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The study of qualitative theory of various kinds of differential
equations began with the birth of calculus, which dates
to the 1660s. Part of Newton’s motivation in developing
calculus was to solve problems that could be attacked with
differential equations. Now, with over 300 years of history,
the subject of qualitative theory of differential equations,
integral equations, and so on represents a huge body of
knowledge including many subfields and a vast array of
applications in many disciplines. It is beyond exposition as
awhole. Qualitative theory refers to the study of the behavior
of solutions without determining explicit formulas for the
solutions. In addition, it should be noted that if solutions of
an equation describing a dynamical system or of any kind
of differential equations under consideration are known in
closed form, one can determine the qualitative properties of
the system or the solutions of that equations, by applying
directly the definitions of relative mathematical concepts. As
is also well-known, in general, it is not possible to find the
solution of all linear and nonlinear differential equations,
except numerically. Moreover, finding of solutions becomes
very difficult for functional differential equations, integral
equations, partially differential equations, and fractional
differential equations rather than for ordinary differential
equations. Thus, indirect methods are needed. Therefore, it
is very important to obtain information on the qualitative

behavior of solutions of differential equations when there
is no analytical expression for the solutions. So far, in the
relevant literature, some methods have been improved to
obtain information about qualitative behaviors of solutions of
differential equations without solving them. Here, we would
not like to give the details of methods.

It is worth mentioning that, in the last century, theory
of ordinary differential equations, functional differential
equations, partially differential equations, integral equations,
and integrodifferential equations has developed quickly and
played many important roles in qualitative theory and appli-
cations of that equations. Some problems of considerable
interest in qualitative theory of ordinary differential equa-
tions, functional differential and integral equations, integrod-
ifferential equations, fractional differential equations, par-
tially differential equations, and so forth include many topics
such as stability and instability of solutions, boundedness
of solutions, convergence of solutions, existence of periodic
solutions, almost periodic solutions, pseudo almost period
solutions, existence and uniqueness of solutions, global
existence of solutions, global stability, bifurcation analysis,
control of chaos, boundary value problems, oscillation and
nonoscillation of solutions, and global existence of solutions.
Functional differential equations, which include ordinary and
delay differential equations, partially differential equations,
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and integral equations, have very important roles in many
scientific areas such as mechanics, engineering, economy,
control theory, physics, chemistry, biology, medicine, atomic
energy, and information theory.

Opver the years many scientific works have been dedicated
to the mentioned problems for various differential equations,
fractional differential equations, partially differential equa-
tions, and so forth. In particular, we can find many interesting
results related to qualitative behaviors of solutions in the
books or papers in [1-15] and in their references.

In response to the call for papers, 22 papers were received.
After a rigorous refereeing process, 5 papers were accepted
for publication in this special issue. The articles included
in the issue cover novel contributions to qualitative theory
of functional differential and integral equations, magnetohy-
drodynamics equations, partial differential equations.

The paper by G. Degla investigates the existence of a
curve (with respect to the scalar delay) of periodic positive
solutions for a smooth model of Cooke-Kaplan’s integral
equation by using the implicit function theorem under
suitable conditions. The author also shows a situation in
which any bounded solution with a sufficiently small delay is
isolated, clearing an asymptotic stability result of Cooke and
Kaplan.

In the paper by A. M. Kholkin, a resolvent for the Sturm-
Liouville operator with a block triangular operator potential
increasing at infinite is constructed. The structure of the
spectrum of such an operator is obtained.

The paper by I. Ellahiani et al. deals with global exis-
tence of weak solutions to a one-dimensional mathematical
model describing magnetoelastic interactions. The model is
described by a fractional Landau-Lifshitz-Gilbert equation
for the magnetization field coupled to an evolution equa-
tion for the displacement. They prove global existence by
using Faedo-Galerkin/Penalty method. Some commutator
estimates are used to prove the convergence of nonlinear
terms.

In the paper by Y. Li et al., based on classical Lie Group
method, a class of explicit solutions of two-dimensional ideal
incompressible magnetohydrodynamics (MHD) equation by
its infinitesimal generator is constructed. Via these explicit
solutions, the authors study the uniqueness and stability of
initial-boundary problem on MHD.

In the paper by D. P. D. Santos, the existence of solutions
for certain nonlinear boundary value problems is investi-
gated. All the contemplated boundary value problems are
reduced to find a fixed point for one operator defined on
a space of functions, and Schauder fixed point theorem or
Leray-Schauder degree are used.
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