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Copyright © 2018 Yousef Alnafisah. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multiple stochastic integrals of higher multiplicity cannot always be expressed in terms of simpler stochastic integrals, especially
when theWiener process is multidimensional. In this paper we describe how the Fourier series expansion ofWiener process can be
used to simulate a two-dimensional stochastic differential equation (SDE) using Matlab program. Our numerical experiments
use Matlab to show how our truncation of Itô’-Taylor expansion at an appropriate point produces Milstein method for the
SDE.

1. Introduction

Numerical analysis for stochastic differential equation (SDE)
has seen a considerable development in recent years. There
are many numerical methods for solving SDEs. Kloeden and
Platen [1] described a method based on the stochastic Taylor
series expansion but themajor difficulty with this approach is
that the double stochastic integrals cannot be easily expressed
in terms of simpler stochastic integrals when the Wiener
process is multidimensional. In the multidimensional case,
the Fourier series expansion ofWiener process has been used
to represent the double integrals by [1–3] but it needs to
generate many random variables at each time. Therefore, it
takes a lot of time to compute and also it is hard to extend to
higher order.

There have been many studies for the numerical res-
olution of Stochastic differential equations. Davie [4] uses
coupling and gives order one for the strong convergence
for stochastic differential equations (SDEs). Kanagawa [5]
investigates the rate of convergence in terms of two prob-
ability metrics between approximate solutions with i.i.d
random variables. Rachev and Ruschendorff [6] developed
Kanagawa’s method by using the Komlós et al. theorem in
[7]. Fournier [8] uses the quadratic Vaserstein distance for the
approximation of the Euler scheme and the results of Rio [9]

which gives a very precise rate of convergence for the central
limit theorem in Vaserstein distance. Also, Rio [10] provided
precise bound estimates. Under uniform ellipticity, Alfonsi et
al. [11, 12] studied the Vaserstein bound for Euler method and
they proved an 𝑂(ℎ(2/3−𝜖)) for a one-dimensional diffusion
process where ℎ is the step-size and then they generalize the
result to SDEs of any dimension with 𝑂(ℎ√log(1/ℎ)) bound
when the coefficients are time-homogeneous. Cruzeiro et al.
[13] get an order one method and under the nondegeneracy
they construct a modified Milstein scheme which obtains an
order one for the strong approximation. Charbonneau et al.
[14] investigate the Vaserstein bound [15] by using the weak
convergence and Strassen- Dudley theorem. Convergence of
an approximation to a strong solution on a given probability
space was established by Gyöngy and Krylov in [16] using
coupling. Davie in [17] applied the Vaserstein bound to
solutions of vector SDEs anduses theKomlós et al. theorem to
get order one approximationunder a nondegeneracy assump-
tion. The rest of this paper is organized as follows. Section 2
reviews some results concerning SDE. Section 3 presents
some existing schemes for numerical resolution of SDE. In
Section 4 we show the theoretical and implementation of
Milstein scheme using the Fourier method. In the last section
we give numerical example to the show the convergence
behaviour.
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2. Stochastic Differential Equations (SDEs)

Definition. Let {𝑊(𝑡)}𝑡≥0 be a 𝑑-dimensional standard Brow-
nian motion on a probability space (Ω,F,P) equipped with
a filtration F = (F𝑡)𝑡≥0, 𝑎 = 𝑎(𝑡, 𝑥) a 𝑑-dimensional vector
function (called drift coefficient), and 𝑏 = 𝑏(𝑡, 𝑥) a 𝑑 × 𝑑-
matrix function (called diffusion coefficient).

The stochastic process𝑋 = 𝑋(𝑡) considered in this paper
can be described by stochastic differential equations

𝑑𝑋 (𝑡) = 𝑎 (𝑡, 𝑋 (𝑡)) 𝑑𝑡 + 𝑏 (𝑡, 𝑋 (𝑡)) 𝑑𝑊 (𝑡) ,
𝑡 ∈ [0, 𝑇] . (1)

Let the initial condition 𝑋(0) = 𝑥 be an F0-measurable
random vector inR𝑑. AnF𝑡-adapted stochastic process𝑋 =
(𝑋(𝑡))𝑡≥0 is called a solution of equation (1) if

𝑋 (𝑡) = 𝑋 (0) + ∫𝑡
0
𝑎 (𝑠, 𝑋 (𝑠)) 𝑑𝑠

+ ∫𝑡
0
𝑏 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠)

(2)

holds a.s.
The conditions that the integral processes,

∫𝑡
0
𝑎 (𝑠, 𝑋 (𝑠)) 𝑑𝑠,

∫𝑡
0
𝑏 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) ,

(3)

are well defined are required for (2) to hold and for the
functions 𝑎(𝑠, 𝑋(𝑠)) and 𝑏(𝑠, 𝑋(𝑠)) we have the following
conditions that

𝐸∫𝑡
0
𝑏2 (𝑠, 𝑋 (𝑠)) 𝑑𝑠 < ∞, (4)

and almost surely for all 𝑡 ≥ 0,
∫𝑡
0
|𝑎 (𝑠, 𝑋 (𝑠))| 𝑑𝑠 < ∞. (5)

And these conditions imply that (4) and (5) are well defined.
One important property for the stochastic integral is that

∫𝑡
0
𝑊(𝑠) 𝑑𝑊 (𝑠) = 1

2 ∫
𝑡

0
𝑑 (𝑊2 (𝑠)) − 1

2 ∫
𝑡

0
𝑑𝑠

= 1
2𝑊
2 (𝑡) − 𝑡

2 ,
(6)

and for more details on stochastic integral see [1].

2.1. Existence and Uniqueness Theorems. The following the-
orem, which will be stated without proof, gives sufficient
conditions for existence and uniqueness of a solution of a
stochastic differential equation.

(i) Measurability: let 𝑎: [0,∞)×R𝑑 → R𝑑 and 𝑏: [0,∞)×
R𝑑 → R𝑑×𝑑 are jointly Borel measurable in [𝑡0, 𝑇] ×
R𝑑.

(ii) Lipschitz condition: there is a constant 𝐴 > 0 such
that |𝑎(𝑡, 𝑥)−𝑎(𝑡, 𝑦)| ≤ 𝐴|𝑥−𝑦|, and |𝑏(𝑡, 𝑥)−𝑏(𝑡, 𝑦)| ≤
𝐴|𝑥 − 𝑦|, for all 𝑡 ∈ [𝑡0, 𝑇] and 𝑥, 𝑦 ∈ R.

(iii) Growth condition: there is a constant𝐾 > 0 such that
|𝑎(𝑡, 𝑥)|2 ≤ 𝐾2(1 + |𝑥|2), and |𝑏(𝑡, 𝑥)|2 ≤ 𝐾2(1 + |𝑥|2),
for all 𝑡 ∈ [𝑡0, 𝑇] and 𝑥, 𝑦 ∈ R.

Theorem 1. Under these conditions ((i)–(iii)) the stochastic
differential equation (1) has a unique solution 𝑋(𝑡) ∈ [𝑡0, 𝑇]
with

sup
𝑡0≤𝑡≤𝑇

𝐸 (|𝑋 (𝑡)|2) < ∞. (7)

Proof. See Kloeden and Platen [1], Theorem 4.5.3.

2.2. Strong Convergence for SDEs. Let (Ω,F,P) be a proba-
bility space satisfying the following:Ω is the set of continuous
functions with the supremummetric on the interval [0, 𝑇],F
is the 𝜎-algebra of Borel sets, and P is the Wiener measure.
We consider an approximate solution 𝑥ℎ of (1) which uses a
subdivision of the interval [0, 𝑇] into a finite number 𝑁 of
subintervals which we assume to be of length ℎ = 𝑇/𝑁. Also
we assume the approximate solutions𝑥ℎ are randomvariables
on Ω. Now we say that the discrete time approximation 𝑥ℎ
with the step-size ℎ converges strongly of order 𝛾 at time
𝑇 = 𝑁ℎ to the solution𝑋(𝑡) if

𝐸 𝑥ℎ − 𝑋 (𝑇)𝑝 ≤ 𝐶ℎ𝛾𝑝, ℎ ∈ (0, 1) , (8)

where the strong convergence will be in 𝐿𝑝 space and 𝑋(𝑇)
is the solution to the stochastic differential equation. 𝐶 is a
positive constant and 𝐶 is independent of ℎ.
3. Numerical Method for
Approximating the SDEs

There are many numerical methods for solving stochastic
differential equation; here we will mention two important
schemes. The first one is the Euler-Maruyama scheme which
will give strong order 1/2 and the second one is the Milstein
scheme which has an order one for the strong convergence.
We will illustrate by a numerical example their convergence
behaviour of Milstein scheme.

Suppose we have the stochastic differential equation

𝑑𝑋𝑖 (𝑡) = 𝑎𝑖 (𝑡, 𝑋 (𝑡)) 𝑑𝑡 +
𝑑

∑
𝑘=1

𝑏𝑖𝑘 (𝑡, 𝑋 (𝑡)) 𝑑𝑊𝑘 (𝑡) ,

𝑋𝑖 (0) = 𝑋(0)𝑖 ,
(9)

where 𝑖 = 1, . . . , 𝑑 on an interval [0, 𝑇], for a 𝑑-dimensional
vector𝑋(𝑡), with a 𝑑-dimensional Brownian path𝑊(𝑡).

In order to approximate the solution, we assume [0, 𝑇] is
divided into𝑁 equal intervals of length ℎ = 𝑇/𝑁.

3.1. Euler-Maruyama Scheme. The simplest numerical
method for approximating the solution of stochastic
differential equations is the stochastic Euler scheme (also
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called Euler-Maruyama scheme) which utilizes only the first
two terms of the Taylor expansion and it attains the strong
convergence 𝛾 = 1/2.

Firstly, consider the Euler-Maruyama approximation
scheme.

𝑥(𝑗+1)𝑖 = 𝑥(𝑗)𝑖 + 𝑎𝑖 (𝑗ℎ, 𝑥(𝑗)) ℎ +
𝑑

∑
𝑘=1

𝑏𝑖𝑘 (𝑗ℎ, 𝑥(𝑗)) Δ𝑊(𝑗)𝑘 , (10)

where Δ𝑊(𝑗)
𝑘

= 𝑊𝑘((𝑗 + 1)ℎ) − 𝑊𝑘(𝑗ℎ) and our numerical
approximation to𝑋(𝑗ℎ) will be denoted 𝑥(𝑗).
3.2. The Milstein Scheme. We shall now introduce the Mil-
stein scheme which gives an order one strong Taylor scheme.
We could obtain theMilstein scheme by adding the quadratic
terms

𝑑

∑
𝑘,𝑙=1

𝜌𝑖𝑘𝑙 (𝑗ℎ, 𝑥(𝑗))𝐴(𝑗)𝑘𝑙 (11)

to Euler scheme which gives the following scheme

𝑥(𝑗+1)𝑖 = 𝑥(𝑗)𝑖 + 𝑎𝑖 (𝑗ℎ, 𝑥(𝑗)) ℎ +
𝑑

∑
𝑘=1

𝑏𝑖𝑘 (𝑗ℎ, 𝑥(𝑗)) Δ𝑊(𝑗)𝑘

+
𝑑

∑
𝑘,𝑙=1

𝜌𝑖𝑘𝑙 (𝑗ℎ, 𝑥(𝑗))𝐴(𝑗)𝑘𝑙 ,
(12)

where

Δ𝑊(𝑗)
𝑘

= 𝑊𝑘 ((𝑗 + 1) ℎ) −𝑊𝑘 (𝑗ℎ) ,
𝐴(𝑗)
𝑘𝑙
= ∫(𝑗+1)ℎ
𝑗ℎ

{𝑊𝑘 (𝑡) − 𝑊𝑘 (𝑗ℎ)} 𝑑𝑊𝑙 (𝑡) ,

𝜌𝑖𝑘𝑙 (𝑡, 𝑥) =
𝑞

∑
𝑚=1

𝑏𝑚𝑘 (𝑡, 𝑥) 𝜕𝑏𝑖𝑙𝜕𝑥𝑚 (𝑡, 𝑥) .

(13)

The implementation of the Euler scheme is easy to do
as it only needs to generate the normal distribution for the
standardBrownianmotionΔ𝑊(𝑗)

𝑘
but it is not easy to generate

the integral 𝐴(𝑗)
𝑘𝑙

for the Milstein scheme when we have two
or more dimensional SDEs. We will show by a numerical
example in the next section how we could generate the
integral 𝐴(𝑗)

𝑘𝑙
using the Fourier method when we have two-

dimensional SDEs.
Before the implementation ofMilstein schemewe need to

mention some facts about the two-level approximation.

4. Two-Level Approximation

We need to generate the increments Δ𝑊(𝑗)
𝑘

when we approx-
imate the solution to (1) by using Milstein or other schemes;
therefore Levy’s construction of the Brownian motion will
be used to simulate a sequence of approximations which
converge to the solution.

That is,

Δ𝑊(𝑟,𝑗)
𝑘

= Δ𝑊(𝑟+1,2𝑗)
𝑘

+ Δ𝑊(𝑟+1,2𝑗+1)
𝑘

, (14)

where 𝑟 ∈ N and Δ𝑊(𝑟,𝑗)
𝑘

= 𝑊𝑘((𝑗 + 1)ℎ(𝑟)) − 𝑊𝑘(𝑗ℎ(𝑟)) with
ℎ(𝑟) = 𝑇/2𝑟.

We will call the two-level approximation in (14) the trivial
coupling. We could generate the normal distribution in (14)
for the increments for a given level 𝑟 by firstly generating
the increments in the LHS Δ𝑊(𝑟,𝑗)

𝑘
and then conditionally

generating the increments in the RHS. We do the same
process for each level 𝑟 + 2, 𝑟 + 3 and so on.

We will see from the following section that the extension
of Milstein to 𝑑 ≥ 2 is not easy to do. However we could
implement special class of equations for Milstein scheme
using only Δ𝑊(𝑗)

𝑘
. This could be done from the observation

that𝐴(𝑗)
𝑘𝑙
+𝐴(𝑗)
𝑙𝑘
= 2𝐵(𝑗)
𝑘𝑙

where 𝐵(𝑗)
𝑘𝑙

= (1/2)Δ𝑊(𝑗)
𝑘
Δ𝑊(𝑗)
𝑙

if 𝑘 ̸= 𝑙
and 𝐵(𝑗)

𝑘𝑘
= (1/2){(Δ𝑊(𝑗)

𝑘
)2 − ℎ}.

4.1. Empirical Estimation of the Error of a Numerical Method.
Usually we do not know the solutions of the stochastic dif-
ferential equation explicitly; therefore we could not directly
estimate the mean error 𝐸|𝑋(𝑇) − 𝑥ℎ| which is the absolute
value of the difference between the approximation solution𝑥ℎ
and the solution𝑋(𝑇) of an SDE (1). Assume the approximate
solution 𝑥ℎ converges to the solution𝑋(𝑇) as we decrease the
step-size and go to zero. Then we can estimate the order of
convergence for a particular scheme by repeating 𝑅 different
independent simulations of sample paths. We will use the
following estimator {𝜖 = (1/𝑅)𝐸(|𝑥(𝑟) − 𝑥(𝑟)|)} for different
approximation solutions 𝑥(𝑟) and 𝑥(𝑟) for different range value
of ℎ. So for any numerical method if we have a bound for the
error 𝐸|𝑥ℎ − 𝑥ℎ/2| ≤ 𝐶1ℎ𝛾 then 𝐸|𝑥ℎ/2 − 𝑥ℎ/4| ≤ 𝐶1(ℎ/2)𝛾 and
then 𝐸|𝑥ℎ/4 − 𝑥ℎ/8| ≤ 𝐶1(ℎ/22)𝛾 and so on. Therefore we will
get a geometric series; then we will obtain

𝐸 𝑋 (𝑇) − 𝑥ℎ ≤
∞

∑
ℎ=0

𝐶1 ( ℎ
2𝑘)
𝛾

= 𝐶1ℎ𝛾
1 − 2−𝛾 . (15)

So from (15) we could estimate the convergence and the
constant.

4.2. Two-Dimensional Stochastic Differential Equation. In
this section, we consider the two-dimensional stochastic
differential equations and we need to test the convergence
by using Milstein scheme. The SDEs that we will choose to
implement our methods on are

𝑑𝑋1 (𝑡) = 𝑋2 (𝑡) 𝑑𝑊1 (𝑡) + (𝑋1 (𝑡) + 𝑡) 𝑑𝑊2 (𝑡) ,
𝑑𝑋2 (𝑡) = 𝑒−𝑋22(𝑡)𝑑𝑊1 (𝑡) + (𝑋1 (𝑡) − 𝑋2 (𝑡)) 𝑑𝑊2 (𝑡) ,

for 0 ≤ 𝑡 ≤ 1, with 𝑋1 (0) = 2, 𝑋2 (0) = 0,
(16)

where 𝑊1 and 𝑊2 are independent standard Brownian
motions.

For the two-dimensional SDEs (16), we could simply
implement the Eulermethod by only generating somenormal
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distributions. Now, we need to apply Milstein method to (16)
and show the convergence between the final solutions of these
methods. We need to find an approximation for the Milstein
scheme for two-dimensional SDE.

For the SDEs (16), we have the Milstein scheme

𝑥(𝑗+1)𝑖 = 𝑥(𝑗)𝑖 +
2

∑
𝑘=1

𝑏𝑖𝑘 (𝑥(𝑗)) Δ𝑊(𝑗)𝑘 +
2

∑
𝑘=1

𝜌𝑖𝑘𝑙 (𝑥(𝑗))𝐴(𝑗)𝑘𝑙 . (17)

But the major difficulty here is that the double stochastic
integrals

𝐴(𝑗)
𝑘𝑙
= ∫(𝑗+1)ℎ
𝑗ℎ

(𝑊𝑙 (𝑡) − 𝑊𝑙 (𝑗ℎ)) 𝑑𝑊𝑘 (𝑡) (18)

for 𝑘 ̸= 𝑙 cannot be so easily expressed in terms of simpler
stochastic integral when the Wiener process is multidimen-
sional. Therefore we will use the Fourier series expansion of
Wiener process to represent the double integrals.

Before explaining the Fourier method let us start by
applying the Milstein scheme (17) to (16) and then explain
which terms that the Fourier method will be represented to.
Before writing the Milstein approximation, we need to find
the derivative terms 𝜌𝑖𝑘𝑙(𝑥) = ∑𝑚(𝜕𝑏𝑖𝑘/𝜕𝑥𝑚)𝑏𝑚𝑙(𝑥) for the
SDEs (16).

We have

𝜌111 = 𝑒−𝑋22 ,
𝜌112 = 𝑋1 − 𝑋2
𝜌121 = 𝑋2
𝜌211 = −2𝑒−2𝑋22
𝜌221 = 𝑋2 − 𝑒−𝑋22
𝜌222 = 𝑡 + 𝑋2
𝜌122 = 𝑋1 + 𝑡
𝜌212 = (−2𝑋2) (𝑋1 − 𝑋2) 𝑒−𝑋22 .

(19)

Then, the Milstein approximation for (16) is

𝑥(𝑗+1)1 = 𝑥(𝑗)1 + 𝑥(𝑗)2 Δ𝑊(𝑗)1 + (𝑥(𝑗)1 + 𝑗ℎ) Δ𝑊(𝑗)2
+ 𝑒−(𝑥(𝑗)2 )2𝐴11 + (𝑥(𝑗)1 − 𝑥(𝑗)2 )𝐴12
+ 𝑥(𝑗)2 𝐴21 + (𝑥(𝑗)1 − 𝑗ℎ)𝐴22

𝑥(𝑗+1)2 = 𝑥(𝑗)2 + 𝑒−(𝑥(𝑗)2 )2Δ𝑊(𝑗)1 + (𝑥(𝑗)1 − 𝑥(𝑗)2 ) Δ𝑊(𝑗)2
− 2𝑥(𝑗)2 𝑒−2(𝑥

(𝑗)
2 )
2𝐴11

+ (𝑥(𝑗)2 − 𝑒−(𝑥(𝑗)2 )2)𝐴21 + (𝑥(𝑗)2 − 𝑗ℎ)𝐴22
− 2𝑥(𝑗)2 𝑒−(𝑥

(𝑗)
2 )
2 (𝑥(𝑗)1 − 𝑥(𝑗)2 )𝐴12.

(20)

Here in this approximation we have the double Wiener
integrals𝐴11,𝐴12,𝐴21, and𝐴22.The doubleWiener integrals
𝐴11 and 𝐴22 in (20) are easily computed from the Wiener
increments Δ𝑊(𝑗)1 and Δ𝑊(𝑗)2 , respectively, so

𝐴11 = ∫(𝑗+1)ℎ
𝑗ℎ

(𝑊1 (𝑡) − 𝑊1 (𝑗ℎ)) 𝑑𝑊1 (𝑡)

= 1
2 {(Δ𝑊

(𝑗)
1 )2 − ℎ} ,

𝐴22 = ∫(𝑗+1)ℎ
𝑗ℎ

(𝑊2 (𝑡) − 𝑊2 (𝑗ℎ)) 𝑑𝑊2 (𝑡)

= 1
2 {(Δ𝑊

(𝑗)
2 )2 − ℎ} .

(21)

On the other hand, the double Wiener integrals

𝐴12 = ∫(𝑗+1)ℎ
𝑗ℎ

(𝑊2 (𝑡) − 𝑊2 (𝑗ℎ)) 𝑑𝑊1 (𝑡) ,

𝐴21 = ∫(𝑗+1)ℎ
𝑗ℎ

(𝑊1 (𝑡) − 𝑊1 (𝑗ℎ)) 𝑑𝑊2 (𝑡)
(22)

could not be expressed in terms of simpler stochastic integrals
when the Wiener process is multidimensional. Therefore, for
these integrals the Fourier series expansion will be used to
approximate them.

Now we will explain the idea of Fourier method as
described in Kloeden, Platen [1, 18]. The Brownian bridge
process

𝑊𝑘 (𝑡) − 𝑡
ℎ𝑊𝑘 (ℎ) for 0 ≤ 𝑡 ≤ ℎ (23)

has the Fourier series

𝑊𝑘 (𝑡) − 𝑡
ℎ𝑊𝑘 (ℎ)

= 1
2𝑎𝑘,0

+
∞

∑
𝑟=1

(𝑎𝑘,𝑟 cos(2𝑟𝑡𝜋ℎ ) + 𝑏𝑘,𝑟 sin(2𝑟𝑡𝜋ℎ )) ,

(24)

where 𝑘 = 1, . . . , 𝑑.
Here the coefficients 𝑎𝑘,𝑟 and 𝑏𝑘,𝑟 are independent random

variables with𝑁(0, ℎ/2𝑟2𝜋2) distributed and we could derive
them from the Fourier integrals,

𝑎𝑘,𝑟 = 2
ℎ ∫
ℎ

0
(𝑊𝑘 (𝑠) − 𝑠

ℎ𝑊𝑘 (ℎ)) cos(
2𝑟𝑡𝜋
ℎ ) 𝑑𝑠,

𝑏𝑘,𝑟 = 2
ℎ ∫
ℎ

0
(𝑊𝑘 (𝑠) − 𝑠

ℎ𝑊𝑘 (ℎ)) sin(
2𝑟𝑡𝜋
ℎ ) 𝑑𝑠.

(25)

For each 𝑘 = 1, . . . , 𝑑 and 𝑟 = 1, . . . , 𝑝, when we integrate
(24) over the interval [0, ℎ], we will obtain the approximation
of multiple Stratonovich integrals

𝐽𝑝
(𝑘1 ,𝑘2)

= 1
2ℎ𝜉𝑘1𝜉𝑘2 −

1
2√ℎ (𝑎𝑘2 ,0𝜉𝑘1 − 𝑎𝑘1 ,0𝜉𝑘2)

+ ℎ𝐴𝑝
𝑘1 ,𝑘2

𝑘1, 𝑘2 = 1, . . . , 𝑑.
(26)
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function [w,v,J1,J2] = F year J(N,h)
N=5; % Here N=P for the truncation of the series in (26)
T=1; h=T/N; s=sqrt(h); N1=randn; N2=randn; N7=randn; w=s∗N1; v=s∗N2;

f=0; g1=0; g2=0; z=0; N3=randn(1,N); N4=randn(1,N); N5=randn(1,N); N6=randn(1,N);
for n=1:N;
f=f+(n.̂(−2)); c=(1/12)−((2∗(pi).̂2).̂(−1))∗f;
g1=g1+(n.̂(−1))∗N3(n);
g2=g2+(n.̂(−1)).∗N4(n);
z=z+(n.̂(−1)).∗(N3(n).∗N6(n)−(N5(n).∗N4(n)));
A=1./(2∗pi)∗z;
% to calculate formula (27)
end
B=(1/2)∗(w∗v);
d1=(−1/pi)∗sqrt(2∗h)∗g1−(2∗sqrt(h∗c)∗N7);
% to calculate formula (28)
d2=(−1/pi)∗sqrt(2∗h)∗g2−(2∗sqrt(h∗c)∗N7);
% to calculate formula (28)
J1=(1/2)∗h∗N1∗N2−(1/2)∗s∗(d2∗N1−(d1∗N2))+h∗A;
% to calculate formula (26)
J2=2∗B−J1;
end

Listing 1: Code to approximate the double integrals 𝐴12 and 𝐴21.

In formula (26), we have

𝐴𝑝
𝑘1 ,𝑘2

= 1
2𝜋
𝑝

∑
𝑟=1

1
𝑟 (𝜉𝑘1 ,𝑟𝜂𝑘2 ,𝑟 − 𝜂𝑘1 ,𝑟𝜉𝑘2 ,𝑟) ; (27)

𝑎𝑘,0 = − 1𝜋√2ℎ
𝑝

∑
𝑟=1

1
𝑟 𝜉𝑘,𝑟 − 2√ℎ𝜌𝑝𝜇𝑘,𝑝;

where 𝜌𝑝 = 1
12 −

1
2𝜋2
𝑝

∑
𝑟=1

1
𝑟2 .

(28)

In addition, 𝜉𝑘, 𝜉𝑘,𝑟, 𝜂𝑘,𝑟 and 𝜇𝑘,𝑝 are independent standard
Gaussian random variables.

For the truncation of Fourier series we require a conver-
gence rate of order ℎ for the global error for the Milstein
scheme andwewill use (26) to express the double integral𝐴(𝑗)

𝑘𝑙
for 𝑘 ̸= 𝑙. So in order to have this convergence rate we need to
compare the mean square error (MSE) of the approximation
of the iterated Itô integrals to the discretization error of the
Milstein scheme. As described in Kloeden and Platen [1],
Corollary 10.6.5, and equation 10.6.16 we require an MSE
bounded by 𝐶ℎ3 for some positive constant 𝐶. The algorithm
of Kloeden et al. [18] has an MSE of order ℎ2/𝑝 and then
we obtain that 𝐶ℎ3 = ℎ2/𝑝 which gives ℎ = 1/𝐶𝑝. Hence
we want the number of terms in the truncated sum 𝑝 to be
proportional to ℎ−1.

We know from the symmetry relation that for any
double integral we have 𝐴(𝑗)12 + 𝐴(𝑗)21 = 2𝐵(𝑗)12 where 𝐵(𝑗)12 =
(1/2)Δ𝑊1(𝑗)Δ𝑊2(𝑗).

Table 1: The error results for the Milstein scheme in 2𝑑 case.

step-size error (𝜖)
0.0050 0.1318
0.0025 0.0673
0.00125 0.0347
0.00062 0.0177
0.00031 0.0088

5. Numerical Example

In the M-file in Listing 1, I will approximate the value of
the double integrals 𝐴12 and 𝐴21 and some explanations are
shown for the formulas ((26)-(27)).

Now, after we represent the approximation of the double
integrals 𝐴11, 𝐴22, 𝐴12 and 𝐴21, we could substitute them
in the Milstein approximation in (20). After that we need
to estimate the error for the Milstein solution in two-
dimensional case and test the convergence order.

TheMatlab code in Listing 2 calculates the Milstein error
over the interval [0, 1], with step-size (200, 400, 800, 1600,
3200) with a number of simulation (𝑅 = 20000).

It is obvious from Table 1 and the plotting in Figure 1
that the convergence seems to occur when we decrease the
step-size and we obtain 𝑂(ℎ) convergence. By estimating a
range of values of ℎ we could get the estimation of the con-
vergence and also the estimation of the constant by using (15),
so

𝐸 𝑥ℎ − 𝑋 (𝑇) ≤ 𝐶
1 − 1/2ℎ ∀ℎ. (29)
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T=1; NN=10; h=T/NN; R=10000; q=0;
for r=1:R, x=2; y=0; xx=2; yy=0;

for m=1:NN, hh=h/2; N=10;
[wL,vL,J1L,J2L] = F year J(N,hh);

[wr,vr,J1r,J2r] = F year J(N,hh);
w=wL+wr; v=vL+vr; J1=J1L+J1r+wr∗vL; J2=J2L+J2r+wL∗vr;
u=x+y∗wL+(x+(m−1)∗h)∗vL+exp(−y.̂2)∗(1/2)∗(wL.̂2−hh)

+(x−y)∗J1L+y∗J2L+(x+(m−1)∗h)∗(1/2)∗(vL.̂2−hh);
y=y+exp(−y.̂2)∗wL+(x−y)∗vL−2∗y∗exp(−2∗y.̂2)∗(1/2)∗(wL.̂2−hh)

+(y−exp(−y.̂2))∗J2L+(y+(m−1)∗h)∗(1/2)∗(vL.̂2−hh)
−2∗y∗exp(−y.̂2)∗(x−y)∗J1L; x=u;

u=x+y∗wr+(x+(m−1/2)∗h)∗vr+exp(−y.̂2)∗(1/2)∗(wr.̂2−hh)
+(x−y)∗J1r+y∗J2r+(x+(m−1/2)∗h)∗(1/2)∗(vr.̂2−hh);

y=y+exp(−y.̂2)∗wr+(x−y)∗vr−2∗y∗exp(−2∗y.̂2)∗(1/2)∗(wr.̂2−hh)
+(y−exp(−y.̂2))∗J2r+(y+(m−1/2)∗h)∗(1/2)∗(vr.̂2−hh)
−2∗y∗exp(−y.̂2)∗(x−y)∗J1r; x=u;

u=xx+yy∗w+(xx+(m−1)∗h)∗v+exp(−yy.̂2)∗(1/2)∗(w.̂2−h)
+(xx−yy)∗J1+yy∗J2+(xx+(m−1)∗h)∗(1/2)∗(v.̂2−h);

yy=yy+exp(−yy.̂2)∗w+(xx−yy)∗v−2∗yy∗exp(−2∗yy.̂2)∗(1/2)∗(w.̂2−h)
+(yy−exp(−yy.̂2))∗J2+(yy+(m−1)∗h)∗(1/2)∗(v.̂2−h)
−2∗yy∗exp(−yy.̂2)∗(xx−yy)∗J1; xx=u; end

q=q+abs(x−xx)+abs(y−yy); end
(q/R)

Listing 2: Code for estimating the error for two-dimensional Milstein scheme.

slope
ＦＩＡ(ℎ) against the ＦＩＡ(？ＬＬＩＬ)

�e plotting of ＦＩＡ(ℎ) against ＦＩＡ(？ＬＬＩＬ)
for the Milstein scheme 2-d case

y = p1 ∗ x + p2

Coefficients:
p1 = 0.97401
p2 = 3.1401
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Figure 1: Milstein method for the two dimension SDEs.
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integrals,” Stochastic Processes andTheir Applications, vol. 91, no.
1, pp. 151–168, 2001.

[3] M.Wiktorsson, “Joint characteristic function and simultaneous
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