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In this paper, some new results are obtained for the even order neutral delay difference equationΔ(𝑎𝑛Δ𝑚−1(𝑥𝑛+𝑝𝑛𝑥𝛼𝑛−𝑘))+𝑞𝑛𝑥𝛽𝑛−ℓ = 0,
where𝑚 ≥ 2 is an even integer, which ensure that all solutions of the studied equation are oscillatory. Our results extend, include,
and correct some of the existing results. Examples are provided to illustrate the importance of the main results.

1. Introduction

The aim of this paper is to investigate the oscillatory behavior
of even order nonlinear neutral difference equation

Δ(𝑎𝑛Δ𝑚−1 (𝑥𝑛 + 𝑝𝑛𝑥𝛼𝑛−𝑘)) + 𝑞𝑛𝑥𝛽𝑛−ℓ = 0, 𝑛 ∈ N (𝑛0) (1)

whereN(𝑛0) = {𝑛0, 𝑛0 + 1, . . .}, 𝑛0 is a positive integer, subject
to the following conditions:

(𝐶1) 𝑚 ≥ 2 is an even integer, and 𝛼 and 𝛽 are ratio of odd
positive integers with 0 < 𝛼 ≤ 1 and 𝛽 ∈ (0,∞);

(𝐶2) {𝑎𝑛} is a positive increasing sequence of real number
for all 𝑛 ∈ N(𝑛0);(𝐶3) {𝑝𝑛} and {𝑞𝑛} are positive real sequences for all 𝑛 ∈
N(𝑛0) with 0 ≤ 𝑝𝑛 ≤ 𝑝 < 1;

(𝐶4) ℓ and 𝑘 are positive integers.
Let 𝜃 = max{𝑘, ℓ}. Under a solution of (1), we mean a real

sequence {𝑥𝑛} defined for 𝑛 ≥ 𝑛0 − 𝜃 and satisfying (1) for all𝑛 ∈ N(𝑛0). As usual a solution of (1) is said to be oscillatory if
it is neither eventually positive nor eventually negative; else it
is nonoscillatory.

In the past few years, there is a great interest in studying
the oscillatory and asymptotic behavior of solutions of higher
order neutral type difference equations, since such type

of equations naturally arises in the applications including
problems in population dynamics or in cobweb models in
economics and so on. The problem of finding sufficient
conditions which ensure that all solutions of the neutral type
difference equations are oscillatory has been investigated by
many authors; see, for example, [1–12] and the references cited
therein. In all the results the neutral term is linear and few
results are available when the neutral term is nonlinear; see
[13–21].

In [20], the authors considered (1) with 𝛼 ≥ 1 and 𝑎𝑛 ≡ 1
and established sufficient conditions for the oscillation of all
solutions. In view of these facts, in this paper our purpose is
to obtain sufficient conditions for the oscillation of solution
of (1) when

∞∑
𝑛=𝑛0

1𝑎𝑛 = ∞, (2)

or
∞∑
𝑛=𝑛0

1𝑎𝑛 < ∞. (3)

Thus the results presented here extend and generalize some
of the results in [13, 14, 16, 18, 19, 21], complement the results
in [20], and correct some of the results in [8].
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2. Some Preliminary Lemmas

In this section, we provide some lemmas which will be useful
in proving our main results. We begin with the following
lemma that can be found in [22, Theorem 41, page 39].

Lemma 1. If 0 < 𝛼 ≤ 1 and 𝑎 > 0, then 𝑎𝛼 ≤ 𝛼𝑎 + (1 − 𝛼).
Lemma2 (DiscreteKneser’sTheorem). Let {𝑢𝑛} be a sequence
of real number and 𝑢𝑛 > 0 with Δ𝑚𝑢𝑛 being of constant sign
eventually and not identically zero eventually.�en there exists
an integer 𝑗, 0 ≤ 𝑗 ≤ 𝑚, with (𝑚 + 𝑗) odd for Δ𝑚𝑢𝑛 ≤ 0 and(𝑚 + 𝑗) even for Δ𝑚𝑢𝑛 ≥ 0 and𝑁 ∈ N(𝑛0) such that

Δ𝑖𝑢𝑛 > 0 for all 𝑖 = 1, 2, . . . , 𝑗 (4)

and

(−1)𝑖+𝑗 Δ𝑖𝑢𝑛 > 0 for all 𝑖 = 𝑗 + 1, 𝑗 + 2, . . . , 𝑚 − 1 (5)

for all 𝑛 ≥ 𝑁.

Lemma 3. Let {𝑢𝑛} be defined for 𝑛 ∈ N(𝑛0) and 𝑢𝑛 > 0 withΔ𝑚𝑢𝑛 ≤ 0 for all 𝑛 ∈ N(𝑛0) and not identically zero.�en there
exists a large 𝑛1 ∈ N(𝑛0) such that

𝑢𝑛 ≥ (𝑛 − 𝑛1)𝑚−1(𝑚 − 1)! Δ𝑚−1𝑢2𝑚−𝑗−1𝑛, 𝑛 ≥ 𝑛1 (6)

where 𝑗 is defined in Lemma 2. Further, if {𝑢𝑛} is increasing,
then

𝑢𝑛 ≥ 1(𝑚 − 1)! ( 𝑛2𝑚−1)
𝑚−1 Δ𝑚−1𝑢𝑛, 𝑛 ≥ 2𝑚−1𝑛1. (7)

The proof of the last two lemmas can be found in [1].
Next we define the sequence {𝑧𝑛} by

𝑧𝑛 = 𝑥𝑛 + 𝑝𝑛𝑥𝛼𝑛−𝑘. (8)

Lemma 4. Assume condition (2) holds. Let {𝑥𝑛} be a positive
solution of (1). �en there is an integer 𝑛1 ∈ N(𝑛0) such that

𝑧𝑛 > 0,
Δ𝑧𝑛 > 0,

Δ𝑚−1𝑧𝑛 > 0,
Δ𝑚𝑧𝑛 ≤ 0

(9)

for all 𝑛 ≥ 𝑛1.
Proof. The proof is similar to that of Lemma 3 of [8], and
hence the details are omitted.

3. Oscillation Theorems

In this section, we present some sufficient conditions for the
oscillation of all solutions of (1). To simplify our notation, for

any positive real sequence {𝜌𝑛}which is decreasing to zero, we
set

𝑃 (𝑛) = (1 − 𝛼𝑝𝑛 − (1 − 𝛼) 𝑝𝑛𝜌𝑛 ) ,
𝑄 (𝑛) = 𝑞𝑛𝑃𝛽 (𝑛 − ℓ) ,

(10)

and

𝐴𝑛 = ∞∑
𝑠=𝑛

1𝑎𝑠 . (11)

Theorem 5. Let condition (2) hold. Assume that there is a
positive decreasing real sequence {𝜌𝑛} tending to zero such that𝑃(𝑛) is positive for all 𝑛 ≥ 𝑁 ∈ N(𝑛0). If

∞∑
𝑛=𝑁

𝑄𝑛 = ∞, (12)

then every solution of (1) is oscillatory.

Proof. Let {𝑥𝑛} be a nonoscillatory solution of (1). Without
loss of generality, we may assume that {𝑥𝑛} is a positive
solution of (1). Then there exists an integer 𝑛1 ∈ N(𝑛0) such
that 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0 and 𝑥𝑛−ℓ > 0 for all 𝑛 ≥ 𝑛1. From
Lemma 4, we have 𝑧𝑛 > 0, Δ𝑧𝑛 > 0, Δ𝑚−1𝑧𝑛 > 0 andΔ𝑚𝑧𝑛 ≤ 0 for all 𝑛 ≥ 𝑛1.

From the definition of 𝑧𝑛, we have
𝑥𝑛 = 𝑧𝑛 − 𝑝𝑛𝑥𝛼𝑛−𝑘 ≥ 𝑧𝑛 − 𝑝𝑛𝑧𝛼𝑛

≥ 𝑧𝑛 − 𝛼𝑝𝑛𝑧𝑛 − (1 − 𝛼) 𝑝𝑛
= (1 − 𝛼𝑝𝑛) 𝑧𝑛 − (1 − 𝛼) 𝑝𝑛,

(13)

where we have used Lemma 1. Since 𝑧𝑛 is positive and
increasing and 𝜌𝑛 is positive and decreasing to zero, there is
an integer 𝑛2 ≥ 𝑛1 such that

𝑧𝑛 ≥ 𝜌𝑛 for all 𝑛 ≥ 𝑛2. (14)

Using (14) in (13), one obtains

𝑥𝑛 ≥ (1 − 𝛼𝑝𝑛 − 1𝜌𝑛 (1 − 𝛼) 𝑝𝑛)𝑧𝑛 = 𝑃 (𝑛) 𝑧𝑛 (15)

and substituting this in (1) yields

Δ(𝑎𝑛Δ𝑚−1𝑧𝑛) + 𝑞𝑛𝑃𝛽 (𝑛 − ℓ) 𝑧𝛽𝑛−ℓ ≤ 0, 𝑛 ≥ 𝑛2. (16)

Now summing the last inequality from 𝑛2 to 𝑛 − 1, we obtain
𝑎𝑛Δ𝑚−1𝑧𝑛 − 𝑎𝑛2Δ𝑚−1𝑧𝑛2 +

𝑛−1∑
𝑠=𝑛2

𝑞𝑠𝑃𝛽 (𝑠 − ℓ) 𝑧𝛽𝑠−ℓ ≤ 0 (17)

for all 𝑛 ≥ 𝑛2. That is

𝑛−1∑
𝑠=𝑛2

𝑄𝑠𝑧𝛽𝑠−ℓ ≤ 𝑎𝑛2Δ𝑚−1𝑧𝑛2 − 𝑎𝑛Δ𝑚−1𝑧𝑛, 𝑛 ≥ 𝑛2. (18)
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Since Δ𝑧𝑛 > 0 and 𝑧𝑛 > 0 eventually, there exists a positive
constant 𝑀 such that 𝑧𝑛−ℓ ≥ 𝑀 for all 𝑛 ≥ 𝑛2. Using this and
the positivity of 𝑎𝑛Δ𝑚−1𝑧𝑛 in (18) and letting 𝑛 → ∞, we
obtain

∞∑
𝑛=𝑛1

𝑄𝑛 < ∞ (19)

which is a contradiction to (12).This completes the proof.

Remark 6. In the above theorem, we did not impose any
condition on 𝛽 and hence our result is more general than
some of the existing results in the literature.

In the following, we present other oscillation criteria
using Lemma 3.

Theorem 7. Let condition (2) hold. Assume that there is a
positive decreasing real sequence {𝜌𝑛} tending to zero such that𝑃(𝑛) is positive for all 𝑛 ≥ 𝑁 ∈ N(𝑛0). If

(i)

lim
𝑛→∞

inf
𝑛−1∑
𝑠=𝑛−ℓ

𝑄𝑠𝑎𝑠−ℓ (𝑠 − ℓ)
𝑚−1 > 1𝜆 ( ℓℓ + 1)

ℓ+1

(20)

for 𝛽 = 1,
(ii)

∞∑
𝑛=𝑁

𝑄𝑛𝑎𝛽𝑛−ℓ (𝑛 − ℓ)
𝛽(𝑚−1) = ∞ (21)

for 0 < 𝛽 < 1,
(iii) there exists a 𝛿 > (1/ℓ) log𝛽 such that

lim
𝑛→∞

inf [ 𝑄𝑛𝑎𝛽𝑛−ℓ (𝑛 − ℓ)
𝛽(𝑚−1) exp (𝑒−𝛿𝑛)] > 0 (22)

for 𝛽 > 1,
then every solution of (1) is oscillatory.

Proof. Let {𝑥𝑛} be a nonoscillatory solution of (1). Without
loss of generality, we may assume that there is an integer 𝑛1 ∈
N(𝑛0) such that 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0 and 𝑥𝑛−ℓ > 0 for all 𝑛 ≥ 𝑛1.
Now proceeding as in the proof of the previous theorem, we
obtain (16). That is,

Δ(𝑎𝑛Δ𝑚−1𝑧𝑛) + 𝑄𝑛𝑧𝛽𝑛−ℓ ≤ 0, 𝑛 ≥ 𝑛2. (23)

Since Δ𝑚−1𝑧𝑛 > 0, Δ𝑚𝑧𝑛 ≤ 0 and using Lemma 3, we have
from (23) that

Δ(𝑎𝑛Δ𝑚−1𝑧𝑛)
+ 𝑄𝑛 ( 1(𝑚 − 1)! (𝑛 − ℓ2𝑚−1 )

𝑚−1)𝛽 (Δ𝑚−1𝑧𝑛−ℓ)𝛽
≤ 0, 𝑛 ≥ 𝑛2.

(24)

Set 𝑤𝑛 = 𝑎𝑛Δ𝑚−1𝑧𝑛. Then 𝑤𝑛 > 0 and the last inequality
becomes

Δ𝑤𝑛 + 𝜆𝑄𝑛𝑎𝛽𝑛−ℓ (𝑛 − ℓ)𝛽(𝑚−1)𝑤𝛽𝑛−ℓ ≤ 0, 𝑛 ≥ 𝑛2, (25)

where 𝜆 = ((1/(𝑚 − 1)!)(1/2𝑚−1)𝑚−1)𝛽 > 0. Now, using
Lemma 1.1 of [20], we see that the equation

Δ𝑤𝑛 + 𝜆𝑄𝑛𝑎𝛽𝑛−ℓ (𝑛 − ℓ)
𝛽(𝑚−1)𝑤𝛽𝑛−ℓ = 0, 𝑛 ≥ 𝑛2 (26)

has an eventually positive solution.
(i) If (20) holds, then by Theorem 7.6.1 of [23], (26) with𝛽 = 1 has no positive solution, which is a contradiction.
(ii) If (21) holds, then byTheorem 1 of [24], (26) with 0 <𝛽 < 1 has no positive solution, which is a contradiction.
(iii) If (22) holds, then by Theorem 2 of [24], (26) with𝛽 > 1 has no positive solution which is a contradiction. This

completes the proof of the theorem.

Theorem 8. Assume that (3) and 𝛽 = 1 hold. Assume that
there is a positive decreasing real sequence {𝜌𝑛} tending to zero
such that 𝑃(𝑛) is positive for all 𝑛 ≥ 𝑁 ∈ N(𝑛0). If (20) holds
and

lim
𝑛→∞

sup
𝑛∑
𝑠=𝑁

(𝑀𝑄𝑠𝐴𝑠+1 (𝑠 − ℓ)𝑚−2 − 14𝑎𝑠𝐴𝑠+1)
= ∞

(27)

where𝑀 = (1/(𝑚−2)!)(1/2𝑚−2)𝑚−2, then every solution of (1)
either is oscillatory or tends to zero as 𝑛 → ∞.

Proof. Assume that (1) has a nonoscillatory solution {𝑥𝑛}
which is eventually positive such that lim𝑛→∞ 𝑥𝑛 ̸= 0. From
the definition of 𝑧𝑛, we have 𝑧𝑛 > 0 for all 𝑛 ≥ 𝑛1 ∈ N(𝑛0). By
virtue of (1) and Lemma 2 there are two possibilities, either

𝑧𝑛 > 0,
Δ𝑧𝑛 > 0,

Δ𝑚−1𝑧𝑛 > 0,
Δ𝑚𝑧𝑛 ≤ 0,

Δ (𝑎𝑛Δ𝑚−1𝑧𝑛) ≤ 0

(28)

or

𝑧𝑛 > 0,
Δ𝑧𝑛 > 0,

Δ𝑚−2𝑧𝑛 > 0,
Δ𝑚−1𝑧𝑛 < 0,

Δ (𝑎𝑛Δ𝑚−1𝑧𝑛) ≤ 0

(29)

for all 𝑛 ≥ 𝑛1 ≥ 𝑛0.
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Case (i). Suppose conditions (28) hold for all 𝑛 ≥ 𝑛1; then the
proof for this case is similar to that of Case (i) of Theorem 7
and hence the details are omitted.

Case (ii). Assume now that conditions (29) hold for all 𝑛 ≥ 𝑛1.
Since 𝑎𝑛Δ𝑚−1𝑧𝑛 is decreasing, then we have

𝑎𝑗Δ𝑚−1𝑧𝑗 ≤ 𝑎𝑛Δ𝑚−1𝑧𝑛 for 𝑗 ≥ 𝑛 ≥ 𝑛1. (30)

Dividing the last inequality by 𝑎𝑗 and summing the resulting
inequality from 𝑛 to 𝑗 − 1, we obtain

Δ𝑚−2𝑧𝑗 − Δ𝑚−2𝑧𝑛 ≤ 𝑎𝑛Δ𝑚−1𝑧𝑛
𝑗−1∑
𝑠=𝑛

1𝑎𝑠 . (31)

Letting 𝑗 → ∞, we obtain

0 ≤ Δ𝑚−2𝑧𝑛 + 𝐴𝑛𝑎𝑛Δ𝑚−1𝑧𝑛 for 𝑛 ≥ 𝑛1. (32)

Define

𝑤𝑛 = 𝐴𝑛 ( 1𝐴𝑛 +
𝑎𝑛Δ𝑚−1𝑧𝑛Δ𝑚−2𝑧𝑛 ) , 𝑛 ≥ 𝑛1 (33)

and then 𝑤𝑛 > 0, and using (16), we have

Δ𝑤𝑛 = − 1𝑎𝑛𝐴𝑛𝑤𝑛 + 𝐴𝑛+1(
1𝑎𝑛𝐴𝑛𝐴𝑛+1

+ Δ(𝑎𝑛Δ𝑚−1𝑧𝑛)Δ𝑚−2𝑧𝑛+1 − 𝑎𝑛Δ𝑚−1𝑧𝑛Δ𝑚−2𝑧𝑛Δ𝑚−2𝑧𝑛+1Δ
𝑚−1𝑧𝑛)

≤ 1 − 𝑤𝑛𝑎𝑛𝐴𝑛 − 𝐴𝑛+1𝑄𝑛 𝑧𝑛−ℓΔ𝑚−2𝑧𝑛+1
− 𝐴𝑛+1𝑎𝑛 (𝑎𝑛Δ𝑚−1𝑧𝑛Δ𝑚−2𝑧𝑛 )2

(34)

where we have used Δ𝑚−2𝑧𝑛 as positive and decreasing.
Now using (𝑤𝑛 − 1)/𝐴𝑛 = 𝑎𝑛Δ𝑚−1𝑧𝑛/Δ𝑚−2𝑧𝑛 in the above
inequality, it follows that

Δ𝑤𝑛 ≤ 1 − 𝑤𝑛𝑎𝑛𝐴𝑛 − 𝐴𝑛+1𝑄𝑛 𝑧𝑛−ℓΔ𝑚−2𝑧𝑛+1
− 𝐴𝑛+1𝑎𝑛𝐴2𝑛 (1 − 𝑤𝑛)2 , 𝑛 ≥ 𝑛1.

(35)

Now from Lemma 3, we obtain

𝑧𝑛−ℓ ≥ 1(𝑚 − 2)! (𝑛 − ℓ2𝑚−2 )
𝑚−2 Δ𝑚−2𝑧𝑛−ℓ. (36)

Since Δ𝑚−1𝑧𝑛 < 0 and 𝑛 − ℓ < 𝑛 + 1, we have
Δ𝑚−2𝑧𝑛+1 < Δ𝑚−2𝑧𝑛−ℓ. (37)

Combining the inequalities (35) and (37), we have

Δ𝑤𝑛 ≤ −𝑀𝐴𝑛+1𝑄𝑛 (𝑛 − ℓ)𝑚−2 + (1 − 𝑤𝑛)𝑎𝑛𝐴𝑛
− 𝐴𝑛+1𝑎𝑛𝐴2𝑛 (1 − 𝑤𝑛)

2 , 𝑛 ≥ 𝑛1,
(38)

where𝑀 = (1/(𝑚 − 2)!)(1/2𝑚−2)𝑚−2. Completing the square
in the above inequality, we have

Δ𝑤𝑛 ≤ −𝑀𝐴𝑛+1𝑄𝑛 (𝑛 − ℓ)𝑚−2
− 𝐴𝑛+1𝑎𝑛𝐴2𝑛 ((1 − 𝑤𝑛) −

12 𝐴𝑛𝐴𝑛+1)
2 + 14𝑎𝑛𝐴𝑛+1

(39)

or

Δ𝑤𝑛 ≤ −𝑀𝐴𝑛+1𝑄𝑛 (𝑛 − ℓ)𝑚−2 + 14𝑎𝑛𝐴𝑛+1 , 𝑛 ≥ 𝑛1. (40)

By summing the last inequality from 𝑛1 to 𝑛, we obtain
𝑛∑
𝑠=𝑛1

[𝑀𝐴𝑠+1𝑄𝑠 (𝑠 − ℓ)𝑚−2 − 14𝑎𝑠𝐴𝑠+1 ] ≤ 𝑤𝑛1 . (41)

Taking lim sup as 𝑛 → ∞, in the above inequality we obtain
a contradiction with (27). This completes the proof.

Theorem 9. Assume that (3) and 0 < 𝛽 < 1 hold. Further
assume that there is a positive decreasing real sequence {𝜌𝑛}
tending to zero such that 𝑃(𝑛) is positive for all 𝑛 ≥ 𝑁 ∈ N(𝑛0).
If (21) holds and

lim
𝑛→∞

sup
𝑛∑
𝑠=𝑁

(𝑀𝛽𝐴𝑠+1𝑄𝑠 (𝑠 − ℓ)𝛽(𝑚−2) − 𝑀1−𝛽14𝑎𝑠𝐴𝑠+1)
= ∞

(42)

for some constant 𝑀1 > 0, then every solution of (1) either is
oscillatory or tends to zero as 𝑛 → ∞.

Proof. Assume that {𝑥𝑛} is an eventually positive solution of
(1) such that lim𝑛→∞ 𝑥𝑛 ̸= 0. Proceeding as in the proof of
Theorem 8, we see that {𝑧𝑛} satisfies two possible cases (28)
and (29) for all 𝑛 ≥ 𝑛1.
Case (i). Suppose conditions (28) hold for all 𝑛 ≥ 𝑛1; then the
proof for this case is similar to that of Case (ii) of Theorem 7
and hence the details are omitted.

Case (ii). Assume now that conditions (29) hold for all 𝑛 ≥ 𝑛1;
proceeding as in Case (ii) of Theorem 8 we have

Δ𝑤𝑛 ≤ (1 − 𝑤𝑛)𝑎𝑛𝐴𝑛 − 𝐴𝑛+1 𝑄𝑛𝑧𝛽𝑛−ℓΔ𝑚−2𝑧𝑛+1
− 𝐴𝑛+1𝑎𝑛𝐴2𝑛 (1 − 𝑤𝑛)

2 , 𝑛 ≥ 𝑛1.
(43)

Now using (36) and (37) in (43), we obtain

Δ𝑤𝑛 ≤ −𝑀𝛽𝐴𝑛+1𝑄𝑛 (𝑛 − ℓ)𝛽(𝑚−2) (Δ𝑚−2𝑧𝑛−ℓ)𝛽−1
+ 14𝑎𝑛𝐴𝑛+1 .

(44)

Since {Δ𝑚−2𝑧𝑛} is positive and decreasing and 𝛽 < 1, there
is a constant 𝑀1 > 0 such that (Δ𝑚−2𝑧𝑛−ℓ)𝛽−1 ≥ 𝑀𝛽−11 for
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all 𝑛 ≥ 𝑛2 ≥ 𝑛1. Using this in (44) and then summing the
resulting inequality from 𝑛2 to 𝑛, we obtain

𝑛∑
𝑠=𝑛2

(𝑀𝛽𝐴𝑠+1𝑄𝑠 (𝑠 − ℓ)𝛽(𝑚−2) − 𝑀1−𝛽14𝑎𝑠𝐴𝑠+1)
≤ 𝑀1−𝛽1 𝑤𝑛2 < ∞.

(45)

Taking lim sup as 𝑛 → ∞, in the above inequality, we obtain
a contradiction with (42). This completes the proof.

Theorem 10. Assume that (3) and 𝛽 > 1 hold. Further assume
that there is a positive decreasing and sequence {𝜌𝑛} tending to
zero such that 𝑃(𝑛) is positive for all 𝑛 ≥ 𝑁 ∈ N(𝑛0). If (22)
holds and

lim
𝑛→∞

sup
𝑛∑
𝑠=𝑁

(𝑀𝛽𝐴𝛽𝑠+1𝑄𝑠 (𝑠 − ℓ)𝛽(𝑚−2) − 1
4𝑀𝛽−12 𝑎𝑠𝐴𝑠+1)

= ∞
(46)

for some constant 𝑀2 > 0, then every solution of (1) either is
oscillatory or tends to zero as 𝑛 → ∞.

Proof. Let us assume that {𝑥𝑛} is an eventually positive
solution of (1) such that lim𝑛→∞ 𝑥𝑛 ̸= 0. Proceeding as in
the proof ofTheorem 8, we see that {𝑧𝑛} satisfies two possible
cases (28) and (29) for all 𝑛 ≥ 𝑛1.
Case (i). If conditions (28) hold for all 𝑛 ≥ 𝑛1, then the proof is
similar to that of Case (iii) ofTheorem 7 and hence the details
are omitted.

Case (ii). Assume now that conditions (29) hold for all 𝑛 ≥ 𝑛1.
Proceeding as in Case (ii) of Theorem 9, we have

Δ𝑤𝑛 ≤ −𝑀𝛽𝐴𝑛+1𝑄𝑛 (𝑛 − ℓ)𝛽(𝑚−2) (Δ𝑚−2𝑧𝑛−ℓ)𝛽−1
+ 14𝑎𝑛𝐴𝑛+1 , 𝑛 ≥ 𝑛1.

(47)

Now from (32), one can see that Δ𝑚−2𝑧𝑛/𝐴𝑛 is nondecreasing
and hence there is a constant𝑀2 > 0 such that Δ𝑚−2𝑧𝑛/𝐴𝑛 ≥𝑀2 for all 𝑛 ≥ 𝑛1. Using this in (47) and since 𝛽 > 1, we have
Δ𝑤𝑛 ≤ −𝑀𝛽𝑀𝛽−12 𝐴𝛽𝑛+1𝑄𝑛 (𝑛 − ℓ)𝛽(𝑚−2) + 14𝑎𝑛𝐴𝑛+1 ,

𝑛 ≥ 𝑛1.
(48)

Summing the last inequality from 𝑛1 to 𝑛, we obtain
𝑛∑
𝑠=𝑛1

(𝑀𝛽𝐴𝛽𝑠+1𝑄𝑠 (𝑠 − ℓ)𝛽(𝑚−2) − 1
4𝑀𝛽−12 𝑎𝑠𝐴𝑠+1)

≤ 𝑤𝑛1𝑀𝛽−12 .
(49)

Taking lim sup as 𝑛 → ∞ in the above inequality, we get a
contradiction with (46). This completes the proof.

4. Examples

In this section, we present two examples to illustrate the
importance of the main results.

Example 1. Consider the neutral difference equation

Δ(𝑛Δ𝑚−1 (𝑥𝑛 + 1𝑛𝑥1/3𝑛−2)) + 1𝑛𝑥3𝑛−1 = 0, 𝑛 ≥ 2, (50)

where𝑚 ≥ 2 is an even integer. Here 𝑎𝑛 = 𝑛, 𝑝𝑛 = 1/𝑛, 𝑞𝑛 =1/𝑛, 𝑘 = 2, ℓ = 1, 𝛼 = 1/3, and 𝛽 = 3. By taking 𝜌𝑛 = 1/𝑛,
we see that 𝑃(𝑛) = (1/3)((𝑛 − 1)/𝑛) > 0 for all 𝑛 ≥ 2. Now
it is easy to see that the hypotheses (𝐶1) − (𝐶4) are satisfied.
Also condition (12) holds and therefore, byTheorem 5, every
solution of (50) is oscillatory.

Example 2. Consider the neutral difference equation

Δ(𝑛 (𝑛 + 1) Δ𝑚−1 (𝑥𝑛 + 1𝑛𝑥1/3𝑛−2)) + 𝑛𝑥1/3𝑛−1 = 0,
𝑛 ≥ 2,

(51)

where 𝑚 ≥ 2 is an even integer. Here 𝑎𝑛 = 𝑛(𝑛 + 1), 𝑝𝑛 =1/𝑛, 𝑞𝑛 = 𝑛, 𝑘 = 2, ℓ = 1, 𝛼 = 𝛽 = 1/3. By taking 𝜌𝑛 = 1/𝑛,
we see that 𝑃(𝑛) = (1/3)((𝑛 − 1)/𝑛) > 0 for all 𝑛 ≥ 2. Now
condition (21) becomes

∞∑
𝑛=2

𝑛 ((𝑛 − 2) / (𝑛 − 1))1/3
31/3𝑛1/3 (𝑛 − 1)1/3 (𝑛 − 1)(1/3)(𝑚−1)

= ∞∑
𝑛=2

𝑛2/3 (𝑛 − 2)1/331/3 (𝑛 − 1)(1/3)(𝑚−3) = ∞
(52)

since 𝑚 ≥ 2. Also a simple calculation shows that 𝐴𝑛 = 1/𝑛
and, using this, condition (42) becomes

lim
𝑛→∞

sup
𝑛∑
𝑠=2

(𝑀1/3 𝑠(𝑠 + 1) (𝑠 − 2)1/3 (𝑠 − 1)(1/3)(𝑚−3) − 𝑀2/314𝑠 )
= ∞.

(53)

Thus all conditions ofTheorem 9 are satisfied and hence every
solution of (51) either is oscillatory or tends to zero as 𝑛 →∞.

5. Conclusion

The results obtained in this paper extend and complement
some of the results reported in the literature. Further, The-
orem 8, where 𝛼 = 1, corrects the conclusion of Theorem 4
established in [8]. The results reported in the papers [3, 4, 6–
12, 17, 20] cannot be applicable to (50) and (51) to yield
this conclusion since these equations have sublinear neutral
terms. It would be interesting to improve Theorems 8, 9, and
10 so that all solutions are oscillatory instead of either being
oscillatory or tending to zero.
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