑
𝑘=1

(𝐴𝑒𝑘, 𝑒𝑘) . (13)

Definition 5 (see [20, 26]). An operator 𝐴 satisfying the
relationTr(𝐴∗𝐴) < ∞ is said to be aHilbert-Schmidt operator,
where 𝐴∗ is the adjoint operator of 𝐴.

The norm

𝑁2 (𝐴) = 𝑁 (𝐴) = √Tr (𝐴∗𝐴) (14)

is called the Hilbert-Schmidt norm of 𝐴.
Definition 6 (see [20, 26]). A bounded linear operator 𝐴 is
said to be quasi-Hermitian if its imaginary component

𝐴𝐼 = 𝐴 − 𝐴∗2𝑖 (15)

is a Hilbert-Schmidt operator, where 𝐴∗ is the adjoint
operator of 𝐴.

Theorem 7 (see [17, 19, 26]). Let𝑉 be a Hilbert-Schmidt com-
pletely continuous quasinilpotent (Volterra) operator acting in
a separable Hilbert space𝐻. Then the inequality

󵄩󵄩󵄩󵄩󵄩𝑉𝑘󵄩󵄩󵄩󵄩󵄩 ≤ 𝑁𝑘𝑝 (𝑉)√𝑘! , for any natural 𝑘 (16)

is true.

3. Main Results

Now, we are in a position to establish sufficient conditions on
the existence and stability of solutions of (1).

Assume that, for any fixed integer 𝜏 ≥ 0, 𝐾(𝜏, ⋅) is 𝑙1-
summable and bounded on𝑍+. In addition, assume that there
exists a nonnegative constant 𝑞 such that

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩𝐾 (𝑘, 𝑗) − 𝐾 (𝜏, 𝑗)󵄩󵄩󵄩󵄩 ≤ 𝑞 |𝑘 − 𝜏| ,
(𝑞 = const.; 𝑘, 𝜏 ≥ 0) .

(17)

Under (17), the function 𝐾(𝜏, 𝑗), for a fixed integer 𝜏, admits
the 𝑍-transform 𝐾̃𝜏(𝑧) = ∑∞𝑗=0 𝑧−𝑗𝐾(𝜏, 𝑗), |𝑧| ≥ 𝜌, where 𝜌
is the radius of convergence of 𝐾̃𝜏(𝑧). Besides, it is assumed
that the operator 𝑊𝜏(𝑧) = 1 − 𝐾̃𝜏(𝑧) is boundedly invertible
for all 𝑧 in a neighborhood 𝜔 of zero.

Introduce the Green function

𝐺𝜏 (𝑘) = 12𝜋 ∫2𝜋
0

𝑒−𝑖𝑦𝑘𝑊−1𝜏 (𝑒𝑖𝑦) 𝑑𝑦. (18)

Theorem 8. Under assumption (17), let

𝑞∞∑
𝑘=0

𝑘 sup
𝜏≥0

󵄩󵄩󵄩󵄩𝐺𝜏 (𝑘)󵄩󵄩󵄩󵄩 < 1. (19)

Then (1) is stable. Moreover, constant 𝑐0 in (12) is explicitly
pointed below.

Proof. Consider the convolution equation

𝑥 (𝑘) = 𝑘∑
𝑗=0

𝐾(𝜏, 𝑘 − 𝑗) 𝑥 (𝑗) + 𝑓 (𝑘) , 𝑘 ≥ 1, (20)

with a fixed integer 𝜏 ≥ 0.
The solution of (20) may be written as

𝑥 (𝑘) = 𝑘∑
𝑗=1

𝐺𝜏 (𝑘 − 𝑗) 𝑓 (𝑗) , (21)

whereby the discrete Green’s function 𝐺(𝑘, 𝑗) is defined.
Now, rewrite (20) in the form

𝑥 (𝑘) − 𝑘∑
𝑗=1

𝐾(𝜏, 𝑘 − 𝑗) 𝑥 (𝑗) = 𝑓0 (𝑘, 𝜏) + 𝑓 (𝑘) ,
(𝑘 ≥ 0) ,

(22)
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where

𝑓0 (𝑘, 𝜏) = 𝑘∑
𝑗=1

[𝐾 (𝑘, 𝑘 − 𝑗) − 𝐾 (𝜏, 𝑘 − 𝑗)] 𝑥 (𝑗) . (23)

Hence, according to (21),

𝑥 (𝑘) = 𝑘∑
𝑗=1

𝐺𝜏 (𝑘 − 𝑗) [𝑓 (𝑗) + 𝑓0 (𝑗, 𝑘)] , (24)

= 𝐹 (𝑘) + 𝑘∑
𝑗=1

𝐺𝜏 (𝑘 − 𝑗) 𝑓0 (𝑗, 𝑘) , (25)

where 𝐹 (𝑘) = ∑𝑘𝑗=1 𝐺𝜏(𝑘 − 𝑗)𝑓(𝑗).
Denote

𝑀(𝑘) = sup
𝜏≥0

󵄩󵄩󵄩󵄩𝐺𝜏 (𝑘)󵄩󵄩󵄩󵄩 . (26)

Hence, we get

‖𝐹‖𝑙∞ ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ sup
𝑘

( 𝑘∑
𝑗=1

𝑀(𝑘 − 𝑗)) ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ . (27)

Due to (22),

󵄩󵄩󵄩󵄩𝑓0 (𝑘, 𝜏)󵄩󵄩󵄩󵄩 ≤ 𝑘∑
𝑗=1

󵄩󵄩󵄩󵄩𝐾 (𝑘, 𝑘 − 𝑗) − 𝐾 (𝜏, 𝑘 − 𝑗)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥 (𝑗)󵄩󵄩󵄩󵄩
≤ 𝑞 ‖𝑥‖𝑙∞ |𝑘 − 𝜏| .

(28)

By (24), we have

‖𝑥 (𝑘)‖ ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ + 𝑞 ‖𝑥‖𝑙∞ 𝑘∑
𝑗=1

𝑀(𝑘 − 𝑗) 󵄨󵄨󵄨󵄨𝑗 − 𝜏󵄨󵄨󵄨󵄨 . (29)

Take 𝑘 = 𝜏; then
‖𝑥 (𝜏)‖ ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞

+ 𝑞 sup
1≤𝑗≤𝜏

󵄩󵄩󵄩󵄩𝑥 (𝑗)󵄩󵄩󵄩󵄩 𝜏∑
𝑗=1

(𝜏 − 𝑗)𝑀 (𝜏 − 𝑗) . (30)

Hence

‖𝑥 (𝜏)‖ ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ + 𝑞 sup
1≤𝑗≤𝜏

󵄩󵄩󵄩󵄩𝑥 (𝑗)󵄩󵄩󵄩󵄩 ∞∑
𝑗=1

𝑗𝑀 (𝑗) . (31)

Therefore, for any 𝑘0 > 0,
sup
𝜏≤𝑘0

‖𝑥 (𝜏)‖ ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ + 𝜆 sup
𝜏≤𝑘0

‖𝑥 (𝜏)‖ , (32)

where 𝜆 = 𝑞∑∞𝑗=1 𝑗𝑀(𝑗).
On the other hand, condition 𝑞∑∞𝑗=1 𝑗𝑀(𝑗) < 1 implies

sup
1≤𝑘≤𝑘0

‖𝑥 (𝑘)‖ ≤ ‖𝑀‖𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞1 − 𝜆 . (33)

Since the right hand side does not depend on 𝑘0, condition
(12) follows with 𝑐0 = ‖𝑀‖𝑙∞/(1 − 𝜆).

The existence of solutions is due to the convergence of the
Neumann series

𝑥 = ∞∑
𝑗=0

𝑉𝑗𝑓, (34)

where

(𝑉𝑥) (𝑘) = 𝑘∑
𝑗=1

𝐾(𝑘, 𝑗) 𝑥 (𝑗) , (35)

provided that∑∞𝑘=1 ‖𝐾(𝑘, 𝜏)‖ < ∞ for any fixed integer 𝜏 ≥ 0.
In fact, (1) is rewritten in the operator form

𝑥 = 𝑉𝑥 + 𝑓 (36)

Hence

𝑥 = (𝐼 − 𝑉)−1 𝑓 = ∞∑
𝑗=0

𝑉𝑗𝑓. (37)

This yields

‖𝑥‖𝑙∞ ≤ ∞∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑉𝑗󵄩󵄩󵄩󵄩󵄩𝑙∞ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑙∞ . (38)

Since 𝑉 is a quasinilpotent Hilbert-Schmidt operator, it
follows by [19, 25] that

󵄩󵄩󵄩󵄩󵄩𝑉𝑗󵄩󵄩󵄩󵄩󵄩𝑙∞ ≤ 𝑁𝑝∞ (𝑉)
𝑝√𝑘! < ∞. (39)

Consequently, the Neumann series ∑∞𝑗=0 𝑉𝑗𝑓 is convergent.

Remark 9. The stability theory of Volterra difference equa-
tions has been considered, for example, by Song and
Baker [8], Mingarelli [1], and Gonzalez et al. [6]. However,
the “freezing” method has not been used previously to
study qualitative properties of Volterra difference systems in
Banach spaces. Consequently, the theoretical contributions of
this paper are significantly new.

4. Example

To illustrate the main result, consider in𝑋 the equation

𝑥 (𝑘) − 𝐴 (𝑘) 𝑘∑
𝑗=0

𝑒−(𝑘−𝑗)ℎ𝑥 (𝑗) = 𝑓 (𝑘) ;
ℎ = const. > 0,

(40)

where 𝐴(𝑘) is a variable bounded operator in𝑋 satisfying

‖𝐴 (𝑘) − 𝐴 (𝜏)‖ ≤ 𝑞0 |𝑘 − 𝜏| ; (𝑘, 𝜏 ≥ 0) . (41)
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Take 𝐾(𝑘, 𝑗) = 𝐴(𝑘)𝑒−𝑗ℎ. Then, by (41),

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩𝐾 (𝑘, 𝑗) − 𝐾 (𝜏, 𝑗)󵄩󵄩󵄩󵄩 ≤ ‖𝐴 (𝑘) − 𝐴 (𝜏)‖ 𝑘∑
𝑗=0

𝑒−𝑗ℎ
≤ 𝑞0𝑒ℎ |𝑘 − 𝜏| .

(42)

We also have

𝐾̃𝜏 (𝑧) = ∞∑
𝑗=0

𝐾(𝜏, 𝑗)𝑧𝑗 = 𝐴 (𝜏) ∞∑
𝑗=0

(𝑒−ℎ)𝑗
𝑧𝑗

= 𝐴 (𝜏) 𝑧𝑧 − 𝑒−ℎ , |𝑧| > 1𝑒ℎ .
(43)

This relation yields

𝑊𝜏 (𝑧) = 𝐼 − 𝐴 (𝜏) 𝑧𝑧 − 𝑒−ℎ . (44)

On the other hand,

𝑘𝐺𝜏 (𝑘) = 𝑘( 12𝜋𝑖 ∫𝛾 𝑧𝑘−1𝑊−1𝜏 (𝑧) 𝑑𝑧)
= 12𝜋𝑖 ∫𝛾 𝑧𝑘−1𝑇𝜏 (𝑧) 𝑑𝑧,

(45)

where

𝑇𝜏 (𝑧) = − 𝑑𝑑𝑧 (𝑊−1𝜏 (𝑧)) . (46)

If |𝑧| < 𝑏 < 1 and letting 𝑇𝜏(𝑧) be regular and
𝜆𝑏 = sup

𝜏≥0

12𝜋 ∫2𝜋
0

󵄩󵄩󵄩󵄩󵄩𝑇𝜏 (𝑒𝑖𝑦−𝑏)󵄩󵄩󵄩󵄩󵄩 𝑑𝑦 < ∞, (47)

then

󵄩󵄩󵄩󵄩𝑘𝐺𝜏 (𝑘)󵄩󵄩󵄩󵄩 ≤ 𝑏𝑘−1 12𝜋 ∫2𝜋
0

󵄩󵄩󵄩󵄩󵄩𝑇𝜏 (𝑒𝑖𝑦−𝑏)󵄩󵄩󵄩󵄩󵄩 𝑑𝑦 ≤ 𝑏𝑘−1𝜆𝑏. (48)

Consequently,
∞∑
𝑘=0

𝑘 sup
𝜏≥0

󵄩󵄩󵄩󵄩𝐺𝜏 (𝑘)󵄩󵄩󵄩󵄩 ≤ 𝜆𝑏𝑏 (1 − 𝑏) . (49)

Theorem 10. Under conditions (42), for a positive 𝑏 and all 𝑧,
with |𝑧| < 𝑏 < 1, let𝑇𝜏(𝑧) be regular and 𝜆𝑏/𝑏(1−𝑏) < 1.Then
(40) is stable.

For example, if 𝐴(𝑡) = sin(𝑡)𝐵, where 𝐵 is a constant
operator, then condition (41) holds with

𝑞 (𝑡) = 2 ‖𝐵‖ sin( 𝑡2) , (50)

since

sin𝛼 − sin𝛽 = 2 sin(𝛼 − 𝛽2 ) cos(𝛼 + 𝛽2 ) ,
(𝛼, 𝛽 ∈ R) .

(51)

Taking𝐾(𝑘, 𝑗) = sin(𝑡)𝐵𝑒−𝑗ℎ. Then, by (41),

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩𝐾 (𝑘, 𝑗) − 𝐾 (𝜏, 𝑗)󵄩󵄩󵄩󵄩 ≤ ‖𝐴 (𝑘) − 𝐴 (𝜏)‖ 𝑘∑
𝑗=0

𝑒−𝑗ℎ

≤ 2 ‖𝐵‖𝑒ℎ |𝑘 − 𝜏| .
(52)

Thus, every statement of Theorem 10 can be easily verified.

5. Concluding Remarks

The stability problem for Volterra difference equations of
nonconvolution type in an infinite dimensional Hilbert space
is more complicated than that for equations in 𝑅𝑛 (a finite
dimensional Euclidean space). However, with appropriate
conditions on 𝑓(⋅) and 𝐾(𝑗, ⋅), one can use the freezing
method for abstract difference equations, so the difficulty is
overcome. In fact, considering the time 𝑗 as a parameter, we
obtain an infinite family of convolution Volterra difference
equations. Thus, using the freezing method, we deduce the
qualitative properties corresponding to the nonconvolution
Volterra difference equations and to the convolution original
equation. On the other hand, the study of existence of
solutions of this kind of implicit Volterra difference equations
is a complicated problem. Our proof of the existence of
solutions is carried out using the convergence of Neumann
series of quasinilpotent Hilbert-Schmidt operators [27].
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