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We consider a strongly damped quasilinear membrane equation with Dirichlet boundary condition. The goal is to prove the well-
posedness of the equation in weak and strong senses. By setting suitable function spaces and making use of the properties of the
quasilinear term in the equation, we have proved the fundamental results on existence, uniqueness, and continuous dependence
on data including bilinear term of weak and strong solutions.

1. Introduction

Let Ω be an open bounded set of R𝑛 with the smooth
boundary Γ. We set 𝑄 = (0, 𝑇) × Ω, Σ = (0, 𝑇) × Γ
for 𝑇 > 0. The nonlinear equation of the longitudinal
motion of vibrating membrane surroundingΩ with clamped
boundary is described by the following Dirichlet boundary
value problem:

𝜕2𝑦𝜕𝑡2 − ∇ ⋅ ( ∇𝑦√1 + 󵄨󵄨󵄨󵄨∇𝑦󵄨󵄨󵄨󵄨2) − 𝜇Δ𝜕𝑦𝜕𝑡 = 𝑓 in 𝑄,
𝑦 = 0 on Σ,𝑦 (0, 𝑥) = 𝑦0 (𝑥) ,𝜕𝑦𝜕𝑡 (0, 𝑥) = 𝑦1 (𝑥)

in Ω,

(1)

where 𝑦 is the height of a membrane, 𝜇 > 0, 𝑓 is a forcing
function, and | ⋅ | denotes the Euclidean norm on R𝑛. A brief
physical background of (1) is given in our previous paper [1].

For damped linear or semilinear systems, there are many
books and articles about thewell-posedness with applications
to various dynamic system’s topics (cf. [2–4], etc.) with
semigroup or unified variational treatments. However, the

quasilinear cases like (1) require more manipulations in the
analysis of systems, because the systems like (1) are verymuch
model-dependent due to the strong nonlinearity.

Equation (1) is proposed in Kobayashi et al. [5] and the
well-posedness of strongly regular solutions is studied by
using the resolvent estimates of linearized operators in a
modified Banach space. Besides, the well-posedness of less
regular solutions is proved in [1], called weak solutions in the
framework of the variational method in Dautray and Lions
[3]. Based on these results, we have treated the associated
optimal control and identification problems in [6] and [7],
respectively. Furthermore, in [8] we have extended the results
in [1] to more general quasilinear nonautonomous wave
equation with strong damping term.

In this paper, our concerned model is given by the
following problem:

𝜕2𝑦𝜕𝑡2 − ∇ ⋅ ( ∇𝑦√1 + 󵄨󵄨󵄨󵄨∇𝑦󵄨󵄨󵄨󵄨2) − 𝜇Δ𝜕𝑦𝜕𝑡 = U𝑦 + 𝑓 in 𝑄,
𝑦 = 0 on Σ,𝑦 (0, 𝑥) = 𝑦0 (𝑥) ,𝜕𝑦𝜕𝑡 (0, 𝑥) = 𝑦1 (𝑥) ,

in Ω,

(2)
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where U is a bilinear forcing term which is usually referred
to as bilinear control variable acting as a multiplier of the
displacement term.

Bilinear optimal control problems with the state equation
being a linear first or second PDEs such as reaction diffusion
equation or Kirchhoff plate equation are studied by some
authors (see [9–12] and references therein).

For future work, we will study bilinear optimal control
problem with state equation (2). Then we must be faced
with many difficulties because of the quasilinear term in (2).
However, more regular solution of (2) corresponding tomore
regular data than weak one enables us to overcome these
difficulties. This is motivation of this paper.

As is recognized, existence of regular solution of a
quasilinear PDE is also quite model-dependent due to the
strong nonlinearity.

We briefly summarize this paper as follows. At first,
referring to the results in [1], we shall prove the well-
posedness of weak solution of (2). Secondly, we shall analyze
(2) in higher regularity than in [1] by employing newly
constructed energy equality for (2). Finally, we shall prove by
exploiting the well-posedness of weak solution of (2) that the
regular solution of (2) is continuous with respect to regular
data.

The most difficult part of the existence proof is to show
the strong convergence of nonlinear terms, and the part
is completed by using the argument in [3, p. 569]. This is
another novelty of the paper.

2. Notations and Main Results

If 𝑋 is a Banach space, we denote by 𝑋󸀠 its topological dual
and by ⟨⋅, ⋅⟩𝑋󸀠 ,𝑋 the duality pairing between 𝑋󸀠 and 𝑋. We
introduce the following abbreviations:

𝐿𝑝 = 𝐿𝑝 (Ω) ,
𝐻𝑘 = 𝐻𝑘 (Ω) ,‖⋅‖𝑝 = ‖⋅‖𝐿𝑝 ,

(3)

with 𝑝 ≥ 1. And 𝐻𝑘0 mean the completions of 𝐶∞0 (Ω) in 𝐻𝑘
for 𝑘 ≥ 1. Let𝐷(Δ) = 𝐻2∩𝐻10 . If we denote the scalar product
on 𝐿2 by (⋅, ⋅)2, then the scalar products on 𝐻10 and 𝐷(Δ) are
given as follows:

((𝜓, 𝜙))𝐻10 = (∇𝜓, ∇𝜙)2 , ∀𝜓, 𝜙 ∈ 𝐻10 ;((𝜓, 𝜙))𝐷(Δ) = (Δ𝜓, Δ𝜙)2 , ∀𝜓, 𝜙 ∈ 𝐷 (Δ) . (4)

Then obviously,󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐻10 = 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2 , ∀𝜓 ∈ 𝐻10 ,󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝐷(Δ) = 󵄩󵄩󵄩󵄩Δ𝜙󵄩󵄩󵄩󵄩2 , ∀𝜙 ∈ 𝐷 (Δ) . (5)

The duality pairing between 𝐻10 and 𝐻−1 is denoted by⟨𝜙, 𝜓⟩1,−1.

It is clear that

𝐷 (Δ) 󳨅→ 𝐻10 󳨅→ 𝐿2 󳨅→ 𝐻−1 󳨅→ 𝐷 (Δ)󸀠 , (6)

and each space is dense in the following one and the injections
are continuous.

Related to the nonlinear term in (2), we define the
function 𝐺 : R𝑛 → R𝑛 by 𝐺(𝑥) = 𝑥/√1 + |𝑥|2, 𝑥 ∈ R𝑛.
Then it is easily verified that󵄨󵄨󵄨󵄨𝐺 (𝑥) − 𝐺 (𝑦)󵄨󵄨󵄨󵄨 ≤ 2 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 , ∀𝑥, 𝑦 ∈ R𝑛. (7)

The nonlinear operator 𝐺(∇⋅) : 𝐻10 → [𝐿∞]𝑛 is defined by

𝐺 (∇𝜙) (𝑥) = ∇𝜙 (𝑥)√1 + 󵄨󵄨󵄨󵄨∇𝜙 (𝑥)󵄨󵄨󵄨󵄨2 , a.e. 𝑥 ∈ Ω, ∀𝜙 ∈ 𝐻10 . (8)

By the definition of𝐺(∇⋅) in (8), we have the following useful
property on 𝐺(∇⋅):󵄩󵄩󵄩󵄩𝐺 (∇𝜙)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩∇𝜙󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩𝐺 (∇𝜙) − 𝐺 (∇𝜓)󵄩󵄩󵄩󵄩2 ≤ 2 󵄩󵄩󵄩󵄩∇𝜙 − ∇𝜓󵄩󵄩󵄩󵄩2 ,∀𝜙, 𝜓 ∈ 𝐻10 .

(9)

The solution space𝑊(0, 𝑇) forweak solutions of (2) is defined
by

𝑊(0, 𝑇) = {𝑔 | 𝑔 ∈ 𝐿2 (0, 𝑇;𝐻10) , 𝑔󸀠
∈ 𝐿2 (0, 𝑇;𝐻10) , 𝑔󸀠󸀠 ∈ 𝐿2 (0, 𝑇;𝐻−1)} (10)

endowed with a norm󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑊(0,𝑇)
= (󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻10 ) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻10 ) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻−1))1/2 , (11)

where 𝑔󸀠 and 𝑔󸀠󸀠 denote the first- and second-order distribu-
tive derivatives of 𝑔. We remark that 𝑊(0, 𝑇) is continuously
embedded in 𝐶([0, 𝑇];𝐻10 ) ∩ 𝐶1([0, 𝑇]; 𝐿2) (cf. Dautray and
Lions [3, p. 555]).

Definition 1. A function 𝑦 is said to be a weak solution of (2)
if 𝑦 ∈ 𝑊(0, 𝑇) and 𝑦 satisfies

⟨𝑦󸀠󸀠 (⋅) , 𝜙⟩
−1,1

+ (𝐺 (∇𝑦 (⋅)) , ∇𝜙)2 + 𝜇 (∇𝑦󸀠 (⋅) , ∇𝜙)
2= (U (⋅) 𝑦 (⋅) , 𝜙)2 + ⟨𝑓 (⋅) , 𝜙⟩−1,1∀𝜙 ∈ 𝐻10 in the sense of D󸀠 (0, 𝑇) ,

𝑦 (0) = 𝑦0 ∈ 𝐻10 ,𝑦󸀠 (0) = 𝑦1 ∈ 𝐿2.
(12)

The following theorem gives the fundamental results on
existence, uniqueness, and regularity of weak solutions of (2).
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Theorem2. Assume that (𝑦0, 𝑦1, 𝑓) ∈ 𝐻10 ×𝐿2×𝐿2(0, 𝑇;𝐻−1),
and U ∈ 𝐿∞(𝑄). Then problem (2) has a unique weak
solution 𝑦 ∈ 𝑊(0, 𝑇). Moreover, the solution mapping 𝑝 =(𝑦0, 𝑦1, 𝑓,U) → 𝑦(𝑝) ofP ≡ 𝐻10 ×𝐿2×𝐿2(0, 𝑇;𝐻−1)×𝐿∞(𝑄)
into 𝑊(0, 𝑇) is locally Lipschitz continuous.

Indeed, let 𝑝1 = (𝑦10 , 𝑦11 , 𝑓1,U1) ∈ P and 𝑝2 = (𝑦20 ,𝑦21 , 𝑓2,U2) ∈ P. We prove Theorem 2 by showing the
inequality

󵄩󵄩󵄩󵄩𝑦 (𝑝1) − 𝑦 (𝑝2)󵄩󵄩󵄩󵄩𝑊(0,𝑇) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩∇ (𝑦10 − 𝑦20)󵄩󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩󵄩𝑦11 − 𝑦21󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻−1)
+ 󵄩󵄩󵄩󵄩U1 − U2

󵄩󵄩󵄩󵄩2𝐿∞(𝑄))1/2 ≡ 𝐶 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P ,
(13)

where 𝐶 > 0 is a constant depending on data.
Next we introduce the solution space 𝑆(0, 𝑇) for strong

solutions of (2) defined by

𝑆 (0, 𝑇) = {𝑔 | 𝑔 ∈ 𝐿2 (0, 𝑇;𝐷 (Δ)) , 𝑔󸀠
∈ 𝐿2 (0, 𝑇;𝐷 (Δ)) , 𝑔󸀠󸀠 ∈ 𝐿2 (𝑄)} (14)

endowed with a norm󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑆(0,𝑇)
= (󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐷(Δ)) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐷(Δ)) + 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󸀠󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑄))1/2 , (15)

where 𝑔󸀠 and 𝑔󸀠󸀠 denote the first- and second-order dis-
tributive derivatives of 𝑔. We remark also from Dautray and
Lions [3, p. 555] that 𝑆(0, 𝑇) is continuously embedded in𝐶([0, 𝑇]; 𝐷(Δ)) ∩ 𝐶1([0, 𝑇];𝐻10 ).
Definition 3. A function 𝑦 is said to be a strong solution of
(2) if 𝑦 ∈ 𝑆(0, 𝑇) and 𝑦 satisfies

𝑦󸀠󸀠 (𝑡) − ∇ ⋅ 𝐺 (∇𝑦 (𝑡)) − 𝜇Δ𝑦󸀠 (𝑡)= U (𝑡) 𝑦 (𝑡) + 𝑓 (𝑡) , a.e. t ∈ [0, 𝑇] ,𝑦 (0) = 𝑦0 ∈ 𝐷 (Δ) ,
𝑦󸀠 (0) = 𝑦1 ∈ 𝐻10 .

(16)

The next theorem gives a well-posedness result for strong
solutions of (2).

Theorem4. Assume that (𝑦0, 𝑦1, 𝑓) ∈ 𝐷(Δ)×𝐻10×𝐿2(𝑄), and
U ∈ 𝐿∞(𝑄). Then (2) has a unique strong solution 𝑦 ∈ 𝑆(0, 𝑇)
and it satisfies󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑆(0,𝑇)

≤ 𝐶(󵄩󵄩󵄩󵄩𝑦0󵄩󵄩󵄩󵄩2𝐷(Δ) + 󵄩󵄩󵄩󵄩𝑦1󵄩󵄩󵄩󵄩2𝐻10 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄) + ‖U‖2𝐿∞(𝑄))1/2 , (17)

where 𝐶 is a constant depending on data.

Now we give the result on the continuous dependence
of strong solutions of (2) on 𝑝 = (𝑦0, 𝑦1, 𝑓,U). Let F be a
product space defined by

F = 𝐷 (Δ) × 𝐻10 × 𝐿2 (𝑄) × 𝐿∞ (𝑄) (18)

endowed with a norm󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩F
= (󵄩󵄩󵄩󵄩𝑦0󵄩󵄩󵄩󵄩2𝐷(Δ) + 󵄩󵄩󵄩󵄩𝑦1󵄩󵄩󵄩󵄩2𝐻10 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄) + ‖U‖2𝐿∞(𝑄))1/2 . (19)

For each 𝑝 = (𝑦0, 𝑦1, 𝑓,U) ∈ F we have a strong solution𝑦 = 𝑦(𝑝) ∈ 𝑆(0, 𝑇) of (2) by Theorem 4. Thus, we can define
the solution mapping 𝑝 = (𝑦0, 𝑦1, 𝑓,U) → 𝑦(𝑝) of F into𝑆(0, 𝑇).
Theorem 5. The nonlinear solution mapping 𝑝 = (𝑦0, 𝑦1,𝑓,U) → 𝑦(𝑝) ofF into 𝑆(0, 𝑇) of (2) is continuous.

Throughout this paper, we will use 𝐶 as a generic con-
stant and omit writing the integral variables in any definite
integrals without confusion.

3. Proof of Main Results

Proof of Theorem 2. Since U𝑖 ∈ 𝐿∞(𝑄) (𝑖 = 1, 2), by the
results in [1], we can deduce that the weak solutions 𝑦(𝑝𝑖) of
(2) corresponding to 𝑝𝑖 (𝑖 = 1, 2) exist in 𝑊(0, 𝑇) such that󵄩󵄩󵄩󵄩𝑦 (𝑝𝑖)󵄩󵄩󵄩󵄩𝑊(0,𝑇)

≤ 𝐶(󵄩󵄩󵄩󵄩󵄩∇𝑦𝑖0󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝑦𝑖1󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑓𝑖󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻−1))1/2≤ 𝐶 󵄩󵄩󵄩󵄩𝑝𝑖󵄩󵄩󵄩󵄩P (𝑖 = 1, 2) .
(20)

We denote 𝑦1 − 𝑦2 ≡ 𝑦(𝑝1) − 𝑦(𝑝2) by 𝜓. Then, we can get
from (2) that𝜓 satisfies the following equation in weak sense:

𝜓󸀠󸀠 − 𝜇Δ𝜓󸀠 = ∇ ⋅ 𝐺 (∇𝑦1) − ∇ ⋅ 𝐺 (∇𝑦2) + U1𝜓 + U𝑦2+ f in 𝑄,𝜓 = 0 on Σ,
𝜓 (0) = 𝑦10 − 𝑦20 ,𝜓󸀠 (0) = 𝑦11 − 𝑦21

in Ω,

(21)

where U = U1 − U2 and f = 𝑓1 − 𝑓2.
Wemultiply (21) by 𝜓󸀠 + 𝜓 to have

12 𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩22) + 𝜇 󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22
= − (𝐺 (∇𝑦1 (𝑡)) − 𝐺 (∇𝑦2 (𝑡)) , ∇ (𝜓󸀠 (𝑡) + 𝜓 (𝑡)))

2
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+ (U1 (𝑡) 𝜓 (𝑡) + U (𝑡) 𝑦2 (𝑡) , 𝜓󸀠 (𝑡) + 𝜓 (𝑡))
2− ⟨𝜓󸀠󸀠 (𝑡) , 𝜓 (𝑡)⟩

−1,1+ ⟨f (𝑡) , 𝜓󸀠 (𝑡) − 𝜓 (𝑡)⟩
−1,1

.
(22)

By integrating (22) over [0, 𝑡], we obtain󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜇∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜇 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩22
= 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (0)󵄩󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩∇𝜓 (0)󵄩󵄩󵄩󵄩22

− 2∫𝑡
0
(𝐺 (∇𝑦1) − 𝐺 (∇𝑦2) , ∇ (𝜓󸀠 + 𝜓))

2
𝑑𝑠

+ 2∫𝑡
0
(U1𝜓 + U𝑦2, 𝜓󸀠 + 𝜓)

2
𝑑𝑠

− 2 (𝜓󸀠 (𝑡) , 𝜓 (𝑡))
2
+ 2 (𝜓󸀠 (0) , 𝜓 (0))

2

+ 2∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 2∫𝑡
0
⟨f , 𝜓󸀠 + 𝜓⟩

−1,1
𝑑𝑠.

(23)

Let 𝜖 > 0 be an arbitrary real number. Then, by (9), (20), and
the Schwartz inequality we can obtain the following:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 ∫𝑡

0
(𝐺 (∇𝑦1) − 𝐺 (∇𝑦2) , ∇ (𝜓󸀠 + 𝜓))

2
𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4∫𝑡
0

󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩2 𝑑𝑠 + 4∫𝑡
0

󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ (4𝜖 + 4)∫𝑡

0

󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠;󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 ∫𝑡
0
(U1𝜓 + U𝑦2, 𝜓󸀠 + 𝜓)

2
𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2∫𝑡
0
(󵄩󵄩󵄩󵄩U1𝜓󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩U𝑦2󵄩󵄩󵄩󵄩2) (󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2) 𝑑𝑠

≤ 2 󵄩󵄩󵄩󵄩U1󵄩󵄩󵄩󵄩𝐿∞(𝑄) ∫𝑡
0
(󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩22) 𝑑𝑠

+ ∫𝑡
0

󵄩󵄩󵄩󵄩U𝑦2󵄩󵄩󵄩󵄩22 𝑑𝑠 + 2∫𝑡
0
(󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22) 𝑑𝑠

≤ 𝐶∫𝑡
0
(󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22) 𝑑𝑠 + ‖U‖2𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩2𝐿2(𝑄)

≤ 𝐶(∫𝑡
0
(󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22) 𝑑𝑠 + ‖U‖2𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩2𝑊(0,𝑇))

≤ 𝐶(∫𝑡
0
(󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22) 𝑑𝑠 + ‖U‖2𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑝2󵄩󵄩󵄩󵄩2P) ;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 ∫𝑡
0
⟨𝑓, 𝜓󸀠 + 𝜓⟩

−1,1
𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2∫𝑡
0

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐻−1 (󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2) 𝑑𝑠

≤ (1𝜖 + 1) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(0,𝑇;𝐻−1) + 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22 𝑑𝑠;
2 󵄨󵄨󵄨󵄨󵄨(𝜓󸀠 (𝑡) , 𝜓 (𝑡))

2

󵄨󵄨󵄨󵄨󵄨 ≤ 2 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜓 (0) + ∫𝑡
0
𝜓󸀠𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜖 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 1𝜖 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜓 (0) + ∫𝑡
0
𝜓󸀠𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝜖 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜖 󵄩󵄩󵄩󵄩𝜓 (0)󵄩󵄩󵄩󵄩22 + 2𝑇𝜖 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠.
(24)

We also note that |2(𝜓󸀠(0), 𝜓(0))2| ≤ 𝐶(‖∇𝜓(0)‖22 + ‖𝜓󸀠(0)‖22).
Therefore, from (23) and (24), we can obtain the following
inequality:

(1 − 𝜖) 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩22 + (2𝜇 − 2𝜖)
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 ≤ 𝐶(1 + 1 + 𝑇𝜖 + 󵄩󵄩󵄩󵄩𝑝2󵄩󵄩󵄩󵄩2P)
⋅ (󵄩󵄩󵄩󵄩∇𝜓 (0)󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (0)󵄩󵄩󵄩󵄩󵄩22 + ‖f‖2𝐿2(0,𝑇;𝐻−1)
+ ‖U‖2𝐿∞(𝑄) + ∫𝑡

0
(󵄩󵄩󵄩󵄩󵄩𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩22) 𝑑𝑠) .

(25)

If we choose 𝜖 = min{1/2, 𝜇/2}, then by Bellman-Gronwall’s
inequality it follows that

󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝜓 (𝑡)󵄩󵄩󵄩󵄩22 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 ≤ 𝐶 (𝑇, 𝑝2)
⋅ (󵄩󵄩󵄩󵄩∇𝜓 (0)󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩󵄩𝜓󸀠 (0)󵄩󵄩󵄩󵄩󵄩22 + ‖f‖2𝐿2(0,𝑇;𝐻−1)
+ ‖U‖2𝐿∞(𝑄)) = 𝐶 (𝑇, 𝑝2) 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩2P .

(26)

By (21) and (26) we have󵄩󵄩󵄩󵄩󵄩𝜓󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻−1) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄)+ 󵄩󵄩󵄩󵄩𝐺 (∇𝑦1) − 𝐺 (∇𝑦2)󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ ‖U‖𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩𝐿2(𝑄) + ‖f‖𝐿2(0,𝑇;𝐻−1))
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ ‖U‖𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦2󵄩󵄩󵄩󵄩𝑊(0,𝑇) + ‖f‖𝐿2(0,𝑇;𝐻−1))
≤ 𝐶1 (𝑇, 𝑝2) (󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P + ‖U‖𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑝2󵄩󵄩󵄩󵄩P+ ‖f‖𝐿2(0,𝑇;𝐻−1)) ≤ 𝐶2 (𝑇, 𝑝2) 󵄩󵄩󵄩󵄩𝑝1 − 𝑝2󵄩󵄩󵄩󵄩P .

(27)

Finally, by combining (26) and (27) we obtain (13).
This completes the proof.
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Lemma 6. Let 𝑋,𝑌, and 𝑍 be Banach spaces such that the
imbeddings 𝑋 ⊂ 𝑌 ⊂ 𝑍 are continuous and the imbedding𝑋 ⊂ 𝑌 is compact. Then a bounded set of 𝑊1,∞(0, 𝑇;𝑋, 𝑍) ={𝑔 | 𝑔 ∈ 𝐿∞(0, 𝑇;𝑋), 𝑔󸀠 ∈ 𝐿∞(0, 𝑇; 𝑍)} is relatively compact
in 𝐶([0, 𝑇]; 𝑌).
Proof. See Simon [13].

Proof of Theorem 4. We divide the proof into three steps.

Step 1 (approximate solutions and a priori estimates). We
construct approximate solutions of (2) by a Faedo–Galerkin’s
procedure. Since 𝐷(Δ) is separable, there exists a complete
orthonormal system {𝑤𝑚}∞𝑚=1 in 𝐿2 such that {𝑤𝑚}∞𝑚=1 is
free and total in 𝐷(Δ). For each 𝑚 ∈ N we can define an
approximate solution of (2) by

𝑦𝑚 (𝑡) = 𝑚∑
𝑗=1

𝑔𝑗𝑚 (𝑡) 𝑤𝑗, (28)

where 𝑦𝑚(𝑡) satisfies (2). Then (2) can be written as 𝑚 vector
differential equations

𝐸 𝑑2𝑑𝑡2 ⃗𝑔𝑚 + 𝐺 (∇𝑦𝑚) ⃗𝑔𝑚 + 𝜇Δ̃ 𝑑𝑑𝑡 ⃗𝑔𝑚 = Ũ ⃗𝑔𝑚 + ⃗𝑓𝑚 (29)

with initial values

⃗𝑔𝑚 (0) = [(𝑦0, 𝑤1)2 , (𝑦0, 𝑤2)2 , . . . , (𝑦0, 𝑤𝑚)2]𝑡 ,𝑑𝑑𝑡 ⃗𝑔𝑚 (0) = [(𝑦1, 𝑤1)2 , (𝑦1, 𝑤2)2 , . . . , (𝑦1, 𝑤𝑚)2]𝑡 . (30)

Notations of (29) can be explained as follows:

⃗𝑔𝑚 = [𝑔1𝑚, . . . , 𝑔𝑚𝑚]𝑡 ,𝐸 = ((𝑤𝑖, 𝑤𝑗)2 = 𝛿𝑖𝑗 : 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑚)
≡ 𝐼𝑚,

𝐺 (∇𝑦𝑚) = ( 1√1 + 󵄨󵄨󵄨󵄨∇𝑦𝑚󵄨󵄨󵄨󵄨2 (∇𝑤𝑖, ∇𝑤𝑗)2 : 𝑖
= 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑚) ,

𝜇Δ̃ = (𝜇 (∇𝑤𝑖, ∇𝑤𝑗)2 : 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑚) ,
Ũ = ((U𝑤𝑖, 𝑤𝑗)2 : 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑚) ,
⃗𝑓𝑚 = [(𝑓, 𝑤1)2 , . . . , (𝑓, 𝑤𝑚)2]𝑡 ,

(31)

where [⋅ ⋅ ⋅ ]𝑡 denotes the transpose of [⋅ ⋅ ⋅ ]. Since 𝐺(∇⋅) :𝐻10 → [𝐿∞]𝑛 is Lipschitz continuous and U ∈ 𝐿∞(𝑄),
we can deduce by Carathéodory type existence theorem
that the nonlinear vector differential equation (29) admits a
unique solution [𝑔1𝑚, 𝑔2𝑚, . . . , 𝑔𝑚𝑚]𝑡 on [0, 𝑇]. Hence, we can

construct the approximate solution𝑦𝑚(𝑡) of (2). Next we shall
derive a priori estimates of 𝑦𝑚(𝑡).

By analogy with (22), we take 𝐿2 product of the equations
for approximate solutions 𝑦𝑚(𝑡) with −Δ𝑦󸀠𝑚(𝑡) − Δ𝑦𝑚(𝑡) to
have

12 𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩Δ𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩22) + 𝜇 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22
= − (∇ ⋅ 𝐺 (∇𝑦𝑚 (𝑡)) , Δ𝑦󸀠𝑚 (𝑡) + Δ𝑦𝑚 (𝑡))

2− (U (𝑡) 𝑦𝑚 (𝑡) , Δ𝑦󸀠𝑚 (𝑡) + Δ𝑦𝑚 (𝑡))
2+ (𝑦󸀠󸀠𝑚 (𝑡) , Δ𝑦𝑚 (𝑡))

2− (𝑓 (𝑡) , Δ𝑦󸀠𝑚 (𝑡) + Δ𝑦𝑚 (𝑡))
2
.

(32)

By integrating (32) over [0, 𝑡], we obtain
󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜇∫𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜇 󵄩󵄩󵄩󵄩Δ𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩22
= 󵄩󵄩󵄩󵄩∇𝑦1𝑚󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩Δ𝑦0𝑚󵄩󵄩󵄩󵄩22

− 2∫𝑡
0
(∇ ⋅ 𝐺 (∇𝑦𝑚) , Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠

− 2∫𝑡
0
(U𝑦𝑚, Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠

+ 2 (𝑦󸀠𝑚 (𝑡) , Δ𝑦𝑚 (𝑡))
2
− 2 (𝑦1𝑚, Δ𝑦0𝑚)2

+ 2∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 − 2∫𝑡
0
(𝑓, Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠.

(33)

Here we note from the elliptic regularity theory that

󵄩󵄩󵄩󵄩∇ ⋅ 𝐺 (∇𝜙)󵄩󵄩󵄩󵄩2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ𝜙√1 + 󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨2 −
𝑛∑
𝑖,𝑗=1

𝜙𝑥𝑖𝜙𝑥𝑗𝜙𝑥𝑖𝑥𝑗(1 + 󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨2)3/2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩Δ𝜙󵄩󵄩󵄩󵄩2 + 𝑛∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩𝜙𝑥𝑖𝑥𝑗󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 𝐶 󵄩󵄩󵄩󵄩Δ𝜙󵄩󵄩󵄩󵄩2
∀𝜙 ∈ 𝐷 (Δ) .

(34)

Thus, by (34) we can deduce for 𝜖 > 0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 ∫𝑡
0
(∇ ⋅ 𝐺 (∇𝑦𝑚) , Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2∫𝑡
0

󵄩󵄩󵄩󵄩∇ ⋅ 𝐺 (∇𝑦𝑚)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚 + Δ𝑦𝑚󵄩󵄩󵄩󵄩󵄩2 𝑑𝑠
≤ 𝐶∫𝑡
0

󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩2 (󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩2) 𝑑𝑠
≤ 𝜖∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝐶∫𝑡
0

󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩22 𝑑𝑠;
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2 󵄨󵄨󵄨󵄨󵄨(𝑦󸀠𝑚 (𝑡) , Δ𝑦𝑚 (𝑡))
2

󵄨󵄨󵄨󵄨󵄨
≤ 2 󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∇(𝑦0𝑚 + ∫𝑡

0
𝑦󸀠𝑚𝑑𝑠)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 1𝜖 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∇(𝑦0𝑚 + ∫𝑡
0
𝑦󸀠𝑚𝑑𝑠)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

≤ 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜖 󵄩󵄩󵄩󵄩∇𝑦0𝑚󵄩󵄩󵄩󵄩22 + 2𝑇𝜖 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠.
(35)

For other estimations of the terms in the RHS of (33) other
than (35), we can follow the analogous process in the proof of
Theorem 2 to get

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 󵄩󵄩󵄩󵄩Δ𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩22
≤ 𝐶(󵄩󵄩󵄩󵄩∇𝑦1𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦0𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄)
+ ∫𝑡
0
(󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩22) 𝑑𝑠) .

(36)

Therefore, it is shown by using Bellman-Gronwall’s inequality
that󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝑦𝑚 (𝑡)󵄩󵄩󵄩󵄩22 + ∫𝑡

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩Δ𝑦0𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑦1𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄)) ,

∀𝑡 ∈ [0, 𝑇] .
(37)

And also fromTheorem 2, (2), (34), and (37), we have󵄩󵄩󵄩󵄩󵄩𝑦󸀠󸀠𝑚󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) ≤ 󵄩󵄩󵄩󵄩∇ ⋅ 𝐺 (∇𝑦𝑚)󵄩󵄩󵄩󵄩𝐿2(𝑄) + 𝜇 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ 󵄩󵄩󵄩󵄩U𝑦𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(Q) ≤ 𝐶(󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄) + ‖U‖𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄))
≤ 𝐶 (󵄩󵄩󵄩󵄩Δ𝑦𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄)
+ ‖U‖𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦𝑚󵄩󵄩󵄩󵄩𝑊(0,𝑇) + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄)) ≤ 𝐶 (1
+ 󵄩󵄩󵄩󵄩𝑝𝑚󵄩󵄩󵄩󵄩P) (󵄩󵄩󵄩󵄩Δ𝑦0𝑚󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩∇𝑦1𝑚󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄)+ ‖U‖𝐿∞(𝑄)) ,

(38)

where 𝑝𝑚 = (𝑦0𝑚, 𝑦1𝑚, 𝑓,U).
Step 2 (passage to the limits). Equations (37) and (38) imply
that {𝑦𝑚} is bounded in 𝑆 (0, 𝑇)

∩ 𝑊1,∞ (0, 𝑇;𝐷 (Δ) ,𝐻10) . (39)

And the nonlinear term ∇ ⋅ 𝐺(∇𝑦𝑚) is bounded in 𝐿∞(0,𝑇; 𝐿2). Hence, by the extraction theorem of Rellich, we can
extract a subsequence {𝑦𝑚𝑘} of {𝑦𝑚} and find 𝑦 ∈ 𝑆(0, 𝑇) ∩𝑊1,∞(0, 𝑇;𝐷(Δ),𝐻10 ) andG ∈ 𝐿∞(0, 𝑇; 𝐿2) such that

(i) 𝑦𝑚𝑘 󳨀→ 𝑦 weakly-star in 𝐿∞ (0, 𝑇;𝐷 (Δ))
and weakly in 𝑆 (0, 𝑇) ,

(ii) 𝑦󸀠𝑚𝑘 󳨀→ 𝑦󸀠 weakly-star in 𝐿∞ (0, 𝑇;𝐻10) ,
(iii) ∇ ⋅ 𝐺 (∇𝑦𝑚𝑘)󳨀→ G weakly-star in 𝐿∞ (0, 𝑇; 𝐿2) ,

(40)

as 𝑘 → ∞. Since 𝐷(Δ) 󳨅→ 𝐻10 is compact, we can apply
Lemma 6 with 𝑋 = 𝐷(Δ), 𝑌 = 𝑍 = 𝐻10 and Aubin-
Lions-Temam’s compact imbedding theorem (cf. Temam [14,
p. 274]) to (39) to verify that {𝑦𝑚} and {𝑦󸀠𝑚} are precompact
in 𝐶([0, 𝑇];𝐻10 ) and 𝐿2(0, 𝑇;𝐻10 ), respectively. Hence, we can
find a subsequence {𝑦𝑚𝑘} ⊂ {𝑦𝑚}, if necessary, such that

𝑦𝑚𝑘 󳨀→ 𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻10) , (41)

𝑦󸀠𝑚𝑘 󳨀→ 𝑦󸀠 strongly in 𝐿2 (0, 𝑇;𝐻10) (42)

as 𝑘 → ∞.
By the standard argument of Dautray and Lions [3, pp.

564–566], it can be verified that the limit 𝑦 of {𝑦𝑚𝑘} is a strong
solution of the linear problem

𝑦󸀠󸀠 − G − 𝜇Δ𝑦󸀠 = U𝑦 + 𝑓 in 𝑄,𝑦 = 0 on Σ,𝑦 (0, 𝑥) = 𝑦0,𝑦󸀠 (0, 𝑥) = 𝑦1,
in Ω.

(43)

Step 3 (strong convergence of approximate solutions). In
order to prove that 𝑦 is a strong solution of (2), it is sufficient
to prove G = ∇ ⋅ 𝐺(∇𝑦). For this, we shall show 𝑦𝑚(𝑡) →𝑦(𝑡) strongly in 𝐷(Δ) for all 𝑡 ∈ [0, 𝑇]. To prove the strong
convergence, we use the modified arguments in Dautray and
Lions [3, pp. 579–581] and the classical compact imbedding
theorem.

First as in (33), we take 𝐿2 product equation (43) with−Δ𝑦󸀠 − Δ𝑦 and integrate it over [0, 𝑡] to have
󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜇∫t

0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜇 󵄩󵄩󵄩󵄩Δ𝑦 (𝑡)󵄩󵄩󵄩󵄩22
= 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22 + 𝜇 󵄩󵄩󵄩󵄩Δ𝑦0󵄩󵄩󵄩󵄩22 − 2∫𝑡

0
(G, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

− 2∫𝑡
0
(U𝑦, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠 + 2 (𝑦󸀠 (𝑡) , Δ𝑦 (𝑡))

2
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− 2 (𝑦1, Δ𝑦0)2 + 2∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
− 2∫𝑡
0
(𝑓, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠.

(44)

By making use of the following trivial equalities:󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩22 = 󵄩󵄩󵄩󵄩𝜙 − 𝜑󵄩󵄩󵄩󵄩22 + 2 (𝜙, 𝜑)2 , ∀𝜙, 𝜑 ∈ 𝐿2,
(𝜙1, 𝜑1)2 = (𝜙1 − 𝜙2, 𝜑1 − 𝜑2)2 + (𝜙1, 𝜑2)2+ (𝜙2, 𝜑1 − 𝜑2)2 ,∀𝜙𝑖, 𝜑𝑖 ∈ 𝐿2 (𝑖 = 1, 2) ,

(45)

we add (33) to (44) and denote 𝑦𝑚 − 𝑦 by 𝜓𝑚 to get󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜇∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜇 󵄩󵄩󵄩󵄩Δ𝜓𝑚 (𝑡)󵄩󵄩󵄩󵄩22 = Φ0𝑚
+ 2 3∑
𝑖=1

Φ𝑖𝑚 (𝑡) − 2∫𝑡
0
(∇ ⋅ 𝐺 (∇𝑦𝑚) − ∇

⋅ 𝐺 (∇𝑦) , Δ𝜓󸀠𝑚 + Δ𝜓𝑚)2 𝑑𝑠,
(46)

whereΦ0𝑚 = 󵄩󵄩󵄩󵄩∇𝑦1𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22 + 𝜇 (󵄩󵄩󵄩󵄩∇𝑦0𝑚󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇𝑦0󵄩󵄩󵄩󵄩22)− 2 ((𝑦1𝑚, Δ𝑦0𝑚)2 + (𝑦1, Δ𝑦0)2) ,Φ1𝑚 (𝑡) = − (∇𝑦󸀠𝑚 (𝑡) , ∇𝑦󸀠 (𝑡))
2
− 𝜇 (Δ𝑦𝑚 (𝑡) , Δ𝑦 (𝑡))2

− 2𝜇∫𝑡
0
(Δ𝑦󸀠𝑚, Δ𝑦󸀠)

2
𝑑𝑠,

Φ2𝑚 (𝑡) = −∫𝑡
0
(U𝑦𝑚, Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠

− ∫𝑡
0
(U𝑦, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
− ∫𝑡
0
(𝑓, Δ𝑦󸀠𝑚 + Δ𝑦𝑚)2 𝑑𝑠

− ∫𝑡
0
(𝑓, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠 𝑑𝑠

+ (𝑦󸀠𝑚 (𝑡) , Δ𝑦𝑚 (𝑡))
2
+ (𝑦󸀠 (𝑡) , Δ𝑦 (𝑡))

2
,

Φ3𝑚 (𝑡) = −∫𝑡
0
(∇ ⋅ 𝐺 (∇𝑦𝑚) , Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

− ∫𝑡
0
(G, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

− ∫𝑡
0
(∇ ⋅ 𝐺 (∇𝑦) , Δ𝜓󸀠𝑚 + Δ𝜓𝑚)2 𝑑𝑠.

(47)

For simplicity we set

Φ𝑚 (𝑡) = Φ0𝑚 + 2 3∑
𝑖=1

Φ𝑖𝑚 (𝑡) . (48)

It is verified by direct computations that

∇ ⋅ (𝐺 (∇𝑦𝑚) − 𝐺 (∇𝑦)) = K𝑚 + R𝑚, (49)

where

K𝑚 = Δ𝑦𝑚 − Δ𝑦√1 + 󵄨󵄨󵄨󵄨∇𝑦𝑚󵄨󵄨󵄨󵄨2 −
𝑛∑
𝑖,𝑗=1

𝑦𝑚𝑥𝑖𝑦𝑚𝑥𝑗 (𝑦𝑚𝑥𝑖𝑥𝑗 − 𝑦𝑥𝑖𝑥𝑗)(1 + 󵄨󵄨󵄨󵄨∇𝑦𝑚󵄨󵄨󵄨󵄨2)3/2 , (50)

R𝑚

= Δ𝑦( 1√1 + 󵄨󵄨󵄨󵄨∇𝑦𝑚󵄨󵄨󵄨󵄨2 −
1√1 + 󵄨󵄨󵄨󵄨∇𝑦󵄨󵄨󵄨󵄨2)

+ 𝑛∑
𝑖,𝑗=1

𝑦𝑥𝑖𝑥𝑗 ( 𝑦𝑥𝑖𝑦𝑥𝑗(1 + 󵄨󵄨󵄨󵄨∇𝑦󵄨󵄨󵄨󵄨2)3/2 −
𝑦𝑚𝑥𝑖𝑦𝑚𝑥𝑗(1 + 󵄨󵄨󵄨󵄨∇𝑦𝑚󵄨󵄨󵄨󵄨2)3/2) .

(51)

By (49)–(51), (46) can be rewritten by

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 2𝜇∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠 + 𝜇 󵄩󵄩󵄩󵄩Δ𝜓𝑚 (𝑡)󵄩󵄩󵄩󵄩22
= Φ𝑚 (𝑡) − 2∫𝑡

0
(R𝑚, Δ𝜓󸀠𝑚 + Δ𝜓𝑚)2 𝑑𝑠

− 2∫𝑡
0
(K𝑚, Δ𝜓󸀠𝑚 + Δ𝜓𝑚)2 𝑑𝑠.

(52)

The termK𝑚 can be estimated as

󵄩󵄩󵄩󵄩K𝑚󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝜓𝑚󵄩󵄩󵄩󵄩2 + 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩𝜓𝑚𝑥𝑖𝑥𝑗󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 𝐶 󵄩󵄩󵄩󵄩Δ𝜓𝑚󵄩󵄩󵄩󵄩2 . (53)

Thenby routine calculations in (52) togetherwith (53), we can
derive the following inequality:

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝜓𝑚 (𝑡)󵄩󵄩󵄩󵄩22 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶(󵄨󵄨󵄨󵄨Φ𝑚 (𝑡)󵄨󵄨󵄨󵄨 + ∫𝑡

0

󵄩󵄩󵄩󵄩R𝑚󵄩󵄩󵄩󵄩22 𝑑𝑠) + 𝐶∫𝑡
0

󵄩󵄩󵄩󵄩Δ𝜓𝑚󵄩󵄩󵄩󵄩22 𝑑𝑠. (54)

By applying the extended Bellman-Gronwall’s inequality to
(54), we deduce

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝜓𝑚 (𝑡)󵄩󵄩󵄩󵄩22 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠𝑚󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶 (󵄨󵄨󵄨󵄨Φ𝑚 (𝑡)󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩R𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄))

+ 𝐶∫𝑡
0
(󵄨󵄨󵄨󵄨Φ𝑚󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩R𝑚󵄩󵄩󵄩󵄩𝐿2(𝑄)) 𝑑𝑠.

(55)
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By virtue of the strong convergence of the initial values
and (40)–(42), we can extract a subsequence {𝑦𝑚𝑘} of {𝑦𝑚}
such that

Φ0𝑚𝑘 󳨀→ 2 󵄩󵄩󵄩󵄩∇𝑦1󵄩󵄩󵄩󵄩22 + 2𝜇 󵄩󵄩󵄩󵄩Δ𝑦0󵄩󵄩󵄩󵄩22 − 4 (𝑦1, Δ𝑦0)2 ,
Φ1𝑚𝑘 (𝑡) 󳨀→ − 󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩22 − 𝜇 󵄩󵄩󵄩󵄩Δ𝑦 (𝑡)󵄩󵄩󵄩󵄩22

− 2𝜇∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝑦󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠,
Φ2𝑚𝑘 (𝑡) 󳨀→ −2∫𝑡

0
(U𝑦, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

+ 2∫𝑡
0

󵄩󵄩󵄩󵄩󵄩∇𝑦󸀠󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
− 2∫𝑡
0
(𝑓, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

+ 2 (𝑦󸀠 (𝑡) , Δ𝑦 (𝑡))
2
,

Φ3𝑚𝑘 (𝑡) 󳨀→ −2∫𝑡
0
(G, Δ𝑦󸀠 + Δ𝑦)

2
𝑑𝑠

(56)

as 𝑘 → ∞. Therefore, in view of (44) we can deduce by the
sum of limits in (56) that

Φ𝑚𝑘 (𝑡) 󳨀→ 0 as 𝑘 󳨀→ ∞. (57)

Also from (41), we can easily verify that there exists a
subsequence {𝑦𝑚𝑘} of {𝑦𝑚} such that

𝑦𝑚𝑘𝑥𝑖 󳨀→ 𝑦𝑥𝑖 a.e. 𝑥 ∈ Ω, 𝑖 = 1, . . . , 𝑛 (58)

for all 𝑡 ∈ [0, 𝑇]. Then it follows from (58) that

1
√1 + 󵄨󵄨󵄨󵄨󵄨∇𝑦𝑚𝑘 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2 󳨀→ 1√1 + 󵄨󵄨󵄨󵄨∇𝑦 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2

a.e. 𝑥 ∈ Ω,𝑦𝑚𝑘𝑥𝑖 (𝑡, 𝑥) 𝑦𝑚𝑘𝑥𝑗 (𝑡, 𝑥)(1 + 󵄨󵄨󵄨󵄨󵄨∇𝑦𝑚𝑘 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2)3/2 󳨀→ 𝑦𝑥𝑖 (𝑡, 𝑥) 𝑦𝑥𝑗 (𝑡, 𝑥)(1 + 󵄨󵄨󵄨󵄨∇𝑦 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2)3/2
a.e. 𝑥 ∈ Ω

(59)

for all 𝑡 ∈ [0, 𝑇]. Hence, we have
lim
𝑘→∞

R𝑚𝑘 (𝑡, 𝑥) = 0 a.e. (𝑡, 𝑥) ∈ 𝑄. (60)

Since

󵄨󵄨󵄨󵄨R𝑚 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 ≤ 2 󵄨󵄨󵄨󵄨Δ𝑦 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 + 2 𝑛∑
𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑥𝑖𝑥𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨󵄨
a.e. (𝑡, 𝑥) ∈ 𝑄, (61)

we see from (60), (61), and the Lebesgue dominated conver-
gence theorem that

R𝑚𝑘 󳨀→ 0 strongly in 𝐿2 (𝑄) as 𝑘 󳨀→ ∞. (62)

By applying (57) and (62) to (55) with 𝑚 = 𝑚𝑘, we have
(𝜓𝑚𝑘 , 𝜓󸀠𝑚𝑘) 󳨀→ (0, 0) strongly in 𝐶 ([0, 𝑇] ; 𝐷 (Δ)) × (𝐶 ([0, 𝑇] ;𝐻10) ∩ 𝐿2 (0, 𝑇;𝐷 (Δ))) (63)

as 𝑘 → ∞. From (49), (53), (62), and (63), it follows that∇ ⋅ 𝐺 (∇𝑦𝑚𝑘) 󳨀→ ∇ ⋅ 𝐺 (∇𝑦) strongly in 𝐿2 (𝑄) (64)

as 𝑘 → ∞. Thus, we readily have

G = ∇ ⋅ 𝐺 (∇𝑦) . (65)

Therefore, we have proved the existence of a strong solution
of (2).

By similar estimations as in (37) and (38), we can show
(17).

The uniqueness of strong solutions is evident from the
uniqueness of weak solutions.

Proof of Theorem 5. Let 𝑦(𝑝 + 𝛿𝑝) and 𝑦(𝑝) be the strong
solutions of (2) corresponding to 𝑝 + 𝛿𝑝 = (𝑦0 + 𝛿𝑦0, 𝑦1 +𝛿𝑦1, 𝑓 + 𝛿𝑓,U + 𝛿U) ∈ F and 𝑝 = (𝑦0, 𝑦1, 𝑓,U) ∈ F,
respectively. Set 𝜓𝛿 = 𝑦(𝑝 + 𝛿𝑝) − 𝑦(𝑝). Then 𝜓𝛿 satisfies𝜓󸀠󸀠𝛿 − 𝜇Δ𝜓󸀠𝛿 = ∇ ⋅ 𝐺 (∇𝑦 (𝑝 + 𝛿𝑝)) − ∇ ⋅ 𝐺 (∇𝑦 (𝑝))

+ U𝜓𝛿 + 𝛿U𝑦 (𝑝 + 𝛿𝑝) + 𝛿𝑓
in 𝑄,

𝜓𝛿 = 0 on Σ,𝜓𝛿 (0, 𝑥) = 𝛿𝑦0,𝜓󸀠𝛿 (0, 𝑥) = 𝛿𝑦1,
in Ω

(66)

in the weak sense. Here we can repeat the same estimations in
the proof ofTheorem 4mainly by performing 𝐿2(𝑄)-product
of (66) with −Δ𝜓󸀠𝛿 − Δ𝜓𝛿 to obtain

󵄩󵄩󵄩󵄩󵄩∇𝜓󸀠𝛿 (𝑡)󵄩󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩Δ𝜓𝛿 (𝑡)󵄩󵄩󵄩󵄩22 + ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩Δ𝜓󸀠𝛿󵄩󵄩󵄩󵄩󵄩22 𝑑𝑠
≤ 𝐶(∫𝑡

0

󵄩󵄩󵄩󵄩R𝛿󵄩󵄩󵄩󵄩22 𝑑𝑠 + 󵄩󵄩󵄩󵄩Δ (𝛿𝑦0)󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇ (𝛿𝑦1)󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩𝛿U𝑦 (𝑝 + 𝛿𝑝) + 𝛿𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄)) ≤ 𝐶 (󵄩󵄩󵄩󵄩R𝛿󵄩󵄩󵄩󵄩2𝐿2(𝑄)
+ 󵄩󵄩󵄩󵄩Δ (𝛿𝑦0)󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇ (𝛿𝑦1)󵄩󵄩󵄩󵄩22
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+ ‖𝛿U‖2𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑦 (𝑝 + 𝛿𝑝)󵄩󵄩󵄩󵄩2𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝛿𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄))
≤ 𝐶 (󵄩󵄩󵄩󵄩R𝛿󵄩󵄩󵄩󵄩2𝐿2(𝑄) + 󵄩󵄩󵄩󵄩Δ (𝛿𝑦0)󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩∇ (𝛿𝑦1)󵄩󵄩󵄩󵄩22
+ ‖𝛿U‖2𝐿∞(𝑄) 󵄩󵄩󵄩󵄩𝑝 + 𝛿𝑝󵄩󵄩󵄩󵄩2P + 󵄩󵄩󵄩󵄩𝛿𝑓󵄩󵄩󵄩󵄩2𝐿2(𝑄)) ≤ 𝐶 (1
+ 󵄩󵄩󵄩󵄩𝑝 + 𝛿𝑝󵄩󵄩󵄩󵄩2P) (󵄩󵄩󵄩󵄩R𝛿󵄩󵄩󵄩󵄩2𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝛿𝑝󵄩󵄩󵄩󵄩2F) ,

(67)

whereR𝛿 is given by (51) in which 𝑦𝑚 and 𝑦 are replaced by𝑦(𝑝+𝛿𝑝) and 𝑦(𝑝), respectively. ByTheorem 2, we know that󵄩󵄩󵄩󵄩𝜓𝛿󵄩󵄩󵄩󵄩𝑊(0,𝑇) ≤ 𝐶 󵄩󵄩󵄩󵄩𝛿𝑝󵄩󵄩󵄩󵄩P . (68)

Equation (68) immediately implies𝜓𝛿 󳨀→ 0
strongly in 𝐶 ([0, 𝑇] ;𝐻10) as 𝛿𝑝 󳨀→ 0 in P. (69)

Whence from (58)–(62) we know that

R𝛿 󳨀→ 0 strongly in 𝐿2 (𝑄) as 𝛿𝑝 󳨀→ 0 in P. (70)

Finally by (66), (67), and (70), we can conclude that𝜓𝛿 󳨀→ 0 strongly in 𝑆 (0, 𝑇) as 𝛿𝑝 󳨀→ 0 in F. (71)

This completes the proof.
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