
Research Article
Three Different Methods for New Soliton Solutions of
the Generalized NLS Equation

Anwar Ja’afar Mohamad Jawad

Al-Rafidain University College, Baghdad 00964, Iraq

Correspondence should be addressed to Anwar Ja’afar Mohamad Jawad; anwar jawad2001@yahoo.com

Received 23 June 2017; Revised 2 September 2017; Accepted 20 September 2017; Published 18 October 2017

Academic Editor: Jozef Banas

Copyright © 2017 Anwar Ja’afar Mohamad Jawad. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Three different methods are applied to construct new types of solutions of nonlinear evolution equations. First, the Csch method
is used to carry out the solutions; then the Extended Tanh-Coth method and the modified simple equation method are used to
obtain the soliton solutions. The effectiveness of these methods is demonstrated by applications to the RKL model, the generalized
derivative NLS equation.The solitary wave solutions and trigonometric function solutions are obtained.The obtained solutions are
very useful in the nonlinear pulse propagation through optical fibers.

1. Introduction

Partial differential equations describe various nonlinear phe-
nomena in natural and applied sciences such as fluid dynam-
ics, plasma physics, solid state physics, optical fibers, acous-
tics, biology, and mathematical finance. Partial differential
equations which arise in real-world physical problems are
often too complicated to be solved exactly. It is of significant
importance to solve nonlinear partial differential equations
(NLPDEs) from both theoretical and practical points of view.
The analysis of some physical phenomena is investigated by
the exact solutions of nonlinear evolution equations (NLEEs)
[1–9].

In this paper, the third-order generalized NLS equation
is studied, which is proposed by Radhakrishnan, Kundu, and
Lakshmanan (RKL) [10]. The normalized RKL model can be
written as𝑖𝑞𝑡 + 𝑞𝑥𝑥 + 2 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞 + 𝑖𝛼𝑞𝑥𝑥𝑥 + 𝑖𝛽 (󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 𝑞)𝑥

+ 𝑖𝛾 (󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨4 𝑞)𝑥 + 𝛿 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨4𝑞 = 0. (1)

Equation (1) describes the propagation of femtosecond opti-
cal pulses, 𝑞(𝑥, 𝑡) represents normalized complex slowly

varying amplitude of the pulse envelope, and 𝛼, 𝛽, 𝛾, and 𝛿 are
real constants. Some solitary wave solutions and combined
Jacobian elliptic function solution were constructed by dif-
ferent methods [3, 4].

The Cschmethod is used to carry out the solutions.Then,
the Extended Tanh-Coth method and the modified simple
equation method are used to obtain the soliton solutions of
this equation.

2. Traveling Wave Solution

Consider the nonlinear partial differential equation in the
form

𝐹 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . .) = 0, (2)

where 𝑢(𝑥, 𝑡) is a traveling wave solution of nonlinear partial
differential equation (2). We use the transformations,

𝑢 (𝑥, 𝑡) = 𝑓 (𝜉) , (3)

where 𝜉 = 𝑘𝑥 − 𝜆𝑡. This enables us to use the following
changes:
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𝜕𝜕𝑡 (⋅) = −𝜆 𝑑𝑑𝜉 (⋅) ,𝜕𝜕𝑥 (⋅) = 𝑘 𝑑𝑑𝜉 (⋅) .
(4)

Using (4) to transfer the nonlinear partial differential equa-
tion (2) to nonlinear ordinary differential equation,

𝑄(𝑓, 𝑓󸀠, 𝑓󸀠󸀠, 𝑓󸀠󸀠󸀠, . . .) = 0. (5)

The ordinary differential equation (5) is then integrated as
long as all terms contain derivatives, where we neglect the
integration constants.

3. The Generalized NLS Equation (RKL)

In this section, the generalized third-order NLS equation
(RKL) (1) is chosen to illustrate the effectiveness of three
methods.

The solution of (1) may be supposed as

𝑞 (𝑥, 𝑡) = 𝑒𝑖𝜃𝑢 (𝜉) ,
where 𝜃 = 𝑘1𝑥 + 𝑘2𝑡, 𝜉 = 𝑘𝑥 − 𝜆𝑡. (6)

Substituting (6) into (1) and by defining the derivatives,

𝑞𝑡 = [−𝜆𝑢󸀠 (𝜉) + 𝑖𝑘2𝑢 (𝜉)] 𝑒𝑖𝜃,
𝑞𝑥 = [𝑘𝑢󸀠 (𝜉) + 𝑖𝑘1𝑢 (𝜉)] 𝑒𝑖𝜃,
𝑞𝑥𝑥 = [𝑘2𝑢󸀠󸀠 + 2𝑖𝑘𝑘1𝑢󸀠 − 𝑘12𝑢] 𝑒𝑖𝜃,
𝑞𝑥𝑥𝑥 = [𝑘3𝑢󸀠󸀠󸀠 + 2𝑖𝑘2𝑘1𝑢󸀠󸀠 − 𝑘𝑘12𝑢󸀠 + 𝑖𝑘1𝑘2𝑢󸀠󸀠

− 2𝑘𝑘12𝑢󸀠 − 𝑖𝑘13𝑢] 𝑒𝑖𝜃;
(7)

then decomposing (1) into real and imaginary parts yields
a pair of relations which represented nonlinear ordinary
differential equations. The real part is

𝑘2 [1 − 3𝛼𝑘1] 𝑢󸀠󸀠 + [𝛼𝑘13 − 𝑘12 − 𝑘2] 𝑢
+ [2 − 3𝑘1𝛽] 𝑢3 + [𝛿 − 5𝑘1𝛾] 𝑢5 = 0, (8)

while the imaginary part is

𝛼𝑘3𝑢󸀠󸀠󸀠 + [2𝑘𝑘1 − 𝜆 − 3𝛼𝑘𝑘12] 𝑢󸀠 + 3𝛽𝑘𝑢2𝑢󸀠
+ 5𝑘𝛾𝑢4𝑢󸀠 = 0. (9)

Integrating (9) once and setting the integration constant to
zero, we obtain

𝛼𝑘3𝑢󸀠󸀠 + [2𝑘𝑘1 − 𝜆 − 3𝛼𝑘𝑘12] 𝑢 + 𝛽𝑘𝑢3 + 𝑘𝛾𝑢5 = 0. (10)

Equations (8) and (10) will be equivalent, provided that

𝑘2 [1 − 3𝛼𝑘1]𝛼𝑘3 = [𝛼𝑘13 − 𝑘12 − 𝑘2][2𝑘𝑘1 − 𝜆 − 3𝛼𝑘𝑘12] = [2 − 3𝛽𝑘1]𝛽𝑘
= [𝛿 − 5𝛾𝑘1]𝑘𝛾 ,

(11)

from which we get the parametric constraints

𝛿 = ( 1𝛼 + 2𝑘1) 𝛾,
𝛽 = 2𝛼,
𝛼 = − [𝑘𝑘2 − 8𝑘𝑘12 + 3𝜆𝑘1] ∓ √[𝑘𝑘2 − 8𝑘𝑘12 + 3𝜆𝑘1]2 + 32𝑘𝑘13 (𝜆 − 2𝑘𝑘1)16𝑘𝑘13 ;

(12)

multiplying both sides of (10) by 𝑢󸀠 and integrating with
respect to 𝜉 with zero constant, we get

𝑢󸀠2 + 𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2]𝛼𝑘2 𝑢2 + 𝛽2𝛼𝑘2 𝑢4 + 𝛾3𝛼𝑘2 𝑢6
= 0; (13)

assume that

𝑐2 = 𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2]𝛼𝑘2 ,
𝑐4 = 𝛽2𝛼𝑘2 ,
𝑐6 = 𝛾3𝛼𝑘2 .

(14)
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Then

𝑢󸀠2 + 𝑐2𝑢2 + 𝑐4𝑢4 + 𝑐6𝑢6 = 0. (15)

4. Methodology

In this section we will apply three different methods to solve
(15). These methods are Csch method, Extended Tanh-Coth
method, and the modified simple equationmethod (MSEM).

4.1. Csch Function Method. The solution of many nonlinear
equations can be expressed in the form [11]

𝑢 (𝜉) = 𝐴 csch𝜏 (𝜇𝜉) (16)

and their derivative

𝑢󸀠 (𝜉) = −𝐴𝜏𝜇 csch𝜏 (𝜇𝜉) ⋅ coth (𝜇𝜉) ,𝑢󸀠󸀠 (𝜉) = 𝐴𝜏𝜇2 [(𝜏 + 1) csch𝜏+2 (𝜇𝜉) + 𝜏 csch𝜏 (𝜇𝜉)] , (17)

where𝐴, 𝜇, and 𝜏 are parameters to be determined and 𝜇 and𝜆 are the wave number and the wave speed, respectively. We
substitute (16)-(17) into the reduced equation (15); we get

𝐴2𝜏2𝜇2csch2𝜏 (𝜇𝜉) + 𝐴2𝜏2𝜇2csch2𝜏+2 (𝜇𝜉)
+ 𝑐2𝐴2csch2𝜏 (𝜇𝜉) + 𝑐4𝐴4csch4𝜏 (𝜇𝜉)+ 𝑐6𝐴6csch6𝜏 (𝜇𝜉) = 0.

(18)

Balance the terms of the Csch functions to find 𝜏
2𝜏 + 2 = 6𝜏, Then 𝜏 = 12 . (19)

We next collect all terms in (18) with the same power in
csch𝑘(𝜇𝜉) and set their coefficients to zero to get a system
of algebraic equations among the unknowns 𝐴, 𝜇, and 𝜏 and
solve the subsequent system

𝐴2 14𝜇2 + 𝑐2𝐴2 = 0,
𝐴2 14𝜇2 + 𝑐6𝐴6 = 0. (20)

Solving the system of equations in (20), we get

𝜇 = 2𝑖√𝑐2 = 2𝑖𝑘 √𝛽𝛼 [𝛼𝑘13 − 𝑘12 − 𝑘2],
𝐴 = ∓ 4√𝑐2𝑐6 = ∓ 4√3𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2];

(21)

then

𝑢 (𝜉) = ∓ 4√3𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2]√csch (𝜇𝜉) (22)

therefore

𝑞 (𝑥, 𝑡) = ∓ 4√3𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2]𝑒𝑖[𝑘1𝑥+𝑘2𝑡]√csch(2𝑖𝑘 √𝛽𝛼 [𝛼𝑘13 − 𝑘12 − 𝑘2] (𝑘𝑥 − 𝜆𝑡)); (23)

Figure 1 represents the solitary wave in (23) for 𝑘 = 𝑘1 = 𝑘2 =1, 𝜆 = −1, 𝛾 = −1, 𝛿 = −10/3, 𝛽 = 3/2, 𝛼 = 3/4, and then𝑞(𝑥, 𝑡) = 1.54√csch(3.1622(𝑥 + 𝑡)).
4.2. Tanh-Coth Method. The key step is to introduce the
ansatz, the new independent variable [12, 13]𝑌 = tanh (𝜉) (24)

that leads to the change of variables:𝑑𝑈𝑑𝜉 = (1 − 𝑌2) 𝑑𝑈𝑑𝑌 , (25)

𝑑2𝑈𝑑𝜉2 = −2𝑌 (1 − 𝑌2) 𝑑𝑈𝑑𝑌 + (1 − 𝑌2)2 𝑑2𝑈𝑑𝑌2 , (26)

𝑑3𝑈𝑑𝜉3 = 2 (1 − 𝑌2) (3𝑌2 − 1) 𝑑𝑈𝑑𝑌
− 6𝑌 (1 − 𝑌2)2 𝑑2𝑈𝑑𝑌2 + (1 − 𝑌2)3 𝑑3𝑈𝑑𝑌3 .

(27)

Assume 𝑉 (𝜉) = 𝑢2 (𝜉) . (28)

Equation (15) can be written as𝑉󸀠2 + 4𝑐2𝑉2 + 4𝑐4𝑉3 + 4𝑐6𝑉4 = 0. (29)

The next step is that the solution of (29) is expressed in the
form

𝑉 (𝜉) = 𝑚∑
𝑖=0
𝑎𝑖𝑌𝑖 + 𝑚∑

𝑖=1
𝑏𝑖𝑌−𝑖, (30)

where the parameter 𝑚 can be found by balancing the
highest-order linear term with the nonlinear terms in (29).

We balance 𝑉4 with (𝑑𝑉/𝑑𝑌)2, to obtain 4𝑚 = (𝑚 + 1)2;
then 𝑚 = 1. The Tanh-Coth method admits the use of the
finite expansion for

𝑉 = 𝑎0 + 𝑎1𝑌 + 𝑏1𝑌−1,𝑉󸀠 = 𝑎1 − 𝑏1𝑌−2. (31)
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Figure 1: The solitary wave in (23) for 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑥 ≤ 10.
𝜆, 𝑘, 𝑎0, 𝑎1, 𝑏1 are to be determined. Substituting (31) into (25)
and then into (29) will yield a set of algebraic equations
because all coefficients of 𝑌 have to vanish

(1 − 𝑌2)2 (𝑎1 − 𝑏1𝑌−2)2 + 4𝑐2 ([𝑎0 + 𝑎1𝑌] + 𝑏1𝑌−1)2
+ 4𝑐4 (𝑎0 + 𝑎1𝑌 + 𝑏1𝑌−1)3
+ 4𝑐6 (𝑎0 + 𝑎1𝑌 + 𝑏1𝑌−1)4 = 0.

(32)

Equation (32) can be written as

(𝑎12 (1 − 2𝑌2 + 𝑌4) − 2𝑎1𝑏1 (𝑌−2 − 2 + 𝑌2)
+ 𝑏12 (𝑌−4 − 2𝑌−2 + 1)) + 4𝑐2 (𝑎02 + 2𝑎1𝑏1
+ 2𝑎0𝑎1𝑌 + 𝑎12𝑌2 + 2𝑎0𝑏1𝑌−1 + 𝑏12𝑌−2) + 4𝑐4 (𝑎03
+ 3𝑎02𝑎1𝑌 + 3𝑎0𝑎12𝑌2 + 𝑎13𝑌3 + 3 (𝑎02𝑌−1
+ 2𝑎0𝑎1 + 𝑎12𝑌) 𝑏1 + 3 (𝑎0𝑌−2 + 𝑎1𝑌−1) 𝑏12
+ 𝑏13𝑌−3) + 4𝑐6 ([𝑎04 + 4𝑎03𝑎1𝑌 + 6𝑎02𝑎12𝑌2
+ 4𝑎0𝑎13𝑌3 + 𝑎14𝑌4] + 4 [𝑎03𝑌−1 + 3𝑎02𝑎1
+ 3𝑎0𝑎12𝑌 + 𝑎13𝑌2] 𝑏1 + 6 [𝑎02𝑌−2 + 2𝑎0𝑎1𝑌−1
+ 𝑎12] 𝑏12 + 4 [𝑎0𝑌−3 + 𝑎1𝑌−2] 𝑏13 + 𝑏14𝑌−4) = 0.

(33)

Equating expressions at 𝑌𝑖, (𝑖 = −4, −3, −2, −1, 0, 1, 2, 3, 4) to
zero, we have the following system of equations:

Coefficients of 𝑌−4: [1 + 4𝑐6𝑏12] 𝑏12 = 0
Coefficients of 𝑌−3: {𝑐4 + 4𝑐6𝑎0} 𝑏13 = 0

Coefficients of 𝑌−2: −2𝑎1𝑏1 − 2𝑏12 + 4𝑐2𝑏12+ 12𝑐4𝑎0𝑏12 + 4𝑐6 (6𝑎02 + 4𝑎1𝑏1) 𝑏12 = 0
Coefficients of 𝑌−1 {8𝑐2𝑎0 + 12𝑐4 (𝑎02 + 𝑎1𝑏1)

+ 4𝑐6 (4𝑎03 + 12𝑎0𝑎1𝑏1)} 𝑏1 = 0
Coefficients of 𝑌0: 𝑎12 + 4𝑎1𝑏1 + 𝑏12 + 4𝑐2𝑎02+ 4𝑐4 (𝑎03 + 6𝑎0𝑎1𝑏1) + 4𝑐6 (𝑎04 + 12𝑎02𝑎1𝑏1

+ 6𝑎12𝑏12) = 0
Coefficients of 𝑌: 8𝑐2𝑎0𝑎1 + 12𝑐4 (𝑎02 + 𝑎1𝑏1) 𝑎1

+ 16𝑐6𝑎0𝑎1 (𝑎02 + 3𝑎1𝑏1) = 0
Coefficients of 𝑌2: −2𝑎12 − 2𝑎1𝑏1 + 4𝑐2𝑎12+ 12𝑐4𝑎0𝑎12 + 4𝑐6𝑎12 (6𝑎02 + 4𝑎1𝑏1) = 0
Coefficients of 𝑌3: (𝑐4 + 4𝑐6𝑎0) 𝑎13 = 0
Coefficients of 𝑌4: (1 + 4𝑐6𝑎12) 𝑎12 = 0.

(34)

Solving the system of equations (34), we get

𝑏1 = ∓ 𝑖2√𝑐6 ,
𝑎0 = − 12√𝑐6 ,𝑎1 = 0,𝑐2 = 1,𝑐4 = 2√𝑐6.

(35)

Substitute for 𝑐6 from (14), and then

𝑏1 = ∓𝑖𝑘2,
𝑎0 = −𝑘2,𝑎1 = 0,
𝑐4 = 1𝑘√1𝑘 ,
𝑘 = √2 [𝛼𝑘13 − 𝑘12 − 𝑘2],
𝛾 = 3𝛼4𝑘2 ,
𝛿 = 3 (1 + 2𝛼𝑘1)4𝑘2 ;

(36)
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Figure 2: The solitary wave in (39) for 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑥 ≤ 10.
therefore

𝑉 (𝜉) = 𝑘2 [−1 ∓ 𝑖 coth (𝜉)] ,
𝑢 (𝜉) = 𝑘√−1 ∓ 𝑖 coth (𝜉). (37)

Then

𝑞 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]𝑘√−1 ∓ 𝑖 coth (𝑘𝑥 − 𝜆𝑡) (38)

for 𝑘 = √1/2, 𝑘1 = 𝑘2 = 1, 𝜆 = 3𝑘, 𝛼 = 1/4, and then

𝑞 (𝑥, 𝑡) = ( 1√2)√−1 + 𝑖 coth{( 1√2) (𝑥 − 3𝑡)}. (39)

Figure 2 represents the solitary wave in (39).

4.3.TheModified Simple EquationMethod. We look for solu-
tions of (29) in the form [14]

𝑉 = 𝐴0 + 𝐴1𝜓𝜉𝜓 ,
𝑉𝜉 = 𝐴1(𝜓𝜉𝜉𝜓 − 𝜓𝜉2𝜓2 ) . (40)

Then (29) can be written as

𝐴12(𝜓𝜉𝜉𝜓 − 𝜓𝜉2𝜓2 )
2 + 4𝑐2 (𝐴0 + 𝐴1𝜓𝜉𝜓 )2

+ 4𝑐4 (𝐴0 + 𝐴1𝜓𝜉𝜓 )3 + 4𝑐6 (𝐴0 + 𝐴1𝜓𝜉𝜓 )4
= 0.

(41)

Then (41) can be written as

𝐴12 [𝜓𝜉𝜉2𝜓2 − 2𝜓𝜉𝜉𝜓𝜉2𝜓3 + 𝜓𝜉4𝜓4 ] + 4𝑐2 [𝐴02
+ 2𝐴0𝐴1𝜓𝜉𝜓 + 𝐴12𝜓𝜉2𝜓2 ] + 4𝑐4 [𝐴03
+ 3𝐴02𝐴1𝜓𝜉𝜓 + 3𝐴0𝐴12𝜓𝜉2𝜓2 + 𝐴13𝜓𝜉3𝜓3 ]
+ 4𝑐6 [𝐴04 + 4𝐴03𝐴1𝜓𝜉𝜓 + 6𝐴02𝐴12𝜓𝜉2𝜓2
+ 4𝐴0𝐴13𝜓𝜉3𝜓3 + 𝐴14𝜓𝜉4𝜓4 ] = 0.

(42)

Equating expressions in (42) at𝜓−1, 𝜓−2, 𝜓−3, and𝜓−4 to zero,
we have the following system of equations:

[1 + 4𝑐6𝐴12] 𝐴12 = 0,
[𝜓𝜉𝜉 − 2𝐴1 {𝑐4 + 4𝑐6𝐴0} 𝜓𝜉] 𝐴12 = 0,

[𝜓𝜉𝜉2 + 4 {𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02} 𝜓𝜉2] 𝐴12 = 0,
{2𝑐2 + 3𝑐4𝐴0 + 4𝑐6𝐴02}𝐴0𝐴1 = 0.

(43)

Solving the system of equations in (43),

𝐴1 = ∓𝑖𝑘2√ 3𝛼𝛾 . (44)

Family 1

𝐴0 = −𝛽 + √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓1 (𝜉) = 𝜀11 + 𝜀12𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞1 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

− 𝑘𝜀12√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀11 + 𝜀12𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(45)



6 Abstract and Applied Analysis

Family 2

𝐴0 = −𝛽 − √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓2 (𝜉) = 𝜀21 + 𝜀22𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞2 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

− 𝑘𝜀22√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀21 + 𝜀22𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(46)

Family 3

𝐴0 = −3𝛽 + √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓3 (𝜉) = 𝜀31 + 𝜀32𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞3 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

− 𝑘𝜀32√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀31 + 𝜀32𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(47)

Family 4

𝐴0 = −3𝛽 − √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓4 (𝜉) = 𝜀41 + 𝜀42𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞4 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

− 𝑘𝜀42√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀41 + 𝜀42𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(48)

Family 5

𝐴0 = −𝛽 + √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓5 (𝜉) = 𝜀51 + 𝜀52𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞5 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

+ 𝑘𝜀52√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀51 + 𝜀52𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(49)

Family 6

𝐴0 = −𝛽 − √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓6 (𝜉) = 𝜀61 + 𝜀62𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞6 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

+ 𝑘𝜀62√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀61 + 𝜀62𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(50)

Family 7

𝐴0 = −3𝛽 + √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓7 (𝜉) = 𝜀71 + 𝜀72𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞7 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

+ 𝑘𝜀72√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀71 + 𝜀72𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(51)
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Family 8

𝐴0 = −3𝛽 − √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓8 (𝜉) = 𝜀81 + 𝜀82𝑒2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02𝜉,
𝑞8 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡]{{{{{𝐴0

+ 𝑘𝜀82√3𝛼 (𝑐2 + 3𝑐4𝐴0 + 6𝑐6𝐴02)𝛾
⋅ 𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)𝜀81 + 𝜀82𝑒−2𝑖√𝑐2+3𝑐4𝐴0+6𝑐6𝐴02(𝑘𝑥−𝜆𝑡)

}}}}}
1/2

.

(52)

Family 9

𝐴0 = −𝛽 + √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓9 (𝜉) = 𝜀91 + 𝜀92𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0]𝜉,
𝑞9 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡] {𝐴0 − 3𝑘2𝛼𝛾 [𝑐4 + 2𝑐6𝐴0]2

⋅ 𝜀92𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)𝜀91 + 𝜀92𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)}
1/2 .

(53)

Family 10

𝐴0 = −𝛽 − √𝛽2 − 16𝛾𝛽 [𝛼𝑘13 − 𝑘12 − 𝑘2] /34𝛾/3 ,
𝜓10 (𝜉) = 𝜀101 + 𝜀102𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0]𝜉,
𝑞10 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡] {𝐴0 − 3𝑘2𝛼𝛾 [𝑐4 + 2𝑐6𝐴0]2

⋅ 𝜀102𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)𝜀101 + 𝜀102𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)}
1/2 .

(54)

Family 11

𝐴0 = −3𝛽 + √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓11 (𝜉) = 𝜀111 + 𝜀112𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0]𝜉,
𝑞11 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡] {𝐴0 − 3𝑘2𝛼𝛾 [𝑐4 + 2𝑐6𝐴0]2

⋅ 𝜀112𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)𝜀111 + 𝜀112𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)}
1/2 .

(55)

Family 12

𝐴0 = −3𝛽 − √9𝛽2 − 128𝛽𝛾 [𝛼𝑘13 − 𝑘12 − 𝑘2] /316𝛾/3 ,
𝜓12 (𝜉) = 𝜀121 + 𝜀122𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0]𝜉,
𝑞12 (𝑥, 𝑡) = 𝑒𝑖[𝑘1𝑥+𝑘2𝑡] {𝐴0 − 3𝑘2𝛼𝛾 [𝑐4 + 2𝑐6𝐴0]2

⋅ 𝜀122𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)𝜀121 + 𝜀122𝑒𝑖𝑘√3𝛼/𝛾[𝑐4+2𝑐6𝐴0](𝑘𝑥−𝜆𝑡)}
1/2 .

(56)

5. Conclusion

In this paper, series of new traveling wave solutions have been
obtained. The Csch method and the Extended Tanh-Coth
method and modified simple equation method are used to
carry out the integration of the generalized NLS equation,
which is RKL. These methods can be also applied to solve
other types of the generalized nonlinear evolution equations
with complex coefficients.The solitary waves in Figures 1 and
2 obtained by the Csch and Tanh-Cothmethods, respectively,
are identical in form and behavior.The obtained solutions are
very useful and may be important to explain some physical
phenomena and find applications in the nonlinear pulse
propagation through optical fibers.
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