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In this paper, the notion ofL-contractions is introduced and a new fixed point theorem for such contractions is established.

1. Introduction and Preliminaries

Branciari [1] introduced the notion of generalized metric
spaces and obtained a generalization of the Banach contrac-
tion principle, whereafter many authors proved various fixed
point results in such spaces, for example, [2–8] and references
therein. Also, Suzuki et al. [9] and Abtahi et al. [10] studied
]-generalized metric spaces and proved the Banach and
Kannan contraction principles in such spaces, and Mitrović
et al. [11] introduced the notion of 𝑏](𝑠)-generalized metric
spaces and Banach and Reich contraction principles in such
spaces.

In particular, Jleli and Samet [12] introduced the notion
of 𝜃-contractions and gave a generalization of the Banach
contraction principle in generalized metric spaces, where𝜃 : (0,∞) → (1,∞) is a function satisfying the following
conditions:
(𝜃1) 𝜃 is nondecreasing;
(𝜃2) ∀{𝑡𝑛} ⊂ (0,∞),

lim
𝑛→∞

𝜃 (𝑡𝑛) = 1 ⇐⇒ lim
𝑛→∞

𝑡𝑛 = 0+; (1)

(𝜃3) ∃𝑟 ∈ (0, 1) ∧ 𝑙 ∈ (0,∞):
lim
𝑡→0+

𝜃 (𝑡) − 1
𝑡𝑟 = 𝑙. (2)

Also, Ahmad et al. [13] extended the result of Jleli and
Samet [12] to metric spaces by applying the following simple
condition (𝜃4) instead of (𝜃3).

(𝜃4) 𝜃 is continuous on (0,∞).
Recently, Khojasteh et al. [14] introduced the notion

of Z-contractions by defining the concept of simulation
functions. They unified some existing metric fixed point
results. Afterward, many authors ([15–19] and references
therein) obtained generalizations of the result of [14].

In the paper, we introduce the concept of a new type of
contraction maps, and we establish a new fixed point theorem
for such contraction maps in the setting of generalized metric
spaces.

LetL be the family of allmappings 𝜉 : [1,∞)×[1,∞) →
R such that

(𝜉1) 𝜉(1, 1) = 1;
(𝜉2) 𝜉(𝑡, 𝑠) < 𝑠/𝑡 ∀𝑠, 𝑡 > 1;
(𝜉3) for any sequence {𝑡𝑛}, {𝑠𝑛} ⊂ (1,∞) with 𝑡𝑛 ≤ 𝑠𝑛 ∀𝑛 =1, 2, 3, ⋅ ⋅ ⋅

lim
𝑛→∞

𝑡𝑛 = lim
𝑛→∞

𝑠𝑛 > 1 ⇒ lim
𝑛→∞

sup 𝜉 (𝑡𝑛, 𝑠𝑛) < 1. (3)

We say that 𝜉 ∈ L is aL-simulation function.
Note that 𝜉(𝑡, 𝑡) < 1 ∀𝑡 > 1.

Example 1. Let 𝜉𝑏, 𝜉𝑤, 𝜉 : [1,∞) × [1,∞) → R be functions
defined as follows, respectively:

(1) 𝜉𝑏(𝑡, 𝑠) = 𝑠𝑘/𝑡 ∀𝑡, 𝑠 ≥ 1, where 𝑘 ∈ (0, 1);
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(2) 𝜉𝑤(𝑡, 𝑠) = 𝑠/𝑡𝜙(𝑠) ∀𝑡, 𝑠 ≥ 1, where 𝜙 : [1,∞) →[1,∞) is nondecreasing and lower semicontinuous
such that 𝜙−1({1}) = 1;

𝜉 (𝑡, 𝑠) =
{{{{{{{{{{{

1 if (𝑠, 𝑡) = (1, 1) ,
𝑠
2𝑡 if 𝑠 < 𝑡,
𝑠𝜆
𝑡 otherwise,

(4)

∀𝑠, 𝑡 ≥ 1, where 𝜆 ∈ (0, 1).
Then 𝜉𝑏, 𝜉𝑤, 𝜉 ∈ L.

We recall the following definitions which are in [1].
Let 𝑋 be a nonempty set, and let 𝑑 : 𝑋 × 𝑋 → [0,∞)

be a map such that for all 𝑥, 𝑦 ∈ 𝑋 and for all distinct points𝑢, V ∈ 𝑋, each of them is different from 𝑥 and 𝑦:
(d1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦).
Then 𝑑 is called a generalized metric on 𝑋 and (𝑋, 𝑑) is

called a generalized metric space.
Let (𝑋, 𝑑) be a generalized metric space, let {𝑥𝑛} ⊂ 𝑋 be a

sequence, and 𝑥 ∈ 𝑋.
Then we say that

(1) {𝑥𝑛} is convergent to 𝑥 (denoted by lim𝑛→∞ 𝑥𝑛 = 𝑥)
if and only if lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥) = 0;

(2) {𝑥𝑛} is Cauchy if and only if lim𝑛,𝑚→∞ 𝑑(𝑥𝑛, 𝑥𝑚) = 0;
(3) (𝑋, 𝑑) is complete if and only if every Cauchy

sequence in𝑋 is convergent to some point in𝑋.

Let (𝑋, 𝑑) be a generalized metric space.
A map 𝑇 : 𝑋 → 𝑋 is called continuous at 𝑥 ∈ 𝑋 if, for

any 𝑉 ∈ 𝜏 containing 𝑇𝑥, there exists 𝑈 ∈ 𝜏 containing 𝑥
such that 𝑇𝑈 ⊂ 𝑉, where 𝜏 is the topology on 𝑋 induced by
the generalized metric 𝑑. That is,

𝜏 = {𝑈 ⊂ 𝑋 : ∀𝑥 ∈ 𝑈, ∃𝐵 ∈ 𝛽, 𝑥 ∈ 𝐵 ⊂ 𝑈} ,
𝛽 = {𝐵 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, ∀𝑟 > 0} ,
𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < 𝑟} .

(5)

If 𝑇 is continuous at each point 𝑥 ∈ 𝑋, then it is called
continuous.

Note that 𝑇 is continuous if and only if it is sequentially
continuous, i.e., lim𝑛→∞ 𝑑(𝑇𝑥𝑛, 𝑇𝑥) = 0 for any sequence{𝑥𝑛} ⊂ 𝑋 with lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥) = 0.
Remark 2 (see [6]). If 𝑑 is a generalized metric on 𝑋, then it
is not continuous in each coordinate.

Lemma 3 (see [20]). Let (𝑋, 𝑑) be a generalized metric space,
let {𝑥𝑛} ⊂ 𝑋 be a Cauchy sequence, and 𝑥, 𝑦 ∈ 𝑋. If there exists
a positive integer𝑁 such that

(1) 𝑥𝑛 ̸= 𝑥𝑚 ∀𝑛,𝑚 > 𝑁;

(2) 𝑥𝑛 ̸= 𝑥 ∀𝑛 > 𝑁;
(3) 𝑥𝑛 ̸= 𝑦 ∀𝑛 > 𝑁;
(4) lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥) = lim𝑛→∞ 𝑑(𝑥𝑛, 𝑦),
then 𝑥 = 𝑦.

2. Fixed Point Theorems

We denote by Θ the class of all functions 𝜃 : (0,∞) →(1,∞) such that conditions (𝜃1) and (𝜃2) hold.
A mapping 𝑇 : 𝑋 → 𝑋 is called L-contraction with

respect to 𝜉 if there exist 𝜃 ∈ Θ and 𝜉 ∈ L such that, for all𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0,
𝜉 (𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) , 𝜃 (𝑑 (𝑥, 𝑦))) ≥ 1. (6)

Note that if T isL-contraction with respect to 𝜉, then it is
continuous. In fact, let 𝑥 ∈ 𝑋 be a point and let {𝑥𝑛} ⊂ 𝑋 be
any sequence such that

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥) = 0+,
𝑑 (𝑇𝑥𝑛, 𝑇𝑥) > 0

∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ .
(7)

Then from (𝜃2) lim𝑛→∞ 𝜃(𝑑(𝑥𝑛, 𝑥)) = 1.
It follows from (6) and (𝜉2) that
1 ≤ 𝜉 (𝜃 (𝑑 (𝑇𝑥𝑛, 𝑇𝑥)) , 𝜃 (𝑑 (𝑥𝑛, 𝑥))) < 𝜃 (𝑑 (𝑥𝑛, 𝑥))𝜃 (𝑑 (𝑇𝑥𝑛, 𝑇𝑥)) , (8)

which implies

𝜃 (𝑑 (𝑇𝑥𝑛, 𝑇𝑥)) < 𝜃 (𝑑 (𝑥𝑛, 𝑥)) . (9)

Since 𝜃 is nondecreasing, we have
𝑑 (𝑇𝑥𝑛, 𝑇𝑥) < 𝑑 (𝑥𝑛, 𝑥) , (10)

and so

lim
𝑛→∞

𝑑 (𝑇𝑥𝑛, 𝑇𝑥) = 0. (11)

Hence 𝑇 is continuous.
Now, we prove our main result.

Theorem 4. Let (𝑋, 𝑑) be a complete generalized metric space,
and let 𝑇 : 𝑋 → 𝑋 be aL-contraction with respect to 𝜉.

	en 𝑇 has a unique fixed point, and for every initial point𝑥0 ∈ 𝑋, the Picard sequence {𝑇𝑛𝑥0} converges to the fixed point.
Proof. Firstly, we show uniqueness of fixed point whenever it
exists.

Assume that 𝑤 and 𝑢 are fixed points of 𝑇.
If 𝑢 ̸= 𝑧, then 𝑑(𝑤, 𝑢) > 0, and so it follows from (6) that

1 ≤ 𝜉 (𝜃 (𝑑 (𝑇𝑤, 𝑇𝑢)) , 𝜃 (𝑑 (𝑤, 𝑢)))
= 𝜉 (𝜃 (𝑑 (𝑤, 𝑢)) , 𝜃 (𝑑 (𝑤, 𝑢))) < 𝜃 (𝑑 (𝑤, 𝑢))

𝜃 (𝑑 (𝑤, 𝑢)) .
(12)
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Hence

𝜃 (𝑑 (𝑤, 𝑢)) < 𝜃 (𝑑 (𝑤, 𝑢)) (13)

which is a contradiction.
Hence 𝑤 = 𝑢, and fixed point of 𝑇 is unique.
Secondly, we prove existence of fixed point.
Let 𝑥0 ∈ 𝑋 be a point. Define a sequence {𝑥𝑛} ⊂ 𝑋 by𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0 ∀𝑛 = 1, 2, 3 ⋅ ⋅ ⋅ .
If 𝑥𝑛0 = 𝑥𝑛0+1 for some 𝑛0 ∈ N, then 𝑥𝑛0 is a fixed point of𝑇, and the proof is finished.
Assume that

𝑥𝑛−1 ̸= 𝑥𝑛 ∀𝑛 = 1, 2, 3 ⋅ ⋅ ⋅ . (14)

It follows from (6) and (14) that ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅
1 ≤ 𝜉 (𝜃 (𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) , 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)))
= 𝜉 (𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) , 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)))
< 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛))𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) .

(15)

Consequently, we obtain that

𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) < 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ (16)

which implies

𝑑 (𝑥𝑛, 𝑥𝑛+1) < 𝑑 (𝑥𝑛−1, 𝑥𝑛) ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (17)

Hence {𝑑(𝑥𝑛−1, 𝑥𝑛)} is a decreasing sequence, and so there
exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛) = 𝑟. (18)

We now show that 𝑟 = 0.
Assume that 𝑟 ̸= 0.
Then it follows from (𝜃2) that

lim
𝑛→∞

𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) ̸= 1, (19)

and so

lim
𝑛→∞

𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) > 1. (20)

Let 𝑠𝑛 = 𝜃(𝑑(𝑥𝑛−1, 𝑥𝑛)) and 𝑡𝑛 = 𝜃(𝑑(𝑥𝑛, 𝑥𝑛+1)) ∀𝑛 =1, 2, 3, ⋅ ⋅ ⋅ .
From (𝜉3) we obtain

1 ≤ lim
𝑛→∞

sup 𝜉 (𝑡𝑛, 𝑠𝑛) < 1 (21)

which is a contradiction.
Thus we have

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛) = 0 (22)

and so

lim
𝑛→∞

𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) = 1. (23)

We show that

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛+1) = 0. (24)

We consider three cases.

Case 1. 𝑥𝑛 ̸= 𝑥𝑛+2 ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ .
From (6) and (14) we obtain that ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅
1 ≤ 𝜉 (𝜃 (𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1)) , 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛+1)))
= 𝜉 (𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+2)) , 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛+1)))
< 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛+1))𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+2)) ,

(25)

and so

𝜃 (𝑑 (𝑥𝑛, 𝑥𝑛+2)) < 𝜃 (𝑑 (𝑥𝑛−1, 𝑥𝑛+1)) ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ (26)

which implies

𝑑 (𝑥𝑛, 𝑥𝑛+2) < 𝑑 (𝑥𝑛−1, 𝑥𝑛+1) ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (27)

Hence {𝑑(𝑥𝑛−1, 𝑥𝑛+1)} is decreasing.
In a manner similar to that which proved (22), we have

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛+1) = 0. (28)

Case 2. There exists 𝑛0 ≥ 1 such that 𝑥𝑛0 = 𝑥𝑛0+2.
From the first term to the 𝑛0 th term shall be removed,

and let 𝑥𝑛 = 𝑥𝑛0+𝑛 ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ .
Then 𝑥𝑛 ̸= 𝑥𝑛+2 ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . By Case 1, we have

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛+1) = 0. (29)

Case 3. 𝑥𝑛 = 𝑥𝑛+2 ∀𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ .
We have

𝑑 (𝑥𝑛−1, 𝑥𝑛+1) = 0 ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (30)

Hence

lim
𝑛→∞

𝑑 (𝑥𝑛−1, 𝑥𝑛+1) = 0. (31)

In all cases, (24) is satisfied.
Now, we show that {𝑥𝑛} is bounded.
If {𝑥𝑛} is not bounded, then there exists a subsequence{𝑥𝑛(𝑘)} of {𝑥𝑛} such that 𝑛1 = 1 and ∀𝑘 = 1, 2, 3, . . . , 𝑛(𝑘 + 1)

is the minimum integer greater than 𝑛(𝑘) with
𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘)) > 1,

𝑑 (𝑥𝑙, 𝑥𝑛(𝑘)) ≤ 1 (32)

for 𝑛(𝑘) ≤ 𝑙 ≤ 𝑛(𝑘 + 1) − 1.
Then we have

1 < 𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘))
≤ 𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘+1)−2) + 𝑑 (𝑥𝑛(𝑘+1)−2, 𝑥𝑛(𝑘+1)−1)
+ 𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘))

≤ 𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘+1)−2) + 𝑑 (𝑥𝑛(𝑘+1)−2, 𝑥𝑛(𝑘+1)−1) + 1.
(33)
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By letting 𝑘 → ∞ in the above, we obtain

lim
𝑘→∞

𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘)) = 1. (34)

By using (22), (34), and condition (d3), we deduce that

lim
𝑘→∞

𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1) = 1. (35)

It follows from (𝜃2), (34), and (35) that

lim
𝑘→∞

𝜃 (𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘))) > 1, (36)

lim
𝑛→∞

𝜃 (𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1)) > 1. (37)

From (6) and (32) we infer that

1 ≤ 𝜉 (𝜃 (𝑑 (𝑇𝑥𝑛(𝑘+1)−1, 𝑇𝑥𝑛(𝑘)−1)) ,
𝜃 (𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1))) = 𝜉 (𝜃 (𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘))) ,
𝜃 (𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1))) < 𝜃 (𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1))

𝜃 (𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘)))
(38)

which implies

𝜃 (𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘))) < 𝜃 (𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1)) . (39)

Let

𝑠𝑛 = 𝜃(𝑑 (𝑥𝑛(𝑘+1)−1, 𝑥𝑛(𝑘)−1) ,
𝑡𝑛 = 𝜃 (𝑑 (𝑥𝑛(𝑘+1), 𝑥𝑛(𝑘))) ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (40)

Then 𝑡𝑘 < 𝑠𝑘 ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ and lim𝑘→∞ 𝑡𝑘 =
lim𝑘→∞ 𝑠𝑘 > 1.

It follows from (𝜉3) that
1 ≤ lim
𝑘→∞

sup 𝜉 (𝑡𝑘, 𝑠𝑘) < 1 (41)

which is a contradiction.
Thus {𝑥𝑛} is bounded.
Now, we show that {𝑥𝑛} is a Cauchy sequence.
Let

𝑀𝑛 = sup {𝑑 (𝑥𝑖, 𝑥𝑗) : 𝑖, 𝑗 ≥ 𝑛} . (42)

Clearly,

0 ≤ 𝑀𝑛+1 ≤ 𝑀𝑛 < ∞ ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ (43)

and so there exists𝑀 ≥ 0 such that

lim
𝑛→∞

𝑀𝑛 = 𝑀. (44)

Assume that𝑀 > 0.
It follows from (42) that ∀𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ there exist𝑛(𝑘),𝑚(𝑘) ≥ 𝑘 with

𝑀𝑘 − 1
𝑘 < 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤ 𝑀𝑘. (45)

So
lim
𝑘→∞

𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) = lim
𝑘→∞

𝑀𝑘 = 𝑀. (46)

It follows from (6) and (14) that

𝜉 (𝜃 (𝑑 (𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)) , 𝜃 (𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)))
= 𝜉 (𝜃 (𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) , 𝜃 (𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)))
< 𝜃 (𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1))

𝜃 (𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)))
(47)

which implies

𝜃 (𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) < 𝜃 (𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)) . (48)

Hence we have
𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) < 𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)

≤ 𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) + 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
+ 𝑑 (𝑥𝑛(𝑘), 𝑥𝑛(𝑘)−1) .

(49)

Letting 𝑘 → ∞ in the above inequality, we obtain

lim
𝑛→∞

𝑑 (𝑥𝑚(𝑘)−1𝑥𝑛(𝑘)−1) = 𝑀. (50)

Let
𝑠𝑘 = 𝜃 (𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)) ,
𝑡𝑘 = 𝜃 (𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) ∀𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ . (51)

Then 𝑡𝑘 < 𝑠𝑘 ∀𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ . Since𝑀 > 0,
lim
𝑘→∞

𝑡𝑘 = lim
𝑘→∞

𝑠𝑘 > 1. (52)

Thus we have
1 ≤ lim
𝑘→∞

sup 𝜉 (𝑡𝑘, 𝑠𝑘) < 1 (53)

which is a contradiction.
Hence𝑀 = 0, and hence {𝑥𝑛} is a Cauchy sequence.
Since 𝑋 is complete, there exists 𝑧 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑧) = 0. (54)

Because 𝑇 is continuous,
lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑇𝑧) = lim
𝑛→∞

𝑑 (𝑇𝑥𝑛−1, 𝑇𝑧) = 0. (55)

By Lemma 3, 𝑧 = 𝑇𝑧.
We give an example to illustrate Theorem 4.

Example 5. Let 𝑋 = {1, 2, 3, 4} and define 𝑑 : 𝑋 × 𝑋 →[0,∞) as follows:
𝑑 (1, 2) = 𝑑 (2, 1) = 3,
𝑑 (2, 3) = 𝑑 (3, 2) = 𝑑 (1, 3) = 𝑑 (3, 1) = 1,
𝑑 (1, 4) = 𝑑 (4, 1) = 𝑑 (2, 4) = 𝑑 (4, 2) = 𝑑 (3, 4)

= 𝑑 (4, 3) = 4,
𝑑 (𝑥, 𝑥) = 0 ∀𝑥 ∈ 𝑋.

(56)
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Then (𝑋, 𝑑) is a complete generalized metric space, but
not a metric space (see [21]).

Define a map 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 = {{{
3 (𝑥 ̸= 4) ,
1 (𝑥 = 4) . (57)

And define a function 𝜃 : (0,∞) → (1,∞) by
𝜃 (𝑡) = 𝑒𝑡. (58)

We now show that 𝑇 is a L-contraction with respect to
𝜉𝑏, where 𝜉𝑏(𝑡, 𝑠) = 𝑠𝑘/𝑡 ∀𝑡, 𝑠 ≥ 1, 𝑘 = 1/2.

We have

𝑑 (𝑇𝑥, 𝑇𝑦) =
{{{{{{{{{

𝑑 (1, 3) = 1 (𝑥 = 4, 𝑦 ̸= 4) ,
𝑑 (1, 1) = 0 (𝑥 = 4, 𝑦 = 4) ,
𝑑 (3, 3) = 0 (𝑥 ̸= 4, 𝑦 ̸= 4)

(59)

so

𝑑 (𝑇𝑥, 𝑇𝑦) > 0 ⇐⇒ 𝑥 = 4, 𝑦 ̸= 4. (60)

We have, for 𝑥 = 4 and 𝑦 ̸= 4,
𝑑 (𝑥, 𝑦) = 4,

𝑑 (𝑇𝑥, 𝑇𝑦) = 1. (61)

We deduce that, for all 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0,
𝜉𝑏 (𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) , 𝜃 (𝑑 (𝑥, 𝑦))) = [𝜃 (𝑑 (𝑥, 𝑦))]𝑘

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦))

= [𝑒4]1/2
𝑒1 = 𝑒 > 1.

(62)

Thus all hypotheses of Theorem 4 are satisfied, and 𝑇 has
a fixed point 𝑥∗ = 3.

Note that Banach’s contraction principle is not satisfied
with the usual metric 𝜌(𝑥, 𝑦) = |𝑥 − 𝑦| ∀𝑥, 𝑦 ∈ 𝑋. In fact, if𝑥 = 2, 𝑦 = 4, then

𝜌 (𝑇2, 𝑇4) ≤ 𝑘𝜌 (2, 4) , 𝑘 ∈ (0, 1) (63)

which implies

𝑘 ≥ 1. (64)

Also, note that the 𝜃-contraction condition [13] does not
hold.

Let 𝜃(𝑡) = 𝑒𝑡, ∀𝑡 > 0.
Then 𝜃(𝑡) satisfies conditions (𝜃1), (𝜃2), and (𝜃4).
If

𝜃 (𝜌 (𝑇2, 𝑇4)) ≤ [𝜃 (𝜌 (2, 4))]𝑘 , where 𝑘 ∈ (0, 1) (65)

then

𝑒2 ≤ [𝑒2]𝑘 (66)

and so 𝑘 ≥ 1. Hence 𝑇 is not 𝜃-contraction map.
By taking 𝜉 = 𝜉𝑏 in Theorem 4, we obtain Corollary 6.

Corollary 6. Let (𝑋, 𝑑) be a complete generalized metric
space, and let 𝑇 : 𝑋 → 𝑋 be a mapping such that for all𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜃 (𝑑 (𝑥, 𝑦))𝑘 (67)

where 𝜃 ∈ Θ and 𝑘 ∈ (0, 1).
	en 𝑇 has a unique fixed point.

Remark 7. Corollary 6 is a generalization of Theorem 2.1 of
[12] without condition (𝜃3) and Theorem 2.2 of [13] without
condition (𝜃4).

By taking 𝜉 = 𝜉𝑤 in Theorem 4, we obtain Corollary 8.

Corollary 8. Let (𝑋, 𝑑) be a complete generalized metric
space, and let 𝑇 : 𝑋 → 𝑋 be a mapping such that for all𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜃 (𝑑 (𝑥, 𝑦))
𝜙 (𝜃 (𝑑 (𝑥, 𝑦))) (68)

where 𝜃 ∈ Θ and 𝜙 : [1,∞) → [1,∞) is nondecreasing and
lower semicontinuous such that 𝜙−1({1}) = 1.

	en 𝑇 has a unique fixed point.

Corollary 9. Let (𝑋, 𝑑) be a complete generalized metric
space, and let 𝑇 : 𝑋 → 𝑋 be a mapping such that for all𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜑 (𝑑 (𝑥, 𝑦)) (69)

where 𝜑 : [0,∞) → [0,∞) is nondecreasing and lower
semicontinuous such that 𝜑−1({0}) = 0.

	en 𝑇 has a unique fixed point.

Proof. Condition (69) implies 𝑇 is continuous.
Let 𝜃(𝑡) = 𝑒𝑡, ∀𝑡 > 0.
From (69) we have that, for all 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) >0,
𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) = 𝑒𝑑(𝑇𝑥,𝑇𝑦) ≤ 𝑒𝑑(𝑥,𝑦)−𝜑(𝑑(𝑥,𝑦)) = 𝑒𝑑(𝑥,𝑦)

𝑒𝜑(𝑑(𝑥,𝑦)) . (70)

Let 𝜑(𝑡) = ln(𝜙(𝜃(𝑡))), ∀𝑡 ≥ 0, where 𝜙 : [1,∞) →[1,∞) is nondecreasing and lower semicontinuous such that𝜙−1({1}) = 1.
Then 𝜑 is nondecreasing and lower semicontinuous, and

𝜑 (𝑡) = 0 ⇐⇒ 𝜙 (𝜃 (𝑡)) = 1 ⇐⇒ 𝜃 (𝑡) = 𝑒𝑡 = 1 ⇐⇒ 𝑡 = 0. (71)

It follows from (70) that, for all 𝑥, 𝑦 ∈ 𝑋with 𝑑(𝑇𝑥, 𝑇𝑦) >0,
𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜃 (𝑑 (𝑥, 𝑦))

𝑒ln(𝜙(𝜃(𝑑(𝑥,𝑦)))) =
𝜃 (𝑑 (𝑥, 𝑦))

𝜙 (𝜃 (𝑑 (𝑥, 𝑦))) . (72)

By Corollary 8, 𝑇 has a unique fixed point.

By taking 𝜃(𝑡) = 2 − (2/𝜋) arctan(1/𝑡𝛼), where 𝛼 ∈(0, 1), 𝑡 > 0 in Corollary 8, we obtain the following result.

Corollary 10. Let (𝑋, 𝑑) be a complete generalized metric
space, and let 𝑇 : 𝑋 → 𝑋 be a mapping such that for all𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑇𝑥, 𝑇𝑦) > 0
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2 − 2
𝜋 arctan( 1

[𝑑 (𝑇𝑥, 𝑇𝑦)]𝛼) ≤ 2 − (2/𝜋) arctan (1/ [𝑑 (𝑥, 𝑦)]𝛼)
𝜙 (2 − (2/𝜋) arctan (1/ [𝑑 (𝑥, 𝑦)]𝛼)) (73)

where 𝛼 ∈ (0, 1) and 𝜙 : [1,∞) → [1,∞) is nondecreasing
and lower semicontinuous such that 𝜙−1({1}) = 1.

	en 𝑇 has a unique fixed point.
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contractiond in b](s)-metric spaces,” Journal of Fixed Point
	eory and Applications, vol. 19, no. 4, pp. 3087–3095, 2017.

[12] M. Jleli and B. Samet, “A new generalization of the Banach
contraction principle,” Journal of Inequalities and Applications,
vol. 2014, no. 1, article no. 38, 8 pages, 2014.

[13] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, and Y.-O. Yang,
“Fixed point results for generalized 𝜃-contractions,” Journal of
Nonlinear Sciences and Applications. JNSA, vol. 10, no. 5, pp.
2350–2358, 2017.

[14] F. Khojasteh, S. Shukla, and S. Radenovic, “A new approach
to the study of fixed point theorems via simulation functions,”
Filomat, vol. 29, no. 6, pp. 1189–1194, 2015.

[15] H. H. Alsulami, E. Karapinar, F. Khojasteh, and A.-F. Roldán-
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