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We give a necessary and sufficient condition for the boundedness of the Bergman fractional operators.

1. Introduction and Statement of the Result

We are interested in this note in the boundedness of the
Bergman fractional operator. The Bergman fractional opera-
tor has been shown recently to be quite useful in understand-
ing off-diagonal questions for the Bergman operator (see
[1, 2]). Our aim here is to provide a necessary and sufficient
condition for the boundedness of this operator. In the next
lines, we provide some notions and definitions needed in the
sequel.

Let H be the upper-half plane, that is, the set {𝑧 = 𝑥 +
𝑖𝑦 ∈ C : 𝑦 > 0}. We denote by 𝐿𝑝𝛼(H) the Lebesgue space𝐿𝑝(H, 𝑦𝛼𝑑𝑥𝑑𝑦), that is, the space of all functions 𝑓 such that

𝑓𝑝𝑝,𝛼 fl ∫
H

𝑓 (𝑥 + 𝑖𝑦)𝑝 𝑦𝛼𝑑𝑥 𝑑𝑦 < ∞. (1)

For 𝛼 > −1 and 1 < 𝑝 < ∞, the weighted Bergman
space 𝐴𝑝𝛼(H) is the subspace of 𝐿𝑝𝛼(H) consisting of analytic
functions. It is well known that the Bergman space 𝐴2𝛼(H)
(−1 < 𝛼 < ∞) is a reproducing kernel Hilbert space with
kernel 𝐾𝛼𝑧 (𝑤) = 𝐾𝛼(𝑧, 𝑤) = 1/(𝑧 − 𝑤)2+𝛼. That is, for any
𝑓 ∈ 𝐴2𝛼(H), the following representation holds:

𝑓 (𝑤) = 𝑃𝛼𝑓 (𝑤) = ⟨𝑓,𝐾𝛼𝑤⟩𝛼
= ∫

H

𝑓 (𝑧)𝐾𝛼 (𝑤, 𝑧) 𝑑𝑉𝛼 (𝑧) ,
(2)

where, for simplicity, we write 𝑑𝑉𝛼(𝑥 + 𝑖𝑦) = 𝑦𝛼𝑑𝑥𝑑𝑦. The
positive Bergman operator 𝑃+𝛼 is defined by

𝑃+𝛼𝑓 (𝑤) = ∫
H

𝑓 (𝑧) 𝐾𝛼 (𝑤, 𝑧) 𝑑𝑉𝛼 (𝑧) . (3)

Note that the boundedness of𝑃+𝛼 implies the boundedness
of 𝑃𝛼. It is an elementary exercise to prove that the Bergman
projection 𝑃𝛼 is bounded on 𝐿𝑝𝛼(H) if and only if 1 < 𝑝 < ∞
(see, e.g., [3]).

The fractional Bergman operatorP𝛼,𝛾 is defined by

P𝛼,𝛾𝑓 (𝑤) = ∫
H

𝑓 (𝑧)
(𝑤 − 𝑧)2+𝛼−𝛾 𝑑𝑉𝛼 (𝑧) , (4)

where 0 ≤ 𝛾 < 2 + 𝛼. The corresponding positive operator
will be denoted by P+𝛼,𝛾 and can be seen as the upper-half
space analogue of the Riesz potential also known as fractional
operator (see [4]). Note also that, for 𝛾 = 0, P𝛼,𝛾 is just the
Bergman projection.

We have the following necessary and sufficient condition
for the boundedness ofP𝛼,𝛾 andP+𝛼,𝛾.

Theorem 1. Let 𝛼 > −1, 0 ≤ 𝛾 < 2 + 𝛼, and 1 < 𝑝 ≤ 𝑞 < ∞.
Then the following conditions are equivalent:

(a) The operator P𝛼,𝛾 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to𝐿𝑞(H, 𝑑𝑉𝛼).
(b) The operator P+𝛼,𝛾 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to𝐿𝑞(H, 𝑑𝑉𝛼).
(c) The following relation holds:

1
𝑝 −

1
𝑞 =

𝛾
2 + 𝛼 . (5)

Unlike the case of the unit ball (see [5]), the above result
can not be deduced from the boundedness of the families of
Bergman-type operators considered in [2, 6].
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2 Abstract and Applied Analysis

We remark that the boundedness of the operator P+𝛼,𝛾
from 𝐿𝑝(H, 𝑑𝑉𝛼) to 𝐿𝑞(H, 𝑑𝑉𝛼) implies the boundedness of
𝑃+𝛼 from 𝐿𝑝(H, 𝑑𝑉𝛼) to 𝐿𝑞(H, 𝑑𝑉𝛽), where 𝛽 = 𝑞𝛾 + 𝛼. It
follows that we have the following.

Proposition 2. Let𝛼 > −1, 0 ≤ 𝛾 < 2+𝛼, and 1 < 𝑝 ≤ 𝑞 < ∞.
Then the following conditions are equivalent:

(a) The operator 𝑃𝛼 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to
𝐿𝑞(H, 𝑑𝑉𝑞𝛾+𝛼).

(b) The operator 𝑃+𝛼 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to
𝐿𝑞(H, 𝑑𝑉𝑞𝛾+𝛼).

(c) The following relation holds:
1
𝑝 −

1
𝑞 =

𝛾
2 + 𝛼 . (6)

For the proof of the sufficient part, we will use the off-
diagonal Schur test due to Okikiolu [7].

2. Proof of Theorem 1 and Proposition 2

We start by recalling the following easy fact (see [3]).

Lemma 3. Let 𝛼 be real. Then the function 𝑓(𝑧) = ((𝑧 +
𝑖𝑡)/𝑖)−𝛼, with 𝑡 > 0, belongs to 𝐿𝑝(H, 𝑑𝑉]), if and only if ] > −1
and 𝛼 > (] + 2)/𝑝. In this case,

𝑓𝑝𝑝,] = 𝐶𝛼,𝑝,𝑞𝑡−𝑝𝛼+]+2. (7)

The proof of the sufficient parts in our results is based on
the following off-diagonal Schur-type test.

Lemma 4 (Okikiolu [7]). Let 𝑝, 𝑟, 𝑞 be positive numbers such
that 1 < 𝑝 ≤ 𝑟 and 1/𝑝 + 1/𝑞 = 1. Let 𝐾(𝑥, 𝑦) be a complex-
valued function measurable on 𝑋 × 𝑌 and suppose that there
exist 0 < 𝑡 ≤ 1, measurable functions 𝜑1 : 𝑋 → (0,∞) and
𝜑2 : 𝑌 → (0,∞), and nonnegative constants𝑀1 and𝑀2 such
that

∫
𝑋

𝐾 (𝑥, 𝑦)𝑡𝑞 𝜑𝑞1 (𝑦) 𝑑𝜇 (𝑦) ≤ 𝑀𝑞1𝜑𝑞2 (𝑥) a.e on𝑌,

∫
𝑌

𝐾 (𝑥, 𝑦)(1−𝑡)𝑟 𝜑𝑟2 (𝑥) 𝑑] (𝑥) ≤ 𝑀𝑟2𝜑𝑟1 (𝑦) a.e on𝑋.
(8)

If 𝑇 is given by

𝑇𝑓 (𝑥) = ∫
𝑋
𝑓 (𝑦)𝐾 (𝑥, 𝑦) 𝑑𝜇 (𝑦) , (9)

where 𝑓 ∈ 𝐿𝑝(𝑋, 𝑑𝜇), then 𝑇 : 𝐿𝑝(𝑋, 𝑑𝜇) → 𝐿𝑟(𝑌, 𝑑]) is
bounded and for each 𝑓 ∈ 𝐿𝑝(𝑋, 𝑑𝜇),

𝑇𝑓𝐿𝑟(𝑌,𝑑]) ≤ 𝑀1𝑀2 𝑓𝐿𝑝(𝑋,𝑑𝜇) . (10)

We prove the following.

Lemma 5. Let 𝛼 > −1, 0 ≤ 𝛾 < 2 + 𝛼, and 1 ≤ 𝑝 ≤ 𝑞 < ∞. If
the operatorP𝛼,𝛾 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to 𝐿𝑞(H, 𝑑𝑉𝛼),
then

1
𝑝 −

1
𝑞 =

𝛾
2 + 𝛼 . (11)

Proof. We assume that the operator P𝛼,𝛾 is bounded from
𝐿𝑝(H, 𝑑𝑉𝛼) to 𝐿𝑞(H, 𝑑𝑉𝛼). Let 𝑅 > 0 and associate to any
function 𝑓, the function 𝑓𝑅 defined by 𝑓𝑅(𝑧) = 𝑓(𝑅𝑧). Then
it is easy to see that

𝑓𝑅𝑝,𝛼 = 𝑅−(2+𝛼)/𝑝 𝑓𝑝,𝛼 . (12)

It follows also from an easy change of variables that

P𝛼,𝛾𝑓𝑅 (𝑤) = 𝑅−𝛾P𝛼𝑓 (𝑅𝑤) . (13)

Hence
P𝛼,𝛾𝑓𝑅𝑞,𝛼 = 𝑅−𝛾−(2+𝛼)/𝑞

P𝛼,𝛾𝑓𝑞,𝛼 . (14)

It follows from the above considerations and the boundedness
of P𝛼,𝛾 that there exists a constant 𝐶 > 0 such that, for any
𝑓 ∈ 𝐿𝑝(H, 𝑑𝑉𝛼),

𝑅−𝛾−(2+𝛼)/𝑞 P𝛼,𝛾𝑓𝑞,𝛼 =
P𝛼,𝛾𝑓𝑅𝑞,𝛼 ≤ 𝐶 𝑓𝑅𝑝,𝛼

= 𝑅−(2+𝛼)/𝑝 𝑓𝑝,𝛼 .
(15)

That is,

𝑅−𝛾−(2+𝛼)/𝑞+(2+𝛼)/𝑝 P𝛼,𝛾𝑓𝑞,𝛼 ≤ 𝐶 𝑓𝑝,𝛼 . (16)

As the latter holds for any 𝑓 ∈ 𝐿𝑝(H, 𝑑𝑉𝛼) and any 𝑅 > 0, we
must have

−𝛾 − 2 + 𝛼𝑞 + 2 + 𝛼𝑝 = 0. (17)

That is, 1/𝑝 − 1/𝑞 = 𝛾/(2 + 𝛼).
The following is obtained as above.

Lemma 6. Let 𝛼 > −1, 0 ≤ 𝛾 < 2 + 𝛼, and 1 ≤ 𝑝 ≤ 𝑞 < ∞. If
the operator𝑃𝛼 is bounded from𝐿𝑝(H, 𝑑𝑉𝛼) to𝐿𝑞(H, 𝑑𝑉𝑞𝛾+𝛼),
then

1
𝑝 −

1
𝑞 =

𝛾
2 + 𝛼 . (18)

We next prove that condition (5) is sufficient for the
boundedness of the fractional operator in the case 𝑝 > 1.
Lemma 7. Let 𝛼 > −1, 0 ≤ 𝛾 < 2 + 𝛼, and 1 < 𝑝 ≤ 𝑞 < ∞.
Assume that

1
𝑝 −

1
𝑞 =

𝛾
2 + 𝛼 . (19)

Then the operator P+𝛼,𝛾 is bounded from 𝐿𝑝(H, 𝑑𝑉𝛼) to
𝐿𝑞(H, 𝑑𝑉𝛼).
Proof. We are assuming that 1/𝑝 − 1/𝑞 = 𝛾/(2 + 𝛼).

Let us put

𝜔 = − (2 + 𝛼) ( 1𝑝 +
1
𝑞) = − (2 + 𝛼) (1 −

𝛾
2 + 𝛼) . (20)
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Clearly, 𝜔 < 0. As 𝛼 + 1 > 0, we can find two numbers 𝑠 and
𝑟 such that

0 < 𝑟 < 𝛼 + 1𝑞 ,

0 < 𝑠 < 𝛼 + 1𝑝
with 𝑟 > 𝑠.

(21)

Let

𝑡 fl − (𝛼 + 2) /𝑝 + 𝑠 − 𝑟
𝜔 (22)

so that

1 − 𝑡 = 𝑟 − 𝑠 − (𝛼 + 2) /𝑞𝜔 . (23)

We observe that the operatorP+𝛼,𝛾 can be represented as

P
+
𝛼,𝛾𝑓 (𝑧) = ∫

H

𝑓 (𝑤)𝐾 (𝑧, 𝑤) 𝑑𝑉𝛼 (𝑤) , (24)

where𝐾(𝑧, 𝑤) = 1/|𝑧 − 𝑤|2+𝛼−𝛾. Let us define
𝜑1 (𝑤) = (I𝑤)−𝑠 ,
𝜑2 (𝑤) = (I𝑤)−𝑟 .

(25)

Applying Okikiolu’s test toP+𝛼,𝛾 we first obtain

∫
H

𝐾 (𝑧, 𝑤)𝑡𝑝 𝜑𝑝1 (𝑤) (I𝑤)𝛼 𝑑𝑉 (𝑤)

= ∫
H

V−𝑠𝑝
+𝛼

|𝑧 − 𝑤|𝑡(2+𝛼−𝛾)𝑝 𝑑𝑉 (𝑤) .
(26)

From our choice of 𝑠 we have −𝑠𝑝 + 𝛼 > −1. Using the
definitions of 𝜔 and 𝑡, we obtain

𝑡 (2 + 𝛼 − 𝛾) 𝑝 + 𝑠𝑝 − 𝛼 − 2
= (2 + 𝛼) (1 − 𝛾

2 + 𝛼) 𝑡𝑝
 + 𝑠𝑝 − 𝛼 − 2

= −𝜔𝑡𝑝 + 𝑠𝑝 − 𝛼 − 2
= (𝛼 + 2𝑝 + 𝑟 − 𝑠)𝑝 + 𝑠𝑝 − 𝛼 − 2 = 𝑟𝑝 > 0.

(27)

Hence we obtain from the above observations and Lemma 3
that

∫
H

𝐾 (𝑧, 𝑤)𝑡𝑝 𝜑𝑝1 (𝑤) (I𝑤)𝛼 𝑑𝑉 (𝑤) = 𝐶𝑦−𝑟𝑝

= 𝐶𝜑2 (𝑧)𝑝 .
(28)

In the same way, we first have

∫
H

𝐾 (𝑧, 𝑤)(1−𝑡)𝑞 𝜑𝑞2 (𝑧) (I𝑧)𝛼 𝑑𝑉 (𝑧)

= ∫
H

(I𝑧)−𝑟𝑞+𝛼
|𝑧 − 𝑤|(1−𝑡)(2+𝛼−𝛾)𝑞 𝑑𝑉 (𝑧) .

(29)

From our choice of 𝑠, we have −𝑟𝑞 + 𝛼 > −1. From the
definition of 𝜔 and 1 − 𝑡, we obtain

(1 − 𝑡) (2 + 𝛼 − 𝛾) 𝑞 + 𝑟𝑞 − 𝛼 − 2
= −𝜔 (1 − 𝑡) 𝑞 + 𝑟𝑞 − 𝛼 − 2
= (2 + 𝛼𝑞 + 𝑠 − 𝑟) 𝑞 + 𝑟𝑞 − 𝛼 − 2 = 𝑠𝑞 > 0.

(30)

Hence we obtain from the above observations and Lemma 3
that

∫
H

𝐾 (𝑧, 𝑤)(1−𝑡)𝑞 𝜑𝑞2 (𝑧) (I𝑧)𝛼 𝑑𝑉 (𝑤) = 𝐶 (I𝑤)−𝑠𝑞

= 𝐶𝜑1 (𝑤)𝑞 .
(31)

The proof is complete.

Proof of Theorem 1. It is obvious that (b) ⇒ (a). That (a) ⇒
(c) is Lemma 5. That (c) ⇒ (b) is Lemma 7. The proof is
complete.

Proof of Proposition 2. Clearly, (b) ⇒ (a). That (a) ⇒ (c)
is Lemma 6. That (c) ⇒ (b) follows from Lemma 7 and
the fact that the boundedness of P+𝛼,𝛾 from 𝐿𝑝(H, 𝑑𝑉𝛼) to
𝐿𝑞(H, 𝑑𝑉𝛼) implies the boundedness of 𝑃+𝛼 from 𝐿𝑝(H, 𝑑𝑉𝛼)
to 𝐿𝑞(H, 𝑑𝑉𝑞𝛾+𝛼). The proof is complete.
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’01), Yaoundé, Cameroon, 2001.

[4] E. M. Stein, Singular Integrals and Differentiability Properties of
Functions, Princeton Mathematical Series, No. 30., Princeton
University Press, Princeton, NJ, USA, 1970.

[5] R. Zhao, “Generalization of Schur’s test and its application to
a class of integral operators on the unit ball of C𝑛,” Integral
Equations and OperatorTheory, vol. 82, no. 4, pp. 519–532, 2015.

[6] J. S. Bansah and B. T. Sehba, “Boundedness of a family of
Hilbert-type operators and its Bergman-type analogue,” Illinois
Journal of Mathematics, vol. 59, no. 4, pp. 949–977, 2015.

[7] G.O.Okikiolu, “On inequalities for integral operators,”Glasgow
Mathematical Journal, vol. 11, pp. 126–133, 1970.

https://arxiv.org/abs/1703.00852
https://arxiv.org/abs/1703.00275

