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In this paper, we analyze the role of the jump size distribution in the US natural gas prices when valuing natural gas futures traded at
NewYorkMercantile Exchange (NYMEX) andwe observe that a jump-diffusionmodel always provides lower errors than a diffusion
model. Moreover, we also show that although the Normal distribution offers lower errors for short maturities, the Exponential
distribution is quite accurate for long maturities. We also price natural gas options and we see that, in general, the model with the
Normal jump size distribution underprices these options with respect to the Exponential distribution. Finally, we obtain the futures
risk premia in both cases and we observe that for long maturities the term structure of the risk premia is negative. Moreover, the
Exponential distribution provides the highest premia in absolute value.

1. Introduction

In the literature, the commodity price usually follows a diffu-
sion process with continuous paths when pricing commod-
ity derivatives. Although this assumption is very attractive
because of its computational, convenience, theoretical deriva-
tion and statistical properties, [1–4] others found significant
evidence of the presence of jumps in commodity prices.

In traditional jump-diffusion commodity models, the
functions of the stochastic processes and the market prices of
risk are usually specified as simple parametric functions, for
pure tractability and simplicity. Furthermore, the functions
of the models are usually chosen to provide an affine model
which has a known closed-form solution. For example,
[5] considers a three-factor model where the spot price
follows a jump-diffusion stochastic process. In [6] existing
commodity valuation models were extended to allow for
stochastic volatility and simultaneous jumps in the spot price
and volatility.The standard geometric Brownianmotion aug-
mented by jumps was used by [7] to describe the underlying
spot and the mean reverting diffusion processes for the
interest rate and convenience yield in gold and copper price
models. In [8] a seasonal mean reverting model with jumps
and Heston-type stochastic volatility is analyzed.

We consider, in this paper, a two-factor jump-diffusion
commodity model, where one of the factors is the com-
modity spot price and the other is the convenience yield.
These factors are often used in the commodity literature.
For example, [9, 10] propose affine models with these two
factors, though they do not consider jumps. Then, all the
functions can be easily estimated and the commodity deriva-
tives priced. However, there is not any empirical evidence
or consensus that affine models are the best models to
price commodity futures. Furthermore, the market prices
of risk are not observed in the markets. If we considered
other more realistic functions for the state variables or the
market prices of risk or even a nonparametric approach,
then, the model would not be affine anymore, a closed-
form solution could not be obtained, and, therefore, the
estimation of the market prices of risk would not be possible.
However, [11] shows a new approach to estimate the whole
functions of the model although a closed-form solution is
not known. They even apply it to a jump-diffusion model
where the jump follows a Normal distribution. Finally, they
estimate the whole functions with a nonparametric tech-
nique in order to avoid imposing arbitrary functions on the
model.
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Other authors have found seasonal patterns in commod-
ity markets and this fact has been taken into account in their
models; see [12–15].

In this paper, we price natural gas futures assuming
that the spot price follows a diffusion process and, then,
we also consider a jump-diffusion process with a Normal
jump size distribution as in [11] but for a higher prediction
period of time. Moreover, we also assume that the jump
size follows an Exponential distribution in order to make
some comparisons and analyze the role of the jump size
distribution. We find that for short maturities the Normal
distribution provides more accurate futures prices. However,
the Exponential distribution shows the lowest error for long
maturities. Furthermore, for longmaturities, themodels with
both distributions underprice the futures in the market,
but the futures prices with the Exponential distribution are
higher than with the Normal distribution. Moreover, they are
closer to the observed ones. Then, in order to complement
[11], we also price futures options when the jump is not taken
into account and when Normal as well as an Exponential
jump size distributions are considered. In this case, we
see that the differences between the prices are higher (in
particular for out of money options).

Futures prices are potentially a valuable source of infor-
mation on market expectations of asset prices. In fact,
financial investors use futures contracts to hedge against
commodity price risk. However, exploiting this information
is difficult in practice, because of the presence of a risk
premium between the current futures price and the expected
spot price of the underlying asset. Moreover, understanding
this premium is very important; see [16]. Therefore, in this
paper, we also show an out-of-sample analysis of the natural
gas futures risk premia. We find that the risk premium with
the Exponential distribution is negativemore times thanwith
the Normal distribution. In all the cases, we use natural gas
data traded at NYMEX and a nonparametric approach to
estimate the whole functions of the two-factor model.

The rest of the paper is organized as follows. Section 2
shows a two-factor jump-diffusion model to price com-
modity derivatives. Section 3 prices futures with a diffusion
model and a jump-diffusion model, when the jump size
follows a Normal as well as an Exponential distribution.Then
a comparison is made. Section 4 compares futures option
prices when the jump follows a Normal or an Exponential
distribution. Section 5 analyzes the futures risk premiumand,
finally, Section 6 concludes. All the implementation has been
done using MATLAB software.

2. The Valuation Model

In this section, we introduce a commodity model with two
state variables: the spot price and the convenience yield, for
pricing commodity derivatives; see also [11, 17]. We assume
that the spot price follows a jump-diffusion process, because
commodity prices usually suffer from abrupt changes in the
markets; see [1]. However, we assume that the convenience
yield is a diffusion process because its behaviour is not
affected by extreme changes; see, for example, [6].

Define (Ω,F, {F𝑡}𝑡≥0,P) as a complete filtered probabil-
ity space which satisfies the usual conditions where {F𝑡}𝑡≥0
is a filtration; see [18–20]. Let 𝑆 be the spot price and 𝛿
the instantaneous convenience yield. We assume that these
factors follow this joint jump-diffusion stochastic process:

𝑑𝑆 (𝑡) = 𝜇𝑆 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑡 + 𝜎𝑆 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑊𝑆 (𝑡)+ 𝑑𝐽 (𝑡) ,
𝑑𝛿 (𝑡) = 𝜇𝛿 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑡 + 𝜎𝛿 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑊𝛿 (𝑡) ,

(1)

where 𝜇𝑆 and 𝜇𝛿 are the drifts and 𝜎𝑆 and 𝜎𝛿 the volatilities.
Moreover, 𝑊𝑆 and 𝑊𝛿 are Wiener processes and the impact
of the jump is given by the compound Poisson process,𝐽(𝑡) = ∑𝑁(𝑡)𝑖=1 𝑌𝑖, with jump times (𝜏𝑖)𝑖≥1, where𝑁(𝑡) represents
a Poisson process with intensity 𝜆(𝑆, 𝛿) and 𝑌1, 𝑌2, . . . is a
sequence of identically distributed random variables with a
probability distribution Π. We assume that 𝑊𝑆 and 𝑊𝛿 are
independent of 𝑁, but the standard Brownian motions are
correlated with

[𝑊𝑆,𝑊𝛿] (𝑡) = 𝜌𝑡. (2)

We also suppose that the jump magnitudes and the jump
arrivals time are uncorrelated with the diffusion parts of the
processes. We assume that the functions 𝜇𝑆, 𝜇𝛿, 𝜎𝑆, 𝜎𝛿, 𝜆 andΠ satisfy suitable regularity conditions: see [20, 21]. Under the
above assumptions, a commodity futures price at time 𝑡 with
maturity at time𝑇, 𝑡 ≤ 𝑇, can be expressed as 𝐹(𝑡, 𝑆, 𝛿; 𝑇) and
at maturity it verifies that 𝐹(𝑇, 𝑆, 𝛿; 𝑇) = 𝑆.

We assume that the market is arbitrage-free. Then, there
exists an equivalent martingale measure, Q-measure, which
is known as the risk-neutral measure; see extendedGirsanov-
typemeasure transformation in [22].The state variables of the
model (1) under the risk-neutral measure are as follows:

𝑑𝑆 = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆 + 𝜆Q𝐸Q
𝑌 [𝑌1]) 𝑑𝑡 + 𝜎𝑆𝑑𝑊Q

𝑆

+ 𝑑𝐽Q (𝑡) ,
𝑑𝛿 = (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) 𝑑𝑡 + 𝜎𝛿𝑑𝑊Q

𝛿 ,
(3)

where 𝑊Q
𝑆 and 𝑊Q

𝛿 are the Wiener processes under the
risk-neutral measure and [𝑊Q

𝑆 ,𝑊Q
𝛿 ](𝑡) = 𝜌𝑡. The market

prices of risk associated with 𝑊𝑆 and 𝑊𝛿 Wiener processes
are 𝜃𝑊𝑆(𝑆, 𝛿) and 𝜃𝑊𝛿(𝑆, 𝛿), respectively. Finally, 𝐽Q(𝑡) =∑𝑁Q(𝑡)
𝑖=1 𝑌𝑖 −𝜆Q𝑡𝐸Q

𝑌[𝑌1] is the compensated compound Poisson
process underQ-measure, the intensity of the Poisson process𝑁Q(𝑡) is 𝜆Q(𝑆, 𝛿), and 𝐸Q denotes the expectation under the
Q-measure. Then, the futures price can be expressed as

𝐹 (𝑡, 𝑆, 𝛿; 𝑇) = 𝐸Q [𝑆 (𝑇) | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿] . (4)

Let𝑉(𝑡, 𝑆, 𝛿, 𝑇2; 𝑇1) be the price of a European call option
that matures on 𝑇1 on a futures contract that expires at 𝑇2,𝑇1 ≤ 𝑇2, and𝐾 is the strike price.Then, analogously to (4), an
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European commodity futures option is priced as the expected
discounted payoff under the Q-measure; see [6, 22]:

𝑉 (𝑡, 𝑆, 𝛿, 𝑇2; 𝑇1) = 𝐸Q [𝑒−∫𝑇1𝑡 𝑟(𝑢)𝑑𝑢
⋅max (𝐹 (𝑇1, 𝑆 (𝑇1) , 𝛿 (𝑇1) ; 𝑇2) − 𝐾, 0) | 𝑆 (𝑡)
= 𝑆, 𝛿 (𝑡) = 𝛿] ,

(5)

where 𝑟 denotes the instantaneous risk-free interest rate,
which is assumed to be constant. Moreover, 𝜏1 = 𝑇1 − 𝑡 and𝜏2 = 𝑇2−𝑇1 are thematurity of the option contract and futures
contract, respectively.

3. Valuation of Commodity Futures with
NYMEX Data

In this section, by means of an empirical application with
natural gas NYMEX data, we illustrate the advantages and
disadvantages of modelling the spot price with a jump-
diffusion process with an Exponential distribution and a
Normal distribution. In all the cases, we use the approach, the
nonparametric techniques and the in-sample data (January
2004–December 2014) as in [11], to estimate the risk-neutral
functions. However, we increase the out-of-sample period
where we price the natural gas derivatives from January till
July 2015.

In this empirical application, we use the model stated in
Section 2, where the factors are the commodity spot price and
the convenience yield. For simplicity and tractability and as
usual in the literature, we also assume that the distribution
of the jump size under Q-measure is known and equal to
the distribution under P-measure. This means that all risk
premium related to the jump is artificially absorbed by the
change in the intensity of the jump from 𝜆 under the physical
measure to 𝜆Q under the risk-neutral measure; see [8, 11,
23]. Moreover, we assume the jump size follows a Normal

distribution𝑁(0, 𝜎𝑌) (see [11]) or an Exponential distribution
Exp (𝜎𝑌) (see [6, 24, 25]) among others.

In order to price natural gas futures, we use daily natural
gas data from the NYMEX in Quandl platform. Natural gas
spot prices were obtained from the U.S. Energy Information
Administration (EIA). The sample period covers from Jan-
uary 2004 to July 2015. More precisely, we use data from
January 2004 to December 2014 to estimate the risk-neutral
functions as in [11] and, then, we keep data from January to
July 2015 to make our out-of-sample analysis of the futures
prices.

As it is well known in the literature, the convenience
yield is not observed in the markets. Then, following [9], we
approximate it by the following result

𝛿𝑇−1,𝑇 = 𝑟𝑇−1,𝑇 − 12 ln [ 𝐹 (𝑡, 𝑆, 𝛿; 𝑇)𝐹 (𝑡, 𝑆, 𝛿; 𝑇 − 1)] , (6)

where 𝑟𝑇−1,𝑇 denotes the forward interest rate between 𝑇 − 1
and 𝑇. We obtain this forward interest rate with two daily T-
Bill rates with maturities as close as possible to the futures
contracts’ ones in order to compute𝛿1,2, the one-month ahead
annualized convenience yield. The latter is identified with
the instantaneous convenience yield 𝛿0,1; see [9, 11] for more
details.

In order to estimate the risk-neutral functions of the
jump-diffusion models, we follow the same approach as [11].
Note that similar techniques have been proposed for interest
rate derivatives; see [26, 27].

Firstly, we obtain the compensated risk-neutral drift of
the spot price bymeans of the following equalitywhich relates
the futures slope in the origin with the drift of the spot in
the stochastic process under Q-measure; see [11] for more
detail:

𝜕𝐹𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡) = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆 + 𝜆Q𝐸𝑌 [𝑌1]) (𝑡) . (7)

We approximate the partial derivative by means of
numerical differentiation

𝜕𝑔𝜕𝑇
𝑇=𝑡 = −25𝑔 (𝑡) + 48𝑔 (𝑡 + Δ) − 36𝑔 (𝑡 + 2Δ) + 16𝑔 (𝑡 + 3Δ) − 3𝑔 (𝑡 + 4Δ)12Δ + 𝑂 (Δ4) , (8)

with futures prices with maturities equal to 1, 2, 3, and 4
months. Then, we estimate it by means of the Nadaraya-
Watson estimator; see [28] for more details on this estimation
technique.

Secondly, for the risk-neutral jump intensity, we use a
result proposed in [11] which relates the futures slope in the
originwith the spot price, spot price volatility, and parameters
of jump size distribution under Q-measure:

𝜕 (𝑆𝐹)𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡) = (2𝑆𝜕𝐹𝜕𝑇 + 𝜎2𝑆 + 𝜆Q𝐸𝑌 [𝑌21 ]) (𝑡) . (9)

Initially, [11] assumed that the jump size followed a
Normal distribution as 𝑌1  𝑁(0, 𝜎2𝑌), then, 𝐸𝑌[𝑌1] = 0,
and 𝜎2𝑌 = 𝐸𝑌[𝑌21 ]. Furthermore, it is well known that

𝐸𝑌 [𝑌2𝑘1 ] = 𝜎2𝑘𝑌 𝑘∏
𝑛=1

(2𝑘 − 1) ,
𝐸𝑌 [𝑌2𝑘−11 ] = 0, 𝑘 = 1, 2, 3, . . . .

(10)

In this paper we also assume that the jump size follows an
Exponential distribution as 𝑌1  Exp (𝜎𝑌); then:𝐸𝑌 [𝑌𝑘1 ] = 𝑘!𝜎𝑘𝑌, 𝑘 = 1, 2, 3, . . . . (11)
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This jump size distribution has also been considered by [29]
for the volatility and [30] for interest rates. This assumption
could be useful for pricing during periods in which positive
jumps are expected to dominate negative jumps, for example,
coming out of an economic crisis (see [30]) or in certain
economic regimes (see [31]).

With both distributions, the parameters of the jump size
distribution and the spot price volatility, 𝜎𝑆, are estimated by
means of a system of moment equations of a jump-diffusion
process (see [11, 32, 33]):

𝑀2𝑆 (𝑆, 𝛿)
= lim
Δ𝑡→0

1Δ𝑡𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡))2 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜎2𝑆 (𝑆, 𝛿) + 𝜆 (𝑆, 𝛿) 𝐸𝑌 [𝑌21 ] ,
𝑀𝑘𝑆 (𝑆, 𝛿)
= lim
Δ𝑡→0

1Δ𝑡𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡))𝑘 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜆 (𝑆, 𝛿) 𝐸𝑌 [𝑌𝑘1 ] , 𝑘 ≥ 3.

(12)

More precisely, we use moments 𝑀2𝑆 , 𝑀4𝑆 , and 𝑀6𝑆 for
the Normal distribution and moments 𝑀2𝑆 , 𝑀3𝑆 , and 𝑀4𝑆
for the Exponential distribution; see, for example, [34, 35],
respectively. Then, Nadaraya-Watson estimator is applied.
Oncewe estimate the parameters of the jump size distribution
and the spot volatility and approximate the previous partial
derivatives (𝜕𝐹/𝜕𝑇)|𝑇=𝑡 and (𝜕(𝑆𝐹)/𝜕𝑇)|𝑇=𝑡, we replace them
in (9). Then, we estimate the risk-neutral jump intensity of
the spot price with the Nadaraya-Watson estimator.

As the convenience yield follows a diffusion process, we
estimate its risk-neutral drift by means of

𝜕 (𝛿𝐹)𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡)
= (𝛿𝜕𝐹𝜕𝑇 + 𝑆 (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) + 𝜌𝜎𝑆𝜎𝛿) (𝑡) ; (13)

see [11]. In order to estimate the correlation, we use the
moment

𝑀1𝑆,𝛿 (𝑆, 𝛿) = lim
Δ𝑡→0

1Δ𝑡
⋅ 𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡)) (𝛿 (𝑡 + Δ𝑡) − 𝛿 (𝑡)) | 𝑆 (𝑡)
= 𝑆, 𝛿 (𝑡) = 𝛿] = 𝜌 (𝑆, 𝛿) 𝜎𝑆 (𝑆, 𝛿) 𝜎𝛿 (𝑆, 𝛿) ,

(14)

and theNadaraya-Watson estimator; see [36] formore details.
Later, we replace the estimated covariance and the approx-
imations of (𝜕𝐹/𝜕𝑇)|𝑇=𝑡 and (𝜕(𝛿𝐹)/𝜕𝑇)|𝑇=𝑡 in (13) and we
estimate the risk-neutral drift of the convenience yield by
means of the Nadaraya-Watson estimator.

Finally, the volatility of the convenience yield under P-
measure is equal to the volatility under Q-measure. Hence,

we estimate 𝜎𝛿 by means of the second order moment of a
diffusion process:

𝑀2𝛿 (𝑆, 𝛿) = lim
Δ𝑡→0

1Δ𝑡
⋅ 𝐸 [(𝛿 (𝑡 + Δ𝑡) − 𝛿 (𝑡))2 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜎2𝛿 (𝑆, 𝛿) ,

(15)

and Nadaraya-Watson estimator, with spot and convenience
yield data.

Up to this point, we have focused on the estimation
of the risk-neutral functions of jump-diffusion processes. If
we assume that the spot price follows a diffusion stochastic
process, the factors of the model will follow this joint
diffusion stochastic process under Q-measure:

𝑑𝑆 = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆) 𝑑𝑡 + 𝜎𝑆𝑑𝑊Q
𝑆 ,

𝑑𝛿 = (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) 𝑑𝑡 + 𝜎𝛿𝑑𝑊Q
𝛿 , (16)

with [𝑊Q
𝑆 ,𝑊Q
𝛿 ](𝑡) = 𝜌𝑡.

The estimation of these functions is made by means of
the approach in [37] and the Nadaraya-Watson estimator,
with the same natural gas data and numerical differentiation
approximation as the jump-diffusion model.

For analyzing the effect of the jumps on the natural gas
futures prices, we price natural gas futures with a diffusion
model (DM) as well as a jump-diffusion model with a
Normal jump size distribution (JDMN) and an Exponential
distribution (JMDExp). In order to price natural gas futures
it is necessary to solve a partial integrodifferential equation
or, equivalently, by means of Feynman-Kac Theorem the
expectation in (4). As we use nonparametric methods a
closed-form solution cannot be found. Recently, several
numerical methods have been developed to solve this kind
of problems; see [38, 39].

In this paper, we use the Monte Carlo simulation
approach because it is widely used by practitioners in the
markets, especially for multiple factor models because of its
simplicity and efficiency, [40]. More precisely, we consider
5000 simulations and a daily time step, Δ𝑡 = 1/250. We price
natural gas futures with maturities from 1 to 44 months and
we compare themwith those traded atNYMEXalong the out-
of-sample (January–July 2015). As measures of error, we use
the root mean square error (RMSE) and the percentage root
mean square error (PRMSE) for the out-of-sample:

RMSE = √ 1𝑛
𝑛∑
𝑡=1

(𝐹𝑡 − 𝐹𝑡)2,

PRMSE = √ 1𝑛
𝑛∑
𝑡=1

(𝐹𝑡 − 𝐹𝑡𝐹𝑡 )2,
(17)

where 𝑛 is the number of observations, 𝐹𝑡 is the futures price
traded at NYMEX, and 𝐹𝑡 is the predicted futures price with
the different models.
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Table 1: RMSE and PRMSE for the out-of-sample (January–July 2015) for DM, JDMN, and JDMExp models.

RMSE PRMSE
DM JDMN JDMExp DM JDMN JDMExp

F1 0.1582 0.1362 0.1398 5.7376 4.9326 5.0514
F6 0.1636 0.1744 0.1893 5.4787 5.9201 6.4430
F9 0.1472 0.1162 0.1531 4.5256 3.6732 4.9852
F12 0.2113 0.1529 0.1590 6.2670 4.6156 5.1349
F18 0.2651 0.2012 0.1466 7.7642 5.8706 4.5386
F24 0.3757 0.3172 0.2176 10.3069 8.6277 6.0603
F30 0.3826 0.3141 0.1630 10.7959 8.8260 4.5345
F36 0.4753 0.4199 0.3126 12.4319 10.8809 8.0727
F42 0.4295 0.3661 0.2254 11.8569 10.0716 6.1337
F44 0.5065 0.4413 0.2953 13.7741 11.9909 7.9929

Table 1 shows a summary of the RMSE and PRMSE of
the different models for the out-of-sample and for several
maturities. F1 is the futures price with a maturity of 1 month,
F6 with six months, and so on. In this table, we show that
for short maturities the RMSE are usually lower than for long
maturities. Besides, for very short maturities sometimes the
diffusion model prices natural gas futures quite accurately, as
for F6. However, for F1 and for maturities higher or equal to
9 months, jump-diffusion models provide lower errors than
the diffusion model as in [11]. Moreover, for maturities lower
than 18months the JDMN ismore accurate than the JDMExp,
but for long maturities (higher or equal to 18 months) the
results change and the JDMExp displays lower errors than the
JDMN. Therefore, depending on the maturity of the futures
to price, somemodels aremore accurate than others. As far as
the PRMSE is concerned, we reach the same conclusion but,
formaturities longer or equal than 36, the differences between
the relative error of the JDMN and JDMExp are higher.

Wenow turn our attention to the absolute errors along the
out-of-sample for somematurities. Figure 1 plots the absolute
errors of the considered models for some maturities such as
6, 18, and 44 months. We show only these maturities because
the behaviour of the rest is analogous. For example, for a
maturity of 6 months, we observe that the errors of the DM
are the lowest along the first months of the out-of-sample,
although it changes for the lastmonths. For longermaturities,
for example 18 months, the JDExp model provides the lowest
errors for a great number of months, followed by the JDN.
Finally, when we consider the longest available maturity, the
JDExp model is clearly the most accurate.

If we analyze the price behaviour along the out-of-sample,
we observe high changes for short maturities, but they
decrease when we increase the maturity. That is, the longer
the maturity, the lower the price variations along the time. In
order to illustrate this result, in Figure 2, we plot the futures
prices traded at NYMEX and those priced with the different
models considered in this paper (DM, JDMN, and JDMExp).
As we can see in this figure, the highest variations are for F6
and the lowest are for F44. Focusing on the estimated prices,
we observe that, in general, theDMprovides the lowest prices
and the JDMExp the highest prices for each maturity along
the time for some maturities. We observe that the NYMEX
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Figure 1: Absolute error of the futures prices for the out-of-sample
(January–July 2015) with maturities: 6, 18, and 44 months. The
absolute error for the DM is the red dotted line, the JDMN is the
blue dash line, and the JDMExp is the black solid line.

and estimated futures prices usually rise when the maturity
increases, but the rate of rising of the market prices is higher
than the rate of the estimated prices with the differentmodels.
We also see that the estimated models overprice the NYMEX
F6 futures in several months. However, in most of the cases,
the JDMN and the DM underprice the NYMEX futures for a
maturity of 18 months. Finally, for a maturity of 44 months,
the whole estimated models underprice the NYMEX futures.
Then, the higher the maturity the higher the possibility for
natural gas futures to be underpriced by the different models,
especially by the DM.

In conclusion, as in [11], the jump-diffusion models pro-
vide lower errors than the diffusion model apart from some
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Table 2: Ratios between the JDMN and JDMExp option prices.

Strike 95% 100% 105%𝜏1\𝜏2 3m 6m 9m 12m 3m 6m 9m 12m 3m 6m 9m 12m
3m 0.91 0.76 0.65 0.59 0.91 0.70 0.52 0.42 0.94 0.63 0.36 0.19
6m 0.88 0.73 0.63 0.58 0.88 0.68 0.52 0.43 0.90 0.62 0.40 0.24
9m 0.80 0.68 0.60 0.58 0.79 0.63 0.50 0.43 0.79 0.56 0.37 0.26
12m 0.80 0.69 0.62 0.60 0.78 0.63 0.51 0.46 0.78 0.57 0.40 0.29
short maturities. Hence, this fact supports the use of jump
processes whenmodelling the commodity price dynamics for
pricing natural gas futures. As far as the jump size distribution
is concerned, the JDMN prices are, in general, lower than
the JDMExp prices. This is consistent with the assumptions
made for the jump size distribution in Section 3. Under the
Normal distribution the average jump size is zero, whereas
under the Exponential distribution the average jump size is
positive. Therefore, average impact of the jumps on the spot
prices under the Normal distribution should be lower than
under the Exponential distribution. Moreover, the Normal
distribution provides the lowest error for maturities shorter
than or equal 12 months, but the Exponential distribution is
more accurate for longer maturities. This fact could be due
to the very low natural gas spot price during the prediction
period of time. Furthermore, investors in the market should
take care of the possible overpricing or underpricing of these
models depending on the maturity of the futures.

4. Valuation of Futures Options

In the previous section we have already seen the superiority
of the jump-diffusion models over the diffusion models for
pricing natural gas futures and that, for long maturities, the
model with an Exponential distribution is more accurate
than the other models. Hence, in this section we present the
effect of the different jump size distributions on a different
natural gas derivative: a futures option. In order to price this
European call option we use the same NYMEX data and
estimation methodology than in the previous section, but,
now, the Monte Carlo method approximates (5) with 5000
simulations and a daily time step (Δ𝑡 = 1/250).

We assume different option maturities, 𝜏1, such as 3, 6,
9, and 12 months, and different futures maturities, 𝜏2, equal
to 3, 6, 9, and 12 months. We also assume that the strike
price, which is a percentage of the natural gas spot price at
the moment of its pricing, is equal to 95%, 100%, and 105%.
Therefore, the options are priced in the money, at the money,
and out of the money, respectively.

As the instantaneous interest rate is not observable, we
use the three-month Treasury Bill rates of the US Federal
Reserve at the valuation moment as a proxy. In the term
structure literature, this Treasury Bill rate is also usually
considered as a proxy of the instantaneous interest rate; see,
for example, [33].

In this paper, we price the futures options the first day
of the out-of-sample data, that is, on January 3, 2015, and we
observe that the higher the strike price, the lower the option

F6

2.5

3

3.5

Observ
JDMN

JDMExp
DM

F1
8

2.8
3

3.2
3.4
3.6

Time
Jan Feb Mar Apr May Jun Jul

Time
Jan Feb Mar Apr May Jun Jul

Time
Jan Feb Mar Apr May Jun Jul

F4
4

3
3.2
3.4
3.6
3.8

4

Figure 2: Natural gas futures prices (January–July 2015) with
maturities: 6, 18, and 44 months. The NYMEX futures prices are the
red solid line, the DM is the green dashed dotted line, the JDMN is
the blue dash line, and the JDMExp is the black dotted line.

price. However, conclusions do not change if we consider
other different days of the out-of-sample for valuation.

As we do not have observations of European natural gas
option prices for different maturities, we compare the prices
when theNormal and Exponential jump sizes are considered.
In Table 2, we show some ratios between the JDMN and
JDMExp for different strike prices and maturities on January
3, 2015. As we can see, for options and underlying futures
with short maturities (3 months) the ratios are higher than90%. The main reason is that the futures prices with short
maturities are quite similar for both distributions, although
the futures prices with the Normal distribution are slightly
lower. However, as we increase the maturities, especially of
the futures, the ratios decrease considerably till 19%.This fact
is consistent with the high differences between the futures
prices with both distributions when the maturity increases.
Moreover, these differences are even higher because the
futures price is the underlying of the option. Therefore, we
conjecture that, in order to price futures options accurately,
other stochastic variables should be considered in the model,
such as the volatility or interest rates.
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This result can be very interesting for practitioners,
because they should take into account the fact that the
Exponential jump size distribution overprices option prices
with respect to the Normal distribution, which is consistent
with the results obtained in the previous section for jump-
diffusion futures prices. Finally, we see that the higher the
strike price the lower the ratio. Therefore, the highest price
differences can be found for the out of the money options.

5. Futures Risk Premium

The futures risk premium provides a link between natural gas
futures and expected spot prices and it is a keymeasure in risk
management. In particular, the term structure of commodity
risk premia supplies additional information about the role of
the net hedging pressure. Then, it is an important factor in
understanding the markets and it deserves great attention.

In the literature, the risk premium is defined as the
difference between the expected future spot price and the
futures price; see [25, 41] among others:

𝑅𝑃 = 𝐸 [𝑆 (𝑇) | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿] − 𝐹 (𝑡, 𝑆, 𝛿; 𝑇) . (18)

Therefore, the risk premium is the reward for holding a risk
rather than a risk-free investment; see [41]. In energymarkets,
the sign of the risk premium usually changes along the time,
with thematurity of the futures and even with themarket and
the commodity; see for example [42].

On the one hand, commodity consumersmay enter into a
long position in futures contracts, because theywant to insure
against future increases in the spot price, so they accept prices
over the expected spot price. On the other hand, commodity
producers may enter into a short position in futures contracts
because they wish to hedge their revenue risk. Since this
decision is taken in advance, they accept prices below the
expected spot price. Then, if the activity of consumers is
greater than that of producers, there will be an excess of
commercial participants looking to enter a long position. In
this case, the net hedging pressure theory establishes that the
futures pricewill be higher than the expected future spot price
to induce speculators to balance the market by taking a short
position. In contrast, if the hedging activity of producers is
greater than that of consumers, there will be an excess of
commercial participants looking to enter a short position.
Then, the expected future spot price will be higher than the
futures price to induce speculators to balance the market by
taking a long position.Therefore, the commodity futures risk
premia (in absolute value) can be seen as the return that
speculators expect to receive to compensate the market; see
[42].

In this section, we obtain the natural gas futures risk
premia for the out-of-sample (January–July 2015).We use the
natural gas futures prices traded at NYMEX for maturities
between 1 and 24 months, but we also need to calculate𝐸[𝑆(𝑇) | 𝑆(𝑡) = 𝑆, 𝛿(𝑡) = 𝛿]. In this case, the functions of
the stochastic processes (1) are estimated directly from the
moment conditions for the different jump distributions; see,
for example, [34] for the Normal distribution and [35] for the
Exponential distribution. The market prices of risk are not
taken into account because there is not a change from the
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Figure 3:The risk premium as a function of time tomaturity for the
JDMN and JDMExp models.

physical to the risk-neutral measure. Then, these estimated
functions are used to obtain 𝐸[𝑆(𝑇) | 𝑆(𝑡) = 𝑆, 𝛿(𝑡) = 𝛿]
by means of Monte Carlo simulation approach, with 5000
simulations and a daily time step (Δ𝑡 = 1/250).

Figure 3 shows the term structure of natural gas risk
premia with the Normal and the Exponential jump size
distributions, hereafter RPNormal and RPExp, respectively.
We calculate these values like the mean of the risk premia,
for each maturity, in the out-of-sample. In this figure, both
RPNormal and RPExp have, in general, the same behaviour
although the risk premium under the Normal jump size
distribution is always higher than the risk premium under
the Exponential distribution. This fact is consistent with
the mean of the distributions considered in each case.
Furthermore, as it can be seen in Figure 3, the risk premium
is positive for short maturities (approximately, up to 7 or
8 months for the Exponential and the Normal distribution,
resp.). Following the net hedging pressure theory, for these
short maturities the activity of the producers is higher than
the consumers activity and the risk premium is the average
return that speculators would receive by entering a long posi-
tion in the natural gas futuresmarkets and holding the futures
to expiration.Thismeans that the futures prices are below the
expected spot prices and the futures curve is said to be nor-
mally backwardated; see [43]. However, for maturities higher
than 7 or 8 months the risk premium starts to be negative. In
this case, the futures prices are above the expected spot prices
and, then, the curve is said to be in Normal contango; see
[43]. Following the net hedging pressure theory, consumers
have to offer an incentive to induce speculators to enter a
short position, and the absolute value of the risk premia is
the return that speculators expect to receive for balancing the
market.More precisely, in general, the higher thematurity the
more negative the risk premium and, then, speculators expect
to receive a higher compensation to balance the market.
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Figure 4: The risk premium for the JDMNmodel along the out-of-sample, for maturities 1, 9, 12, and 24 months.

In Figures 4 and 5, we plot the estimated risk premium
as a function of time when the jump size follows a Normal
and an Exponential distribution, respectively. These figures
show that there is mixed evidence of the sign of the risk
premium and, besides, the risk premia are strongly time-
varying. Hence, the activity of speculators is also time-
varying. In Figure 3 we saw that the risk premium for very
short maturities was positive; however, in Figure 4 we see
that it is not always positive but it is on average. Therefore,
in general, the futures price is a downward biased predictor
of the expected spot price for short maturities. However, for
longer maturities, we see that the risk premium is usually
negative, apart from maturities longer than 12 months for
the Exponential distribution and longer than 24 months for
the Normal distribution, where it is always negative. Then,
for maturities longer than 6 months, the futures price is an
upward biased predictor of the expected spot price as a whole.

6. Conclusions

In this paper, we make mainly two contributions. Firstly, we
apply the approach in [11] for pricing natural gas futures,

but we assume that the jump size follows an Exponential
distribution. We use the data and nonparametric techniques
to estimate all the risk-neutral functions of the model as
in [11]. Then, considering a higher out-of-sample period,
we show that considering a jump-diffusion model provides
lower errors than a diffusion model when pricing futures.
Furthermore,we also show that theNormal distribution is the
best assumption to price short maturity futures. However, the
Exponential distribution provides lower errors when pricing
long maturity futures.

The second contribution comes through the use of [11]
approach and data to price natural gas options and risk
premia.Wefind that, in general, themodel with the Exponen-
tial distribution overprices option prices with respect to the
Normal distribution. We think that, in order to price options
more accurately, other state variables should be taken into
account.

As far as the risk premia is concerned, we find that
this premium is negative more times with the Exponential
distribution than with the Normal distribution. These facts
should be taken into account when a jump-diffusion is
applied to price commodity futures or options.
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Figure 5: The risk premium for the JDMExp model along the out-of-sample, for maturities 1, 9, 12, and 24 months.

Both of these contributions open opportunities for fur-
ther work. On the one hand, we could consider that the dis-
tribution of the jump size underQ-measure is not equal to the
distribution underP-measure. In this case, we would have to
obtain an additional relation to estimate the parameter of the
jump size distribution under the risk-neutralmeasure.On the
other hand, it is straightforward to see that a more realistic
model should include the effect of seasonality, especially in
natural gas markets.
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in part by the GIR Optimización Dinámica, Finanzas
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