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We consider the Dirichlet initial boundary value problem 𝜕𝑡𝑢𝑚(𝑥)−div(|∇𝑢|𝑝(𝑥,𝑡)−2∇𝑢) = 𝑎(𝑥, 𝑡)𝑢𝑞(𝑥,𝑡), where the exponents𝑝(𝑥, 𝑡) >1, 𝑞(𝑥, 𝑡) > 0, and𝑚(𝑥) > 0 are given functions. We assume that 𝑎(𝑥, 𝑡) is a bounded function.The aim of this paper is to deal with
some qualitative properties of the solutions. Firstly, we prove that if ess sup𝑝(𝑥, 𝑡)−1 < ess inf 𝑚(𝑥), then any weak solution will be
extinct in finite time when the initial data is small enough.Otherwise, when ess sup𝑚(𝑥) < ess inf 𝑝(𝑥, 𝑡)−1, we get the positivity of
solutions for large 𝑡. In the second part, we investigate the property of propagation from the initial data. For this purpose, we give a
precise estimation of the support of the solution under the conditions that ess sup𝑚(𝑥) < ess inf 𝑝(𝑥, 𝑡)−1 and either 𝑞(𝑥, 𝑡) = 𝑚(𝑥)
or 𝑎(𝑥, 𝑡) ≤ 0 a.e. Finally, we give a uniform localization of the support of solutions for all 𝑡 > 0, in the case where 𝑎(𝑥, 𝑡) < 𝑎1 < 0
a.e. and ess sup 𝑞(𝑥, 𝑡) < ess inf 𝑝(𝑥, 𝑡) − 1.

1. Introduction

This paper is devoted to studying qualitative properties
of nonnegative weak solutions for the following doubly
nonlinear parabolic problem with variable exponents

P :
{{{{{{{{{

𝜕𝑏 (𝑥, 𝑢)𝜕𝑡 − Δ𝑝(𝑥,𝑡)𝑢 = 𝑎 (𝑥, 𝑡) |𝑢|𝑞(𝑥,𝑡)−1 𝑢 in 𝑄𝑇 = Ω × (0, 𝑇) ,
𝑢 = 0 on 𝜕Ω × (0, 𝑇) ,
𝑏 (𝑥, 𝑢 (𝑥, 0)) = 𝑏 (𝑥, 𝑢0 (𝑥)) in Ω,

(1)

where Ω is a bounded domain of R𝑁, 𝑁 ≥ 1, with
smooth boundary 𝜕Ω, 𝑏(𝑥, 𝑢) = |𝑢|𝑚(𝑥)−1𝑢 and Δ𝑝(𝑥,𝑡)𝑢 is
defined as

Δ𝑝(𝑥,𝑡)𝑢 = div (|∇𝑢|𝑝(𝑥,𝑡)−2 ∇𝑢) . (2)

The exponents 𝑝, 𝑞, 𝑚 and the coefficient 𝑎 are given
measurable functions. It will be assumed throughout the
paper that these functions satisfy some specific conditions.

Problems of this form appear in various applications; for
instance in models for gas or fluid flow in porous media
([1, 2]) and for the spread of certain biological populations
([3]). Our motivation to study problem P with variable
exponents is the fact that it is considered as a model of
an important class of non-Newtonian fluids which are well
known as electrorheological fluids, see ([4]). It appears also
as a model in image restoration ([5]) and in elasticity ([6]).
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It is well known that solutions of problems such as P
exhibit various qualitative properties, which reflect natural
phenomena, according to certain conditions on 𝑝(𝑥, 𝑡),𝑞(𝑥, 𝑡), 𝑚(𝑥), 𝑎(𝑥, 𝑡), and 𝑢0, (see for example [7–13] and the
references therein). Among the phenomena that interest us
in this work is the finite speed of propagation, which means
that if 𝜌0 > 0 is such that supp(𝑢0) ⊂ 𝐵(𝑥0, 𝜌0), then
supp(𝑢(𝑥, 𝑡)) ⊂ 𝐵(𝑥0, 𝜌(𝑡)), for any 𝑡 ∈ (0, 𝑇), where 𝜌(𝑡)
is a positive function which depends on 𝜌0, (i.e., solutions
with compact support). This property has various physical
meanings; for instance, in the study of turbulent filtration of
gas through porous media, a solution with compact support
means that gas will remain confined to a bounded region of
space, (see [14]).

The phenomenon of finite speed of propagation was
investigated byKalashnikov in [15]. He considered, for𝑁 = 1,
the equation 𝜕𝑏(𝑢)/𝑑𝑡 − Δ𝑢 = 0 in R × (0,∞) and, under
specific conditions, proved that if the initial condition 𝑢0
has a compact support, then the condition ∫

0+
(1/𝑏(𝑠))𝑑𝑠 <+∞ is necessary and sufficient for solutions to have compact

support. This result was extended by Dı̀az for 𝑁 ≥ 1, in
[16]. Later, in [17] Dı̀az and Hernández considered the doubly
nonlinear problem with absorption term 𝜕𝑏(𝑢)/𝜕𝑡 − Δ𝑝𝑢 +|𝑢|𝑞−1𝑢 = 0, inR𝑁 × (0,∞), where 𝑏(𝑢) = |𝑢|𝑚−1𝑢. Under the
assumption that 𝑢0 has a compact support and 0 < 𝑞 < 𝑝− 1,
they proved that any solution has a compact support for all𝑡 > 0. This result was obtained by the construction of a local
uniform super-solution. Let us recall that the finite speed of
propagation phenomenon has been studied by many authors
in the last decades, (see [18–21]).

Besides, extinction and nonextinction are also important
properties for solutions of evolution equations that have
attracted many authors in the last few decades. Most of
them focused on equations with constant exponents of
nonlinearity, (see [22–26]). For example, Hong et al., dealt
in [27] with the homogeneous equation 𝑢𝑡 − Δ𝑝𝑢𝑚 = 0, inΩ × (0,∞), where 𝑝 > 1 and 𝑚 > 0. They proved that the
condition 1 < 𝑝 < 1 + 1/𝑚 is necessary and sufficient for
extinction to occur. Moreover, Zhou and Mu ([28]) studied
the extinction behavior of weak solutions for the equation
with source term 𝑢𝑡−Δ𝑝𝑢𝑚 = 𝜆𝑢𝑞, inΩ×(0,∞), where𝑝 > 1,𝑚, 𝑞, 𝜆 > 0 and 𝑚(𝑝 − 1) < 1. They proved that 𝑞 = 𝑚(𝑝 − 1)
is a critical extinction exponent.

Otherwise, it is worth noting that problem P has been
treated by Antontsev and Shamarev in several papers. In
[29, 30], they proved the existence of weak and strong
solutions. Moreover, under certain regularity hypotheses on𝑚(𝑥), 𝑝(𝑥, 𝑡), and under the sign condition 𝑎(𝑥, 𝑡) ≤ 0
a.e, they studied properties of finite speed of propagation
and extinction in finite time in [9, 10]. Their results were
established by using the local energy method. Here, we shall
use the so-calledmethod of sub- and supersolutions to extend
some of the results in [9, 10]. To the best of our knowledge,
there are few results concerning the study of qualitative
properties for parabolic equations with variable exponents by
using this method. Furthermore, we shall also extend to the
parabolic case someof the results byZhang et al. in [31], where
radial sub- and supersolutions for some elliptic problemswith

variable exponents are constructed, and some of the results by
Chung and Park in [22] and by Yuan et al. in [27], to variable
exponents case. In fact, we shall exploit their arguments
in our parabolic problem setting with less conditions on
the exponents 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡), and 𝑚(𝑥) and the coefficient𝑎(𝑥, 𝑡).

The present paper is organized as follows. In Section 2,
we introduce some basic facts about the variable exponents
spaces. In Section 3, we give assumptions and general def-
initions; then, we establish a comparison principle which
ensures the uniqueness of solutions. In Section 4, we inves-
tigate the extinction and nonextinction properties for the
solution of P. Finally in Section 5, we study the property of
finite speed of propagation.

2. Preliminaries

In this section we give some elementary results for the
generalized Lebesgue spaces 𝐿𝑝(𝑥)(Ω) and Sobolev spaces𝑊1,𝑝(𝑥)(Ω), where Ω is a bounded set of R𝑁 (𝑁 ≥ 1) with
smooth boundary. For more details, see ([11, 32, 33]).

𝐶+ (Ω) = {𝑝 (𝑥) : Ω → [𝑝−, 𝑝+]
⊂ (1,∞) ; 𝑝 is a continous function} , (3)

where

𝑝+ = sup
𝑥∈Ω

𝑝 (𝑥) ,
𝑝− = inf

𝑥∈Ω
𝑝 (𝑥) . (4)

For any 𝑝(𝑥) ∈ 𝐶+(Ω), we introduce the variable exponent
Lebesgue space as follows:

𝐿𝑝(𝑥) (Ω) = {𝑢 : Ω
→ R, 𝑢 is a measurable function, ∫

Ω
|𝑢 (𝑥)|𝑝(𝑥) 𝑑𝑥

< ∞} ,
(5)

endowed with the Luxemburg norm

‖𝑢‖𝑝(𝑥),Ω = inf {𝜆 : 𝜆 > 0, ∫
Ω

 𝑢 (𝑥)𝜆

𝑝(𝑥) 𝑑𝑥 ≤ 1} . (6)

Proposition 1 (see [11, 32, 33]).

(i) The space 𝐿𝑝(𝑥)(Ω) is a separable and reflexive Banach
space, and its conjugate space is 𝐿𝑞(𝑥)(Ω), where1/𝑝(𝑥) + 1/𝑞(𝑥) = 1. Moreover, for any 𝑢 ∈ 𝐿𝑝(𝑥)(Ω)
and V ∈ 𝐿𝑞(𝑥)(Ω), we have
∫Ω 𝑢V𝑑𝑥

 ≤ ( 1𝑝− + 1𝑞−) ‖𝑢‖𝑝(𝑥),Ω ‖V‖𝑞(𝑥),Ω . (7)
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(ii) Let 𝑝1, 𝑝2 ∈ 𝐶+(Ω) be given such that 𝑝1(𝑥) ≤ 𝑝2(𝑥)
for any 𝑥 ∈ Ω then 𝐿𝑝2(𝑥)(Ω) is continuously embedded
into 𝐿𝑝1(𝑥)(Ω).

Proposition 2 (see [11, 32, 33]). Let

𝜌 (𝑢) = ∫
Ω
|𝑢|𝑝(𝑥) 𝑑𝑥, ∀𝑢 ∈ 𝐿𝑝(𝑥) (Ω) . (8)

Then, we have

(i) ‖𝑢‖𝑝(𝑥),Ω < 1(= 1; > 1) ⇐⇒ 𝜌(𝑢) < 1(= 1; > 1)
(ii) min (‖𝑢‖𝑝+

𝑝(𝑥),Ω
, ‖𝑢‖𝑝−

𝑝(𝑥),Ω
) ≤ 𝜌(𝑢) ≤ max (‖𝑢‖𝑝+

𝑝(𝑥),Ω
,

‖𝑢‖𝑝−
𝑝(𝑥),Ω

)
(iii) ‖𝑢‖𝑝(𝑥),Ω → 0 ⇐⇒ 𝜌(𝑢) → 0; ‖𝑢‖𝑝(𝑥),Ω →∞⇐⇒ 𝜌(𝑢) → ∞.

Now, we define the variable Sobolev space𝑊1,𝑝(𝑥)(Ω) as
follows:

𝑊1,𝑝(𝑥) (Ω) = {𝑢 ∈ 𝐿𝑝(𝑥) (Ω) : |∇𝑢|𝑝(𝑥) ∈ 𝐿1 (Ω)} , (9)

endowed with the norm

‖𝑢‖𝑊1,𝑝(𝑥)(Ω) = ‖𝑢‖𝑝(𝑥),Ω + ‖∇𝑢‖𝑝(𝑥),Ω . (10)

We say that 𝑝 ∈ 𝐶+(Ω) satisfies the log-Hölder condition inΩ if

∀𝑥, 𝑦 ∈ Ω,𝑥 − 𝑦 < 1,𝑝 (𝑥) − 𝑝 (𝑦) ≤ 𝜔( 𝑥 − 𝑦 ,
(11)

where 𝜔 satisfies
lim sup
𝜏→0+

𝜔 (𝜏) ln(1𝜏) < ∞. (12)

Proposition 3 (see [11, 32, 33]).

(i) 𝑊1,𝑝(𝑥)(Ω) is a separable and reflexive Banach space.
(ii) If 𝑝(𝑥) satisfies the log-Hölder condition (11), then the

space 𝐶∞(Ω) is dense in𝑊1,𝑝(𝑥)(Ω). Moreover, we can
define the Sobolev space with zero boundary values,𝑊1,𝑝(𝑥)

0 (Ω) as the completion of 𝐶∞0 (Ω), with respect
to the norm ‖.‖𝑊1,𝑝(𝑥)(Ω).

Next, let 𝑚(𝑥) > 0 and 𝑝(𝑥, 𝑡) > 1 be given functions.
For 𝑇 > 0 fixed, we denote 𝑄𝑇 = Ω × (0, 𝑇). Let 𝑚 ∈ 𝐶0(Ω),
we assume that 𝑝(𝑥, 𝑡) ∈ 𝐶+(𝑄𝑇) satisfies the following log-
Hölder condition in 𝑄𝑇,
∀ (𝑥, 𝑡) , (𝑦, 𝜏) ∈ 𝑄𝑇,
such that (𝑥, 𝑡) − (𝑦, 𝜏) = √𝑥 − 𝑦2 + |𝑡 − 𝜏|2 < 1,

(13)

we have 𝑝 (𝑥, 𝑡) − 𝑝 (𝑦, 𝜏) ≤ 𝜔( (𝑥, 𝑡) − (𝑦, 𝜏) , (14)

where 𝜔 satisfies
lim sup
𝜏→0+

𝜔 (𝜏) ln(1𝜏) < ∞. (15)

For every fixed 𝑡 ∈ [0, 𝑇], we introduce the following Banach.
𝑉𝑡 (Ω)
= {𝑢 ∈ 𝐿𝑚(𝑥)+1 (Ω) ∩𝑊1,1

0 (Ω) : |∇𝑢| ∈ 𝐿𝑝(𝑥,𝑡) (Ω)} , (16)

endowed with the norm

‖𝑢‖𝑉𝑡(Ω) = ‖𝑢‖𝑚(𝑥)+1,Ω + ‖∇𝑢‖𝑝(𝑥,𝑡),Ω . (17)

We denote by𝑊(𝑄𝑇) the following Banach space,

𝑊(𝑄𝑇) = {𝑢 ∈ 𝐿𝑚(𝑥)+1 (𝑄𝑇) : |∇𝑢|𝑝(𝑥,𝑡)
∈ 𝐿1 (𝑄𝑇) , 𝑢 (., 𝑡) ∈ 𝑉𝑡 (Ω) a.e. 𝑡 ∈ (0, 𝑇)} , (18)

endowed with the norm

‖𝑢‖𝑊(𝑄𝑇)
= ‖𝑢‖𝑚(𝑥)+1,𝑄𝑇 + ‖∇𝑢‖𝑝(𝑥,𝑡),𝑄𝑇 . (19)

We denote by𝑊(𝑄𝑇) the dual of𝑊(𝑄𝑇).
3. Assumptions and Results

Throughout this paperwe assume that the coefficients and the
exponents of nonlinearity satisfy the following conditions,

there exist positive constants 𝑝±, 𝑞±,
𝑚± and 𝑎1 such that, for any (𝑥, 𝑡) in 𝑄𝑇
1 < 𝑝− ≤ 𝑝 (𝑥, 𝑡) ≤ 𝑝+,
0 < 𝑞− ≤ 𝑞 (𝑥, 𝑡) ≤ 𝑞+,
0 < 𝑚− ≤ 𝑚 (𝑥) ≤ 𝑚+,
|𝑎 (𝑥, 𝑡)| ≤ 𝑎1,

(20)

and the initial data 𝑢0 satisfies𝑢0 ∈ 𝐿∞ (Ω) , 𝑢0 ≥ 0 a.e. in Ω. (21)

Now, let us state the definition of weak solutions for the
problemP.

Definition 4. We say that 𝑢(𝑥, 𝑡) is a super-(sub)solution ofP
on 𝑄𝑇 if

(1) 𝑢 ∈ 𝐿∞(𝑄𝑇) ∩ 𝑊(𝑄𝑇) and (𝜕/𝜕𝑡)𝑏(𝑥, 𝑢) ∈ 𝑊(𝑄𝑇).
(2) for every nonnegative test function 𝜙 ∈ 𝑊(𝑄𝑇) and(𝜕/𝜕𝑡)𝜙 ∈ 𝑊(𝑄𝑇), we have

∫
𝑄𝑇

𝜙 𝜕𝜕𝑡𝑏 (𝑥, 𝑢) + |∇𝑢|𝑝(𝑥,𝑡)−2 ∇𝑢∇𝜙𝑑𝑥𝑑𝑡
≥ (≤)∫

𝑄𝑇

𝑎 (𝑥, 𝑡) |𝑢|𝑞(𝑥,𝑡)−1 𝑢𝜙 𝑑𝑥𝑑𝑡. (22)
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(3) 𝑏(𝑥, 𝑢(., 0)) ≥ (≤)𝑏(𝑥, 𝑢0) a.e. in Ω, and 𝑢 ≥ (≤)
0 on 𝜕Ω × (0, 𝑇).

A function 𝑢 is a weak solution ofP if it is simultaneously a
supersolution and a subsolution.

The following result concerning the local existence of
weak solutions of problemP is established in [29].

Theorem 5. Let 𝑚 ∈ 𝐶0(Ω), 𝑝(𝑥, 𝑡) satisfies the log-Hölder
condition in 𝑄𝑇 (14), and let conditions (20) and (21) be
fulfilled. Moreover, we assume that

∇ ( 1𝑚 (𝑥))
 ∈ 𝐿𝛽 (Ω) , 𝑤𝑖𝑡ℎ 𝑠𝑜𝑚𝑒 𝛽 > 1, (23)

and the exponents 𝑚, 𝑝 satisfy one of the following conditions
(1) 𝑝 is independent of 𝑡, and𝑚(𝑥) > 0 inΩ,
(2) 𝑝(𝑥, 𝑡) > 1,𝑚(𝑥) > 1, and |∇(1/𝑚(𝑥))| ∈ 𝐿𝑝(𝑥,𝑡)(𝑄𝑇),
(3) 𝑝(𝑥, 𝑡) > 1,𝑚(𝑥) > 0, |∇(1/𝑚(𝑥))| ∈ 𝐿𝑝(𝑥,𝑡)(𝑄𝑇), and

1 > 1𝑝 (𝑥, 𝑡) + 𝑚 (𝑥) 𝑖𝑛 𝑄𝑇. (24)

Then, the problem P has at least one nonnegative weak solu-
tion in 𝑄𝑇∗ , with

𝑇∗ = sup {𝜃 : ‖𝑢 (𝑡)‖∞,Ω < ∞, ∀𝑡 ∈ (0, 𝜃)} . (25)

Moreover, for small 𝜏 the solution satisfies the estimate

‖𝑢‖∞,Ω ≤ 𝑢0∞,Ω 𝑒𝐴𝑡, 𝑡 ∈ [0, 𝜏] . (26)

with a constant 𝐴 depending only on the data.

The following comparison principle is essential to prove
uniqueness and qualitative properties of nonnegative solu-
tions.

Proposition 6. Let 𝑢 (respectively V) be a subsolution (respec-
tively supersolution) of P, with the initial datum 𝑢0 (respec-
tively V0), satisfying (21). We assume that (𝜕/𝜕𝑡)𝑏(𝑥, 𝑢),(𝜕/𝜕𝑡)𝑏(𝑥, V) ∈ 𝐿1(𝑄𝑇), and that conditions (20) are fulfilled.
If either 𝑎(𝑥, 𝑡) ≤ 0 a.e. in𝑄𝑇, or𝑚+ ≤ 𝑞−, then we have 𝑢 ≤ V
a.e. in 𝑄𝑇.
Remark 7. Note that the comparisonprinciple is true forweak
solutions 𝑢 with (𝜕/𝜕𝑡)𝑏(𝑥, 𝑢) ∈ 𝐿1(𝑄𝑇) ∩ 𝑊(𝑄𝑇) and recall
that in the papers [29, 30], the authors gave some conditions
on the data of problemP in order to ensure that this class of
solutions is nonempty.

Proof. We consider the test function 𝜙𝜂 = sign𝜂(𝑢 − V), where

sign𝜂 (𝑠) =
{{{{{{{{{

1, if 𝑠 > 𝜂,𝑠𝜂 , if |𝑠| ≤ 𝜂,
0, if 𝑠 < −𝜂,

(27)

and 𝜂 > 0 is small. It is easy to see that

𝜙𝜂 (𝑠) → sign+ (𝑠) as 𝜂 → 0, (28)

where sign+(𝑠) = 1, if 𝑠 > 0, and sign+(𝑠) = 0, if 𝑠 ≤ 0.
Moreover, we claim that for all 𝑢, V ∈ 𝑊(𝑄𝑡) the function𝜙𝜂(𝑢 − V) ∈ 𝑊(𝑄𝑇). Indeed, we observe that for all 𝑠 ∈ R,|𝜙𝜂(𝑠)| ≤ 1. Then, by Proposition 2

𝜙𝜂 (𝑢 − V)𝑚(𝑥)+1,𝑄𝑇 < 𝐶 (𝑇) . (29)

On the other hand, we have

∫
𝑄𝑇

∇𝜙𝜂 (𝑢 − V)𝑝(𝑥,𝑡) 𝑑𝑥𝑑𝑡
= ∫𝑇

0
∫
{|𝑢−V|≤𝜂}

∇𝜙𝜂 (𝑢 − V)𝑝(𝑥,𝑡) 𝑑𝑥 𝑑𝑡
+ ∫𝑇

0
∫
{𝑢−V>𝜂}

∇𝜙𝜂 (𝑢 − V)𝑝(𝑥,𝑡) 𝑑𝑥𝑑𝑡
+ ∫𝑇

0
∫
{𝑢−V<−𝜂}

∇𝜙𝜂 (𝑢 − V)𝑝(𝑥,𝑡) 𝑑𝑥 𝑑𝑡
= ∫𝑇

0
∫
{|𝑢−V|≤𝜂}

∇ (𝑢 − V)𝜂

𝑝(𝑥,𝑡) 𝑑𝑥 𝑑𝑡

≤ 𝐶 (𝜂) (∫
𝑄𝑇

|∇𝑢|𝑝(𝑥,𝑡) + |∇𝑢|𝑝(𝑥,𝑡))𝑑𝑥 < ∞.

(30)

Hence, from Proposition 2 we get

∇𝜙𝜂 (𝑢 − V)𝑝(𝑥,𝑡),𝑄𝑇 < ∞. (31)

Therefore, combining (29) and (31) we deduce the claim. On
the other hand, from Definition 4, we obtain

∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V)) 𝜙𝜂𝑑𝑥 𝑑𝑡
+ ∫

𝑄𝑇

(|∇𝑢|𝑝(𝑥,𝑡)−2 ∇𝑢 − |∇V|𝑝(𝑥,𝑡)−2 ∇V) ∇𝜙𝜂𝑑𝑥 𝑑𝑡
≤ ∫

𝑄𝑇

𝑎 (𝑥, 𝑡) (|𝑢|𝑞(𝑥,𝑡)−1 𝑢 − |V|𝑞(𝑥,𝑡)−1 V) 𝜙𝜂𝑑𝑥𝑑𝑡.
(32)

Due to a monotonicity argument, we have

∫
𝑄𝑇

(|∇𝑢|𝑝(𝑥,𝑡)−2 ∇𝑢 − |∇V|𝑝(𝑥,𝑡)−2 ∇V) ∇𝜙𝜂𝑑𝑥 𝑑𝑡 ≥ 0, (33)

then

∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V)) 𝜙𝜂𝑑𝑥𝑑𝑡
≤ ∫

𝑄𝑇

𝑎 (𝑥, 𝑡) (|𝑢|𝑞(𝑥,𝑡)−1 𝑢 − |V|𝑞(𝑥,𝑡)−1 V) 𝜙𝜂𝑑𝑥 𝑑𝑡.
(34)
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By Lebesgue’s dominated convergence theorem, we have

lim
𝜂→0
∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V)) 𝜙𝜂𝑑𝑥 𝑑𝑡
= ∫

𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥𝑑𝑡.
(35)

Now, we can write

∫
𝑄𝑇

𝑎 (𝑥, 𝑡) (|𝑢|𝑞(𝑥,𝑡)−1 𝑢 − |V|𝑞(𝑥,𝑡)−1 V) 𝜙𝜂𝑑𝑥 𝑑𝑡
= ∫

𝑄𝑇

𝑎 (𝑥, 𝑡)
⋅ ∫1

0

𝜕𝜕𝑠 (|𝑠𝑢 + (1 − 𝑠) V|𝑞(𝑥,𝑡)−1 (𝑠𝑢 + (1 − 𝑠) V))
⋅ 𝜙𝜂𝑑𝑠 𝑑𝑥 𝑑𝑡 = ∫

𝑄𝑇

𝑎 (𝑥, 𝑡) ∫1
0
𝑞 (𝑥, 𝑡)

⋅ (|𝑠𝑢 + (1 − 𝑠) V|𝑞(𝑥,𝑡)−1 (𝑢 − V)) 𝜙𝜂𝑑𝑠 𝑑𝑥 𝑑𝑡.

(36)

Then, from (34) and (35), by letting 𝜂 → 0, we obtain
∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥𝑑𝑡 ≤ ∫𝑄𝑇 𝑎 (𝑥, 𝑡)
⋅ ∫1

0
𝑞 (𝑥, 𝑡) |𝑠𝑢 + (1 − 𝑠) V|𝑞(𝑥,𝑡)−1

⋅ (𝑢 − V)+ 𝑑𝑠 𝑑𝑥 𝑑𝑡.
(37)

Hence, if 𝑎(𝑥, 𝑡) ≤ 0 a.e. in 𝑄𝑇, it follows that
∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥𝑑𝑡 ≤ 0. (38)

Then, by Gronwall’s lemma we deduce the desired result.
Now, we continue the proof without any sign condition on𝑎(𝑥, 𝑡). From (37), by using 𝑚+ ≤ 𝑞− and the Lebesgue’s
dominated convergence theorem it follows that

∫
𝑄𝑇

𝜕𝜕𝑡 (𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥𝑑𝑡 ≤ 𝑎1𝑞+ ∫𝑄𝑇 ∫
1

0
|𝑠𝑢 + (1 − 𝑠) V|𝑞(𝑥,𝑡)−𝑚(𝑥) |𝑠𝑢 + (1 − 𝑠) V|𝑚(𝑥)−1 (𝑢 − V)+ 𝑑𝑠 𝑑𝑥 𝑑𝑡

≤ ∫
𝑄𝑇

(‖𝑢‖∞,𝑄𝑇
+ ‖V‖∞,𝑄𝑇

)𝑞(𝑥,𝑡)−𝑚(𝑥) [∫1
0
|𝑠𝑢 + (1 − 𝑠) V|𝑚(𝑥)−1 (𝑢 − V)+ 𝑑𝑠] 𝑑𝑥𝑑𝑡

≤ 𝐶 lim
𝜂→0
∫
𝑄𝑇

∫1
0
|𝑠𝑢 + (1 − 𝑠) V|𝑚(𝑥)−1 (𝑢 − V) 𝜙𝜂𝑑𝑠 𝑑𝑥 𝑑𝑡

≤ 𝐶 lim
𝜂→0
∫
𝑄𝑇

1𝑚 (𝑥) ∫
1

0
[ 𝜕𝜕𝑠 |𝑠𝑢 + (1 − 𝑠) V|𝑚(𝑥)−1 (𝑠𝑢 + (1 − 𝑠) V) 𝑑𝑠] 𝜙𝜂𝑑𝑥𝑑𝑡

≤ 𝐶𝑚−
∫
𝑄𝑇

(𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥𝑑𝑡,

(39)

where 𝐶 is depending on the supnorms of 𝑢 and V. Hence we
deduce from Gronwall’s lemma that

∫
Ω
(𝑏 (𝑥, 𝑢) − 𝑏 (𝑥, V))+ 𝑑𝑥
≤ 𝑒𝐶𝑇 ∫

Ω
(𝑏 (𝑥, 𝑢 (𝑥, 0)) − 𝑏 (𝑥, V (𝑥, 0)))+ 𝑑𝑥,

(40)

which allows us to conclude the result.

Definition 8. We call 𝑢(𝑥, 𝑡) a strong solution of P, if 𝑢 is a
weak solution and satisfies

𝜕𝜕𝑡𝑏 (𝑥, 𝑢) ∈ 𝐿1 (𝑄𝑇) . (41)

4. Finite Time Extinction and Nonextinction

This section is devoted to studying extinction and positivity
properties for nonnegative solutions of problem P, without

any sign condition on the coefficient 𝑎(𝑥, 𝑡), and according
to the ranges of 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡), and 𝑚(𝑥). The proof of the
results is based on the construction of suitable sub- and
supersolutions and on the use of the preceding comparison
principle given in Proposition 6.

4.1. Finite Time Extinction. We state and prove our main
extinction result.

Theorem9. Let 𝑢 be a strong solution ofP. Assume that𝑚+ <𝑞−, 𝑝+ − 1 < 𝑚−, sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞ and ‖𝑢0‖∞ is small
enough. Then, there exists a finite time 𝑇1 such that for all 𝑡 ≥𝑇1

𝑢 (𝑥, 𝑡) = 0, 𝑎.𝑒. 𝑥 ∈ Ω. (42)

Proof. We consider the following function

V (𝑥, 𝑡) = 𝑘 (𝑇1 − 𝑡)𝛼+ ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛) (43)
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where

𝑙 = sup
(𝑥1 ,...,𝑥𝑛)∈Ω

{𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛} + 2, (44)

𝑇1 = ( 𝑢0∞𝑘 ln (2))
1/𝛼 , (45)

and

𝛼 = 1𝑚− − 𝑝+ + 1 , (46)

where 𝑘 > 0 will be specified later. Our goal is to prove that V
is a supersolution ofP and by comparison principle, we can
thus deduce the result. Firstly, we shall show that

V ∈ 𝐿∞ (𝑄𝑇) ∩𝑊 (𝑄𝑇) ,
𝜕𝜕𝑡V𝑚(𝑥) ∈ 𝑊 (𝑄𝑇) ,

∀𝑇 > 0.
(47)

For all 𝑥 ∈ Ω and 𝑡 > 0, we have
𝑘 (𝑇1 − 𝑡)𝛼 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛) ≤ 𝑘𝑇𝛼1 ln (2𝑙) < ∞, (48)

and

|∇𝑢| = 𝑘 (𝑇1 − 𝑡)𝛼𝑁1/2

𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛 ≤
𝐾𝑇𝛼1𝑁1/2

2 < ∞, (49)

which implies that V ∈ 𝐿∞(𝑄𝑇) ∩𝑊(𝑄𝑇). Moreover, we have

𝜕𝜕𝑡V𝑚(𝑥) = −𝛼𝑚 (𝑥) (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥)
⋅ (𝑇1 − 𝑡)𝛼𝑚(𝑥)−1+ ,

(50)

then  𝜕𝜕𝑡V𝑚(𝑥)


≤ 𝛼𝑚+𝑘𝑚− max {𝑇𝛼𝑚+−11 , 𝑇𝛼𝑚−−11 } (ln (2𝑙))𝑚+ ,
(51)

and hence (𝜕/𝜕𝑡)V𝑚(𝑥) ∈ 𝐿∞(𝑄𝑇). Due to the embedding

𝐿∞ (𝑄𝑇) = (𝐿1 (𝑄𝑇)) → 𝑊 (𝑄𝑇) , (52)

we get that (𝜕/𝜕𝑡)V𝑚(𝑥) ∈ 𝑊(𝑄𝑇).
On the other hand, it is clear that V(𝑥, 0) ≥ ‖𝑢‖∞ ≥ 𝑢0(𝑥),

for a.e. 𝑥 ∈ Ω, and V(𝑥, 𝑡) ≥ 0, for all 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0. Next, we
prove that

𝜕𝜕𝑡V𝑚(𝑥) − Δ𝑝(𝑥,𝑡)V ≥ 𝑎 (𝑥, 𝑡) V𝑞(𝑥,𝑡), in 𝑄𝑇. (53)

Since |𝑎(𝑥, 𝑡)| ≤ 𝑎1, it suffices to prove that

𝜕𝜕𝑡V𝑚(𝑥) − Δ𝑝(𝑥,𝑡)V ≥ 𝑎1V𝑞(𝑥,𝑡), in 𝑄𝑇. (54)

By simple calculations, we obtain

− Δ𝑝(𝑥,𝑡)V = 1𝑁1/2
(𝑘 (𝑇1 − 𝑡)𝛼+𝑁1/2

𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)
𝑝(𝑥,𝑡)−1

⋅ [ (𝑝 (𝑥, 𝑡) − 1)𝑁𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛
− 𝑁∑

𝑖=1

𝜕𝑝𝜕𝑥𝑖 ln(
𝑘 (𝑇1 − 𝑡)𝛼+𝑁1/2

𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)]

≥ 1𝑁1/2
(𝑘 (𝑇1 − 𝑡)𝛼+𝑁1/2

𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)
𝑝(𝑥,𝑡)−1

⋅ [ (𝑝− − 1)𝑁𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛 − sup𝑄𝑇 ∇𝑝
𝑘 (𝑇1 − 𝑡)𝛼+𝑁𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛 ]

≥ (𝑘 (𝑇1 − 𝑡)𝛼+)
𝑝(𝑥,𝑡)−1𝑁𝑝(𝑥,𝑡)/2

(𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)𝑝(𝑥,𝑡) [(𝑝− − 1)
− sup

𝑄𝑇

∇𝑝 𝑘 (𝑇1)𝛼]

= (𝑘 (𝑇1 − 𝑡)𝛼+)
𝑝(𝑥,𝑡)−1𝑁𝑝(𝑥,𝑡)/2

(𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)𝑝(𝑥,𝑡) [(𝑝− − 1)
− sup

𝑄𝑇

∇𝑝
𝑢0∞
ln (2) ] .

(55)

We set

𝑆 = (𝑝− − 1) − sup
𝑄𝑇

∇𝑝
𝑢0∞
ln (2) . (56)

If sup𝑄𝑇 |∇𝑝| = 0, then 𝑆 = 𝑝−−1 > 0. Otherwise, since ‖𝑢0‖∞
is small enough, then we can assume that ‖𝑢0‖∞ < (𝑝− −1) ln(2)/sup𝑄𝑇 |∇𝑝|, to deduce that 𝑆 > 0.

Now, we are looking for conditions on 𝑘 to get (54).
Thanks to (50) and (55), it is sufficient to have

𝛼𝑚 (𝑥) (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥) (𝑇1 − 𝑡)𝛼𝑚(𝑥)−1+

≥ 𝑎1 (𝑘 (𝑇1 − 𝑡)𝛼+ ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑞(𝑥,𝑡) ,
(57)

and

(𝑘 (𝑇1 − 𝑡)𝛼+)𝑝(𝑥,𝑡)−1𝑁𝑝(𝑥,𝑡)/2

(𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)𝑝(𝑥,𝑡) 𝑆 ≥ 2𝛼𝑚 (𝑥)
⋅ (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥) (𝑇1 − 𝑡)𝛼𝑚(𝑥)−1+ .

(58)

As ‖𝑢0‖∞ is small enough, we can assume also that ‖𝑢0‖∞ ≤𝑘 ln(2).Then it yields𝑇1 ≤ 1, which implies that (𝑇1−𝑡)+ ≤ 1.



Abstract and Applied Analysis 7

Since 𝛼 = 1/(𝑚− − 𝑝+ + 1) and 𝑞− > 𝑚+, thus (57) and (58)
reduce to

(𝑇1 − 𝑡)𝛼𝑚(𝑥)−1+ (𝛼𝑚 (𝑥) (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥)
− 𝑎1 (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑞(𝑥,𝑡)) ≥ 0, (59)

and

(𝑇1 − 𝑡)𝛼(𝑝(𝑥,𝑡)−1)+ ( 𝑘𝑝(𝑥,𝑡)−1𝑁𝑝(𝑥,𝑡)/2

(𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛)𝑝(𝑥,𝑡) 𝑆
− 2𝛼𝑚 (𝑥) (𝑘 ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥)) ≥ 0,

(60)

which are satisfied if

𝑘𝑞(𝑥,𝑡)−𝑚(𝑥) ≤ 𝛼𝑚− (ln (2))𝑚+
𝑎1 (ln (2𝑙))𝑞+ , (61)

and

𝑘𝑚(𝑥)−𝑝(𝑥,𝑡)+1 ≤ 𝑆𝑁𝑝−/2

2𝛼𝑚+ (2𝑙)𝑝+ (ln (2𝑙))𝑚+ . (62)

By setting 𝐸 = 𝑆𝑁𝑝−/2/2𝛼𝑚+(2𝑙)𝑝+(ln(2𝑙))𝑚+ and 𝐹 =𝛼𝑚−(ln(2))𝑚+/𝑎1(ln(2𝑙))𝑞+ , we can choose 𝑘 such that

𝑘 = min {(𝐸)1/(𝑚−−𝑝++1) , (𝐸)1/(𝑚+−𝑝−+1) , (𝐹)1/(𝑞−−𝑚+) ,
(𝐹)1/(𝑞+−𝑚−)} . (63)

Therefore, we get the desired result.

Next, we will mention an extinction result where there is
no condition between the ranges of 𝑝(𝑥, 𝑡) and𝑚(𝑥).
Proposition 10. Let 𝑢 be a strong solution of P. Assume that𝑚− > 𝑞+ and 𝑎(𝑥, 𝑡) ≤ −𝑐 < 0, sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞ and‖𝑢0‖∞ is small enough. Then, there exists a finite time 𝑇1 such
that for all 𝑡 ≥ 𝑇1

𝑢 (𝑥, 𝑡) = 0, 𝑎.𝑒. 𝑥 ∈ Ω. (64)

Proof. We consider the same supersolution V(𝑥, 𝑡) as in the
proof of Theorem 9 but we choose here 𝑘 = 1, which means

V (𝑥, 𝑡) = (𝑇1 − 𝑡)𝛼+ ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛) (65)

where

𝑙 = sup
(𝑥1 ,...,𝑥𝑛)∈Ω

{𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛} + 2, (66)

𝑇1 = (𝑢0∞ln (2) )
1/𝛼 , (67)

and

𝛼 = 1𝑚− − 𝑞+ . (68)

We have already shown in Theorem 9 that −Δ𝑝(𝑥,𝑡)V ≥ 0. We
claim that

𝜕𝜕𝑡V𝑚(𝑥) ≥ 𝑎 (𝑥, 𝑡) 𝑢𝑞(𝑥,𝑡), (69)

by using the same lines as in the proof of Theorem 9. Since𝑞+ < 𝑚−, it is therefore sufficient to have

(𝑇1 − 𝑡)𝛼𝑞(𝑥,𝑡)+ (𝑐 (ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑞(𝑥,𝑡)
− 𝛼𝑚 (𝑥) (ln (𝑙 + 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛))𝑚(𝑥)) ≥ 0, (70)

which is satisfied if we choose

𝑐 = 𝛼𝑚+ (ln (2𝑙))𝑚+
(ln (2))𝑞− . (71)

Consequently, by the comparison principle we deduce the
extinction of solution in finite time.

4.2. Nonextinction of Solutions. The following theorem deals
with the positivity of weak solutions.

Theorem 11. Let 𝑢 be a strong solution of P and 𝑢0 not
identically zero. Assume that 𝑚+ < 𝑞−, 𝑚+ < 𝑝− − 1, and
sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞. Then, there exists a finite time 𝑇𝑝 such
that for all 𝑡 ≥ 𝑇𝑝

𝑢 (𝑥, 𝑡) > 0, 𝑎.𝑒. 𝑥 ∈ Ω. (72)

The method of proof is inspired from [27], where the
constant exponents case is treated. However, some difficulties
arise in the construction of subsolutions due to the fact that
the exponents are variable. The proof of this theorem is
divided into two lemmas. In the first lemma,we showby using
a comparison function that the support of weak solution is
nondecreasing with respect to time. In the second lemma, we
show that the solution is positive locally inΩ; then, by a finite
covering argument, we deduce the result.

Lemma 12. Let 𝑢 be a strong solution ofP. Assume that𝑚+ <𝑞− and the initial condition 𝑢0 is nontrivial. Then

supp 𝑢 (., 𝑠) ⊂ supp 𝑢 (., 𝑡) , (73)

for all 0 < 𝑠 < 𝑡.
The proof of Lemma 12 follows the same lines as that

of lemma 4.2 in [22], where the constant exponents case is
studied. For completeness, we shall give it here.

Proof. The argument used here is based on a comparison
function with which we show that the support of solution is
increasing. For that we consider 𝜔 an arbitrary set which is
a nonzero measure subset of Ω such that inf𝑥∈𝜔 𝑢0 ̸= 0. We
divide the proof in two cases, firstly we treat the case where
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𝑚− ≥ 1 and then the case where 𝑚+ < 1. If 𝑚− ≥ 1, we
consider the following function:

V1 (𝑥, 𝑡)
= {{{
(𝛿𝑚+−𝑞− + (𝑞− − 𝑚+) 𝑎1𝑡)1/(𝑚+−𝑞−) , in 𝜔 × (0,∞) ,
0 on 𝜕𝜔 × (0;∞) ,

(74)

where 𝛿 = min{inf𝑥∈𝜔 𝑢0, 1}. It is clear that V1 ∈ 𝐿∞(𝑄𝑇) ∩𝑊(𝑄𝑇), and it is easy to verify that

𝜕𝜕𝑡V𝑚(𝑥)1 ∈ 𝐿∞ (𝑄𝑇) → 𝑊 (𝑄𝑇) . (75)

On the other hand, by direct calculations we get

𝜕𝜕𝑡V𝑚+1 = −𝑎1𝑚+V𝑞
−

1 . (76)

Hence

V𝑚
+−1

1

𝜕V1𝜕𝑡 = −𝑎1V𝑞−1 . (77)

Since𝑚(𝑥) ≥ 1 and V1(𝑥, 𝑡) ≤ 1 for all 𝑥 ∈ 𝜔, 𝑡 > 0, it follows
that

𝜕𝜕𝑡V𝑚(𝑥)1 − Δ𝑝(𝑥,𝑡)V1 − 𝑎 (𝑥, 𝑡) V𝑞(𝑥,𝑡)1 ≤ 0,
𝑥 ∈ 𝜔, 𝑡 > 0. (78)

Moreover, from the definition of V1, we have V1(𝑥, 0) ≤ 𝑢0,
almost everywhere in 𝜔, and V1(𝑥, 𝑡) = 0 for all, 𝑥 ∈ 𝜕𝜔,𝑡 > 0. Thus, by comparison principle we conclude that for
any arbitrary 𝜔 where inf𝑥∈𝜔 𝑢0 > 0, the weak solution of P
satisfies

𝑢 (𝑥, 𝑡) > 0 a.e. 𝑥 ∈ 𝜔, and all 𝑡 > 0; (79)

and the result follows in this case.
If𝑚+ < 1, we consider the following function:

V2 (𝑥, 𝑡)
= {{{{{
(𝛿𝑚+−𝑞− + (𝑞− − 𝑚+)𝑚−

𝑎1𝑡)1/(𝑚
+−𝑞−) , in 𝜔 × (0,∞)

0, on 𝜕𝜔 × (0;∞)
(80)

where 𝛿 = min{inf𝑥∈𝜔 𝑢0, 1}. By the same argument used
previously we obtain that V2 ∈ 𝐿∞(𝑄𝑇) ∩ 𝑊(𝑄𝑇), and(𝜕/𝜕𝑡)V𝑚(𝑥)2 ∈ 𝑊(𝑄𝑇). Moreover, by direct calculations we
get

𝜕𝜕𝑡V𝑚+2 = −𝑎1𝑚
+

𝑚−
V𝑞
−

2 , (81)

since 𝑚+ < 1 and V2(𝑥, 𝑡) ≤ 1 for all 𝑥 ∈ 𝜔, 𝑡 > 0. Hence
𝜕𝜕𝑡V𝑚(𝑥)2 + 𝑎1V𝑞(𝑥,𝑡)2 ≤ 0, (82)

Therefore, we have
𝜕𝜕𝑡V𝑚(𝑥)2 − Δ𝑝(𝑥,𝑡)V2 − 𝑎 (𝑥, 𝑡) V𝑞(𝑥,𝑡)2 ≤ 0,

𝑥 ∈ 𝜔, 𝑡 > 0. (83)

Thus, by the same argument used previously we deduce our
result.

Lemma 13. Under the same assumptions ofTheorem 11, let the
initial condition satisfies inf𝑥∈𝐵𝑟(𝑥0) 𝑢0 ̸= 0, for some 0 < 𝑟 <𝑅 ≤ 1/2. Then, there exists 𝑇𝑝 > 0, such that for any 𝑡 ≥ 𝑇𝑝,

𝑢 (𝑥, 𝑡) > 0, 𝑎.𝑒. 𝑥 ∈ 𝐵𝑅 (𝑥0) , (84)

where 𝐵𝑅(𝑥0) = {𝑥 ∈ Ω : |𝑥 − 𝑥0| < 𝑅}.
Proof. We consider the following function:

𝜓 (𝑥, 𝑡) = 𝑘𝑟𝑆−𝛼/𝜆 (𝑡)𝐻(𝑝−−1)/𝛾 (𝑥, 𝑡) , (85)

where

𝐻(𝑥, 𝑡) = [[1 − (
𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

𝑝−/(𝑝−−1)]
]+ ,

𝑆 (𝑡) = 𝑟𝜆/𝛼 + 𝜆𝜎𝑘𝛽𝑟𝛾𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑝,
(86)

and

𝑇𝑝 = 𝑅𝜆 − 𝑟𝜆/𝛼𝜆𝜎𝑘𝛽𝑟𝛾 , (87)

where 𝑘 and 𝛼 are positive constants small and large enough,
respectively, 𝛾 is a positive constant such that

𝛾 ≤ 𝑝− − 1𝑝+ − 1 (𝑝− − 1 − 𝑚+) , (88)

and 𝜆, 𝛾,𝛽 are positive constants and will be determined later.
By direct calculations, we get

∇𝜓 = 𝑘𝑟𝑝−𝛾 𝑆−(𝛼+1)/𝜆 (𝑡)𝐻(𝑝−−1)/𝛾−1 (𝑥, 𝑡)
⋅ ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

1/(𝑝−−1) ,
(89)

and
𝜕𝜕𝑡𝜓𝑚(𝑥) = −𝑚 (𝑥) 𝜎𝛼𝑘𝛽+𝑚(𝑥)𝑟𝛾+𝑚(𝑥)𝑆−𝛼𝑚(𝑥)/𝜆−1 (𝑡)

⋅ 𝐻𝑚(𝑥)((𝑝−−1)/𝛾) (𝑥, 𝑡) + 𝑚 (𝑥) 𝜎𝑝−𝛾
⋅ 𝑘𝛽+𝑚(𝑥)𝑟𝛾+𝑚(𝑥)𝑆−𝛼𝑚(𝑥)/𝜆−1 (𝑡)
⋅ 𝐻𝑚(𝑥)((𝑝−−1)/𝛾)−1 (𝑥, 𝑡)
⋅ ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

𝑝−/(𝑝−−1) .

(90)
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We can see easily that 𝐻(𝑥, 𝑡) ≤ 1 a.e. in 𝐵𝑅(𝑥0) × (0, 𝑇𝑝).
Then, by using (88) we obtain

𝜓 ∈ 𝐿∞ (𝐵𝑅 (𝑥0) × (0, 𝑇𝑝))
∩ 𝑊(𝐵𝑅 (𝑥0) × (0, 𝑇𝑝)) , (91)

and
𝜕𝜕𝑡𝜓𝑚(𝑥) ∈ 𝐿∞ (𝐵𝑅 (𝑥0) × (0, 𝑇𝑝))

→ 𝑊 (𝐵𝑅 (𝑥0) × (0, 𝑇𝑝)) .
(92)

Moreover, from the definition of 𝜓 we have
𝜓 (𝑥, 0) = 𝑘𝐻(𝑝−−1)/𝛾 (𝑥, 0) ≤ 𝑘 ≤ 𝑢0 (𝑥)

a.e. 𝑥 ∈ 𝐵𝑅 (𝑥0) . (93)

Since for all 𝑡 ∈ [0, 𝑇𝑝],
𝑆1/𝜆 (𝑡) ≤ 𝑆1/𝜆 (𝑇𝑝) = 𝑅, (94)

then 𝐻(𝑥, 𝑡) = 0 on 𝜕𝐵𝑅(𝑥0) × [0, 𝑇𝑝], which implies that𝜓(𝑥, 𝑡) = 0 on 𝜕𝐵𝑅(𝑥0) × [0, 𝑇𝑝]. Now, let us show that

𝜕𝜕𝑡𝜓𝑚(𝑥) − Δ𝑝(𝑥,𝑡)𝜓 − 𝑎 (𝑥, 𝑡) 𝜓𝑞(𝑥,𝑡) ≤ 0,
in 𝐵𝑅 (𝑥0) × (0, 𝑇𝑝) .

(95)

To do so, it suffices to show that

𝜕𝜕𝑡𝜓𝑚(𝑥) − Δ𝑝(𝑥,𝑡)𝜓 + 𝑎1𝜓𝑞(𝑥,𝑡) ≤ 0,
in 𝐵𝑅 (𝑥0) × (0, 𝑇𝑝) .

(96)

Using (89), we obtain by simple calculations

−Δ𝑝(𝑥,𝑡)𝜓 = ∇𝜓𝑝(𝑥,𝑡)−1𝑥 − 𝑥0 (𝑁 − 1 +
𝑝 (𝑥, 𝑡) − 1𝑝− − 1 )

+ ∇𝜓𝑝(𝑥,𝑡)−1 ln (∇𝜓)
⋅ 𝑁∑
𝑖=1

𝜕𝑝 (𝑥, 𝑡)𝜕𝑥𝑖
𝑥𝑖 − 𝑥0,𝑖𝑥 − 𝑥0 −

∇𝜓𝑝(𝑥,𝑡)−1

⋅ (𝑝− − 1𝛾 − 1)( 𝑝−𝑝− − 1)𝐻−1 (𝑥, 𝑡)
⋅ ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

1/(𝑝−−1) (𝑝 (𝑥, 𝑡) − 1𝑆1/𝜆 (𝑡) ) .

(97)

We set 𝐶1 = (𝑁−1+(𝑝+ −1)/(𝑝− −1)), 𝜇 = sup𝑄𝑇𝑝 |∇𝑝(𝑥, 𝑡)|,
and

𝐺 (𝑥, 𝑡) = 𝑚 (𝑥) 𝜎𝛼𝑘𝛽+𝑚(𝑥)𝑟𝛾+𝑚(𝑥)𝑆−𝛼𝑚(𝑥)/𝜆−1 (𝑡)
⋅ 𝐻𝑚(𝑥)((𝑝−−1)/𝛾) (𝑥, 𝑡) . (98)

To get (96), by (90) and (97) it suffices to have

𝐺 (𝑥, 𝑡) (𝛼 − 3𝑝−𝛾 (
𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

𝑝−/(𝑝−−1)𝐻−1 (𝑥, 𝑡))
≥ 0,

(99)

𝐺 (𝑥, 𝑡) ≥ 3 𝐶1𝑥 − 𝑥0 [[
𝑘𝑟𝑝−𝛾 𝑆−(𝛼+1)/𝜆 (𝑡)

⋅ 𝐻(𝑝−−1)/𝛾−1 (𝑥, 𝑡) ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )
1/(𝑝−−1)]

]
𝑝(𝑥,𝑡)−1

,
(100)

𝐺 (𝑥, 𝑡) ≥ 3𝑎1 [𝑘𝑟𝑆−𝛼/𝜆 (𝑡)𝐻(𝑝−−1)/𝛾 (𝑥, 𝑡)]𝑞(𝑥,𝑡) (101)

and

(𝑝− − 1𝛾 − 1)( 𝑝−𝑆1/𝜆 (𝑡))𝐻−1 (𝑥, 𝑡)
⋅ ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

1/(𝑝−−1) ≥ 𝜇𝑘𝑟𝑝−𝛾 𝑆−(𝛼+1)/𝜆 (𝑡)
⋅ 𝐻(𝑝−−1)/𝛾−1 (𝑥, 𝑡) ( 𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

1/(𝑝−−1)

(102)

Now, our goal is to choose the constants 𝛾, 𝜆, and 𝛽 in order
to verify each of the inequalities above. Firstly, let us show the
inequality (99). Since 𝛼 is large enough and 𝑅 < 1/2, we have

𝛼 > ln (𝑟)
ln (2(𝑝−−1)/𝑝−𝑅) , (103)

from which we get

(12)
(𝑝−−1)/𝑝− > 𝑅𝑟1/𝛼 >

𝑥 − 𝑥0𝑆1/𝜆 (0) . (104)

Then, it yields

𝐻(𝑥, 𝑡) ≥ (𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )
𝑝−/(𝑝−−1) ,

in 𝐵𝑅 (𝑥0) × (0, 𝑇𝑝) .
(105)

Therefore, we have

3𝛼 − 𝑝−𝛾 (
𝑥 − 𝑥0𝑆1/𝜆 (𝑡) )

𝑝−/(𝑝−−1)𝐻−1 (𝑥, 𝑡) ≥ 3𝛼 − 𝑝−𝛾
≥ 0,

(106)
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so (99) is satisfied. Next, to get (100) and (101), we use the fact
that 𝑠(𝑡) ≤ 1 and𝐻(𝑥, 𝑡) ≤ 1 a.e. in𝐵𝑅(𝑥0)×(0, 𝑇𝑝). By setting
𝛾 = min{𝑝− − 1𝑝+ − 1 (𝑝− − 1 − 𝑚+) , 𝑞− − 𝑚+} ,
𝛽 = min {𝑝− − 1 − 𝑚+, 𝑞− − 𝑚+}
𝜆 = max{((𝛼 + 𝑝−𝑝− − 1) (𝑝+ − 1) − 𝛼𝑚−) ,
𝛼 (𝑞+ − 𝑚−)} ,

(107)

and using 𝛼 large enough, so that
𝛼 > max {𝑍 3𝐶1𝜎𝑚−

, 3𝑎1𝑚−𝜎} , (108)

where

𝑍 = max
{{{(
𝑝−𝛾 )

𝑝+−1 , (𝑝−𝛾 )
𝑝−−1}}} , (109)

we obtain the inequalities (100) and (101). Finally, to get the
inequality (102), it suffices to have

𝑝− (𝑝− − 1𝛾 − 1) 𝑆𝛼/𝜆 (0) ≥ 𝜇𝑘𝑟𝑝−𝛾 , (110)

which reduces to

(𝑝− − 1𝛾 − 1) ≥ 𝜇𝑘𝛾 . (111)

Since 𝑘 is small enough, the last inequality holds, which
means that the inequality (102) is satisfied and allows us
to deduce inequality (96). Then, we obtain by comparison
principle, for each 𝑡 ∈ [0, 𝑇𝑝],

𝑢 (𝑥, 𝑡) ≥ 𝜓 (𝑥, 𝑡) a.e. 𝑥 ∈ 𝐵𝑅 (𝑥0) . (112)

Therefore, the result follows from Lemma 12.

Proof of Theorem 11. The proof is similar to that of Theorem
1.2, in [27], and we omit the details here.

5. Finite Speed of Propagation Property

In this section we shall give precise estimates for the of
support of the solution of P, depending on the size of
the support of 𝑢0. Let us emphasize that each estimation is
obtained under a sign condition on 𝑎(𝑥, 𝑡) and depending
on the range of the exponents 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡), and 𝑚(𝑥).
As in [21], the proof is based on the construction of local
supersolutions and on the use of the comparison principle.

Concerning the construction of supersolutions, we shall
proceed as in [31].

Note that under some conditions on the data, if 𝑎(𝑥, 𝑡) is
positive, then the solutions will blow up in finite time (see
[10]). For that it requires to construct a supersolution defined
locally in time, which means in (0, 𝑇) for any 𝑇 ≤ 𝑇∗, where𝑇∗ is the maximal existence time. We denote Ω𝑅 = Ω ∩𝐵(0, 𝑅).
Theorem 14. Let 𝑢 be a strong solution ofP. Let 0 < 𝑅 < +∞
be such that supp 𝑢0 ⊂ Ω𝑅. We assume 𝑚+ < 𝑝− − 1, 𝑞(𝑥, 𝑡) =𝑚(𝑥), and sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞.Then, for any 𝑡 ∈ (0, 𝑇), there
exists a unique compactly supported solution ofP such that

supp 𝑢 (𝑡, .) ⊂ {𝑥 ∈ Ω : |𝑥| ≤ 𝜌 (𝑡)} , (113)

where 𝜌(𝑡) will be specified in the proof below.

Proof. The idea of the proof is to construct a suitable super-
solution 𝑢 with compact support which is not necessarily
defined in the whole Ω. Then, by the comparison principle,
we deduce directly that {(𝑥, 𝑡) ∈ 𝑄𝑇 : 𝑢 = 0} ⊂ {(𝑥, 𝑡) ∈ 𝑄𝑇 :𝑢 = 0}, and the result follows. For all 𝑡 ∈ (0, 𝑇), we define𝑢(𝑥, 𝑡) as follows

𝑢 (𝑟, 𝑡) = {{{{{
𝐾 (𝑇) 𝑒(𝑚−+1)𝜆𝑡 (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼 , 𝑅 ≤ 𝑟 < 𝑅 + 𝑐 (𝑡)𝑘 = 𝜌 (𝑡)
0, 𝑟 ≥ 𝑅 + 𝑐 (𝑡)𝑘

(114)

where 𝑟 = |𝑥|,
𝛼 = 𝑝−𝑝− − 1 − 𝑚+

,
𝑀 = max {1, 𝑢0∞} ,

(115)

𝜆 = 𝑎1(𝑚−)2 , (116)

𝑐 (𝑡) = ( 𝑀𝐾(𝑇))
1/𝛼 𝑒𝜆𝑡((𝑝+−1−𝑚−)/𝛼), (117)

and

𝐾(𝑇)
= [ 𝑚−𝜆𝑒−(𝑚−+1)𝜆𝑇(𝑝+−1−𝑚−)(𝑘 (𝛼 − 1) (𝑝+ − 1) + 𝜖𝑛−1) 𝑘𝑝−−1𝛼𝑝+−1]

1/(𝑝+−1−𝑚−) , (118)

with sufficiently small 𝜖 > 0.



Abstract and Applied Analysis 11

Firstly, we denote 𝑄𝑅𝑇 = (Ω \ Ω𝑅) × (0, 𝑇). It is clear that𝑢 ∈ 𝐶1(𝑄𝑅𝑇) and by direct calculations, we have

𝜕𝜕𝑡𝑢𝑚(𝑥) = (𝑚− + 1)𝑚 (𝑥) 𝜆𝑢𝑚(𝑥) + 𝛼𝑚 (𝑥)
⋅ (𝐾 (𝑇) 𝑒(𝑚−+1)𝜆𝑡)𝑚(𝑥)
⋅ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼𝑚(𝑥)−1 𝑐 (𝑡) .

(119)

Thus, it follows that

𝜕𝜕𝑡𝑢𝑚(𝑥) ∈ 𝐿∞ (𝑄𝑅𝑇) ⊂ 𝑊 (𝑄𝑅𝑇) . (120)

Moreover, from the definition of 𝑢 we have
𝑢 (𝑅, 0) = 𝑀 ≥ 𝑢0∞ ≥ 𝑢0. (121)

Next, we will show that

𝜕𝜕𝑡𝑢𝑚(𝑥) − Δ𝑝(𝑥,𝑡)𝑢 ≥ 𝑎 (𝑥, 𝑡) 𝑢𝑚(𝑥) on 𝑄𝑅𝑇. (122)

Since |𝑎(𝑥, 𝑡)| ≤ 𝑎1, it suffices to show that

𝜕𝑢𝑚(𝑥)𝜕𝑡 − Δ𝑝(𝑥,𝑡)𝑢 ≥ 𝑎1𝑢𝑚(𝑥) on 𝑄𝑅𝑇. (123)

Using the hypothesis 𝑝+ > 𝑚− + 1, we have 𝑐(𝑡) > 0 for all𝑡 ∈ (0, 𝑇). Then, from (119) and (116) we obtain

𝜕𝜕𝑡𝑢𝑚(𝑥) ≥ (𝑚− + 1)𝑚 (𝑥) 𝜆𝑢𝑚(𝑥)
≥ 𝑎1𝑢𝑚(𝑥) + 𝑚 (𝑥) 𝜆𝑢𝑚(𝑥).

(124)

Due to the last inequality, it remains to prove that

−Δ𝑝(𝑥,𝑡)𝑢 + 𝑚 (𝑥) 𝜆𝑢𝑚(𝑥) ≥ 0. on 𝑄𝑅𝑇. (125)

We have

𝜕𝑢𝜕𝑥𝑖 = −𝛼𝑘𝐾 (𝑇) 𝑒(𝑚
−+1)𝜆𝑡 (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼−1 𝑥𝑖|𝑥| , (126)

and

|∇𝑢| = 𝛼𝑘𝐾 (𝑇) 𝑒(𝑚−+1)𝜆𝑡 (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼−1 . (127)

We set

]𝑇 (𝑡) = 𝛼𝑘𝐾 (𝑇) 𝑒(𝑚−+1)𝜆𝑡. (128)

Then

Δ𝑝(𝑥,𝑡)𝑢 = (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))(𝛼−1)(𝑝(𝑥,𝑡)−1)−1
⋅ (]𝑇 (𝑡))𝑝(𝑥,𝑡)−1
⋅ [𝑘 (𝛼 − 1) (𝑝 (𝑥, 𝑡) − 1) − ℎ (𝑥, 𝑡)] ,

(129)

where

ℎ (𝑥, 𝑡) = ln (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟)) (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))
⋅ (𝛼 − 1) 𝑁∑

𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| + [(𝑁 − 1)|𝑥|

+ 𝑁∑
𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln (]𝑇 (𝑡))] (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))

= 𝑛 𝑁∑
𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln ((𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛)

⋅ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛 (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1−1/𝑛
⋅ (𝛼 − 1) + ((𝑁 − 1)|𝑥| + 𝑁∑

𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln (]𝑇)) (𝑐 (𝑡)

+ 𝑘 (𝑅 − 𝑟))1/𝑛 (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1−1/𝑛 ,

(130)

for all 𝑛 ≥ 3. By straightforward considerations, (bound-
edness of different functions), there exist positive constants𝐴, 𝐵 ≥ 1 such that, for all 𝑡 ∈ (0, 𝑇) and 𝑅 ≤ 𝑟 < 𝜌(𝑡),

𝑛
𝑁∑
𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln ((𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛)

⋅ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛 (𝛼 − 1) ≤ 𝐴(
(𝑁 − 1)|𝑥| + 𝑁∑

𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln (]𝑇 (𝑡))) (𝑐 (𝑡)

+ 𝑘 (𝑅 − 𝑟))1/𝑛 ≤ 𝐵.

(131)

Thus

|ℎ (𝑥, 𝑡)| ≤ (𝐴 + 𝐵) (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1−1/𝑛
≤ ((𝐴 + 𝐵) (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛)𝑛−1 . (132)

In this case we have 𝑘(𝑟 − 𝑅) ≤ 𝑐(𝑡), and from (118), we can
choose 𝑘 small enough, so that 𝑐(𝑡) is also small for all 𝑡 ∈(0, 𝑇), whence we have

(𝐴 + 𝐵) (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))1/𝑛 ≤ 𝜖, (133)

for sufficiently small 𝜖 > 0, which implies that

Δ𝑝(𝑥,𝑡)𝑢 ≤ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))(𝛼−1)(𝑝(𝑥)−1)−1
⋅ (]𝑇 (𝑡))𝑝(𝑥,𝑡)−1
⋅ (𝑘 (𝛼 − 1) (𝑝 (𝑥, 𝑡) − 1) + 𝜖𝑛−1) .

(134)
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Set𝑊(𝑥, 𝑡) = 𝑘(𝛼 − 1)(𝑝(𝑥, 𝑡) − 1) + 𝜖𝑛−1. Now, to get (125) it
suffices to have

(𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))(𝛼−1)(𝑝(𝑟,𝑡)−1)−1 (]𝑇 (𝑡))𝑝(𝑥,𝑡)−1𝑊(𝑟, 𝑡)
≤ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼𝑚(𝑥)𝑚(𝑥)
⋅ 𝜆𝐾𝑚(𝑥)𝑒(𝑚−+1)𝜆𝑚(𝑥)𝑡.

(135)

Since 𝑐(𝑡) + 𝑘(𝑅 − 𝑟) is small enough then, from the value of𝛼 and 𝐾(𝑇), we obtain that

(𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))(𝛼−1)(𝑝(𝑥,𝑡)−1)−1
≤ (𝑐 (𝑡) + 𝑘 (𝑅 − 𝑟))𝛼𝑚(𝑥) , (136)

and

(𝛼𝑘𝐾 (𝑇) 𝑒(𝑚−+1)𝜆𝑡)𝑝(𝑥,𝑡)−1𝑊(𝑥, 𝑡)
≤ 𝑚 (𝑥) 𝜆𝐾 (𝑇)𝑚(𝑥) 𝑒(𝑚−+1)𝜆𝑚(𝑥)𝑡, (137)

which implies (125). Therefore we deduce the desired result.

Theorem 15. Let 𝑢 be a strong solution of P. Let 0 < 𝑅 <+∞ be such that supp 𝑢0 ⊂ Ω𝑅. We assume 𝑚+ < 𝑝− − 1,
sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞, and 𝑎(𝑥, 𝑡) ≤ 0. Then, for any 𝑡 ∈ (0, 𝑇),
there exists a unique compactly supported solution of P such
that

supp 𝑢 (𝑡, .) ⊂ {𝑥 ∈ Ω : |𝑥| ≤ 𝜌 (𝑡)} , (138)

where 𝜌(𝑡) is specified in the proof above.

Proof. We consider the same supersolution 𝑢(𝑟, 𝑡) as in the
proof of Theorem 14 and we just need to prove that

𝜕𝑢𝑚(𝑥)𝜕𝑡 − Δ𝑝(𝑥,𝑡)𝑢 ≥ 𝑎 (𝑥, 𝑡) 𝑢𝑞(𝑥,𝑡) on 𝑄𝑅𝑇, (139)

where𝑄𝑅𝑇 = (Ω \Ω𝑅) × (0, 𝑇). Since 𝑎(𝑥, 𝑡) ≤ 0, it is sufficient
to prove that

𝜕𝑢𝑚(𝑥)𝜕𝑡 − Δ𝑝(𝑥,𝑡)𝑢 ≥ 0 on 𝑄𝑅𝑇. (140)

Combining the same lines as in the previous theorem and
the comparison principle in Proposition 6, we conclude the
result.

Finally, we state the following result on uniform localiza-
tion of the support of solution.

Theorem 16. Let 𝑢 be a strong solution of P. Let 0 < 𝑅 <+∞ be such that supp 𝑢0 ⊂ Ω𝑅. We assume 𝑞+ < 𝑝− − 1,
sup𝑄𝑇 |∇𝑝(𝑥, 𝑡)| < ∞, and 𝑎(𝑥, 𝑡) ≤ 𝑎2 < 0. Then for any𝑡 ∈ (0,∞), there exists a unique compactly supported solution
ofP such that

supp 𝑢 (𝑡, .) ⊂ {𝑥 ∈ Ω : |𝑥| ≤ 𝑅1} (141)

where 𝑅1 is positive constants determined in the proof below.

Proof. In order to get the desired estimation of the support
of the solution, we define a suitable local supersolution
associated with the stationary problem related toP. Let𝑀 =
max{‖𝑢0‖𝐿∞(Ω), 1}. We define �̂� as follows:

�̂� (𝑟) = {{{
𝐾(𝑅1 − 𝑟)𝛼 𝑅 ≤ 𝑟 < 𝑅1
0 𝑟 ≥ 𝑅1, (142)

where 𝑟 = |𝑥|, and
𝐾 = 𝑀(𝑅1 − 𝑅)𝛼 , (143)

where 𝑅1 − 𝑅 ≤ 1 and 𝛼 > 1 is a constant that will be
determined hereafter. It is easy to verify that �̂� ∈ 𝐶1(𝑄𝑅𝑇) for
any 𝑇 > 0, where 𝑄𝑅𝑇 = (Ω \ Ω𝑅) × (0, 𝑇). Concerning initial
condition, we have �̂�(𝑅, 0) = �̂�(𝑅) ≥ 𝑀 ≥ 𝑢0. Now, let us
show that

𝜕𝑏 (𝑥, �̂�)𝜕𝑡 − Δ𝑝(𝑥,𝑡)�̂� ≥ 𝑎 (𝑥, 𝑡) �̂�𝑞(𝑥,𝑡), (𝑥, 𝑡) ∈ 𝑄𝑅𝑇. (144)

We have

𝜕�̂�𝜕𝑥𝑖 = −𝛼𝐾 (𝑅1 − 𝑟)𝛼−1
𝑥𝑖𝑟 , (145)

and

|∇�̂�| = 𝛼𝐾 (𝑅1 − 𝑟)𝛼−1 . (146)

Then

Δ𝑝(𝑥,𝑡)�̂� = (𝛼𝐾)𝑝(𝑥,𝑡)−1 (𝑅1 − 𝑟)(𝛼−1)(𝑝(𝑥,𝑡)−1)−1
⋅ [(𝛼 − 1) (𝑝 (𝑥, 𝑡) − 1) − 𝐻 (𝑥, 𝑡)] , (147)

with

𝐻(𝑥, 𝑡)
= (𝛼 − 1) (𝑅1 − 𝑟) ln (𝑅1 − 𝑟) 𝑁∑

𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥|

− (𝑁 − 1𝑟 + 𝑁∑
𝑖=1

𝜕𝑝𝜕𝑥𝑖
𝑥𝑖|𝑥| ln (𝐾𝛼)) (𝑅1 − 𝑟) .

(148)

By straightforward considerations, there exists a constant𝐴 ≥1 such that, for every 𝑟 with 𝑅 ≤ 𝑟 < 𝑅1, we have(𝛼 − 1) (𝑝 (𝑥, 𝑡) − 1) − 𝐻 (𝑥, 𝑡) ≤ 𝐴. (149)

Hence, we get

Δ𝑝(𝑥,𝑡)�̂� ≤ 𝐴 (𝛼𝐾)𝑝(𝑥,𝑡)−1 (𝑅1 − 𝑟)(𝛼−1)(𝑝(𝑥,𝑡)−1)−1 . (150)

Now, in order to obtain the inequality (144), we need to show
that

Δ𝑝(𝑥,𝑡)�̂� ≤ −𝑎 (𝑥, 𝑡) (�̂� (𝑟))𝑞(𝑥,𝑡) . (151)
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To do so, we just need to get

𝐴 (𝛼𝐾)𝑝(𝑥,𝑡)−1 (𝑅1 − 𝑟)(𝛼−1)(𝑝(𝑥,𝑡)−1)−1
≤ −𝑎2 (𝐾)𝑞(𝑥,𝑡) (𝑅1 − 𝑟)𝛼𝑞(𝑥,𝑡) , (152)

Due to the fact that 𝑅1 − 𝑟 ≤ 𝑅1 − 𝑅 ≤ 1, (152) holds if
(𝛼 − 1) (𝑝 (𝑥, 𝑡) − 1) − 1 − 𝛼𝑞 (𝑥, 𝑡) ≥ 0,

𝐴𝛼𝑝(𝑥,𝑡)−1𝐾𝑝(𝑥,𝑡)−1−𝑞(𝑥,𝑡) ≤ −𝑎2. (153)

Then, it is suffices to take

𝛼 = 𝑝−𝑝− − 1 − 𝑞+ ,
𝑎2 = −𝐴𝛼𝑝+−1𝐾𝑝+−1−𝑞− ,

(154)

to complete the proof.

Remark 17. As in [20, 21], we can assume in this section thatΩ is a set of RN, not necessarily bounded.
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linéaires,” Comptes Rendus de l’Académie des Sciences, vol. 286,
no. 19, pp. 815–817, 1978.

[21] J. I. Dı́az and M. A. Herrero, “Estimates on the support of the
solutions of some nonlinear elliptic and parabolic problems,”
Proceedings of the Royal Society of Edinburgh, Section: A Mathe-
matics, vol. 89, no. 3-4, pp. 249–258, 1981.

[22] S.-Y. Chung and J.-H. Park, “A complete characterization of
nonlinear absorption for the evolution p-Laplacian equations
to have positive or extinctive solutions,” Computers and Mathe-
matics with Applications, vol. 71, no. 8, pp. 1624–1635, 2016.



14 Abstract and Applied Analysis

[23] J. I. Dı́az, “Qualitative study of nonlinear parabolic equations:
an introduction,” Extracta Mathematicae, vol. 16, no. 3, pp. 303–
341, 2001.

[24] Z. B. Fang and G. Li, “Extinction and decay estimates of
solutions for a class of doubly degenerate equations,” Applied
Mathematics Letters, vol. 25, no. 11, pp. 1795–1802, 2012.

[25] C. Jin, J. Yin, and Y. Ke, “Critical extinction and blow-up
exponents for fast diffusive polytropic filtration equation with
sources,”Proceedings of the EdinburghMathematical Society, vol.
52, no. 2, pp. 419–444, 2009.

[26] Y. G. Gu, “Necessary and sufficient conditions for extinction of
solutions to parabolic equations,” Acta Mathematica Sinica, vol.
37, no. 1, pp. 73–79, 1994.

[27] H. J. Yuan, S. Z. Lian, C. L. Cao, W. J. Gao, and X. J. Xu,
“Extinction and positivity for a doubly nonlinear degenerate
parabolic equation,”ActaMathematica Sinica, vol. 23, no. 10, pp.
1751–1756, 2007.

[28] J. Zhou and C. Mu, “Critical blow-up and extinction exponents
for non-Newton polytropic filtration equation with source,”
Bulletin of the Korean Mathematical Society, vol. 46, no. 6, pp.
1159–1173, 2009.

[29] S. Antontsev and S. Shmarev, “Existence and uniqueness for
doubly nonlinear parabolic equations with nonstandard growth
conditions,” Differential Equations and Applications, vol. 4, no.
1, pp. 67–94, 2012.

[30] S. Antontsev and S. Shmarev, “Doubly degenerate parabolic
equations with variable nonlinearity I: Existence of bounded
strong solutions,” Advances in Differential Equations, vol. 17, no.
11-12, pp. 1181–1212, 2012.

[31] Q. Zhang, X. Liu, and Z. Qiu, “On the boundary blow-up
solutions of𝑝(𝑥)-Laplacian equations with singular coefficient,”
Nonlinear Analysis, vol. 70, no. 11, pp. 4053–4070, 2009.

[32] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue
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