
Research Article
ILS Heuristics for the Single-Machine Scheduling
Problem with Sequence-Dependent Family Setup Times to
Minimize Total Tardiness

Vinícius Vilar Jacob and José Elias C. Arroyo

Department of Computer Science, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil

Correspondence should be addressed to José Elias C. Arroyo; jarroyo@dpi.ufv.br

Received 19 August 2016; Revised 15 September 2016; Accepted 19 September 2016

Academic Editor: Quanke Pan

Copyright © 2016 V. Vilar Jacob and J. E. C. Arroyo. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper addresses a single-machine scheduling problem with sequence-dependent family setup times. In this problem the jobs
are classified into families according to their similarity characteristics. Setup times are required on each occasion when themachine
switches from processing jobs in one family to jobs in another family. The performance measure to be minimized is the total
tardiness with respect to the given due dates of the jobs. The problem is classified as NP-hard in the ordinary sense. Since the
computational complexity associated with the mathematical formulation of the problem makes it difficult for optimization solvers
to deal with large-sized instances in reasonable solution time, efficient heuristic algorithms are needed to obtain near-optimal
solutions. In this work we propose three heuristics based on the Iterated Local Search (ILS) metaheuristic. The first heuristic is a
basic ILS, the second uses a dynamic perturbation size, and the third uses a Path Relinking (PR) technique as an intensification
strategy.We carry out comprehensive computational and statistical experiments in order to analyze the performance of the proposed
heuristics. The computational experiments show that the ILS heuristics outperform a genetic algorithm proposed in the literature.
The ILS heuristic with dynamic perturbation size and PR intensification has a superior performance compared to other heuristics.

1. Introduction

Scheduling is a very important decision-making process that
occurs in manufacturing systems. Scheduling problems deal
with the allocation of resources to jobs over given time
periods and its goal is to optimize one or more performance
measures.This type of problems has been thoroughly studied
since the mid-1950s [1]. Nowadays, scheduling problems
are one of the most studied problems because they have
great practical and theoretical importance. These problems
have many applications in several industries (like chemical,
metallurgic, and textile) and most of these problems belong
to the class ofNP-hard problems.

The scheduling problem focused on in this paper is stated
as follows. There is a set of 𝑛 jobs to be processed on a
single machine without interruption or preemption. Jobs are
classified into 𝐹 families and are available at time zero. Each
family 𝑙has 𝑛𝑙 jobs (𝑙 = 1, . . . , 𝐹), such that 𝑛1+𝑛2+⋅ ⋅ ⋅+𝑛𝐹 = 𝑛.

𝑓(𝑗) denotes the family of job 𝑗.The processing time (𝑝𝑗) and
due date (𝑑𝑗) of job 𝑗 are previously known. There is a family
setup time 𝑠𝑖𝑗 > 0 between jobs 𝑖 and 𝑗 if job 𝑗 is processed
immediately after job 𝑖 and 𝑓(𝑖) ̸= 𝑓(𝑗). If jobs 𝑖 and 𝑗 belong
to the same family (𝑓(𝑖) = 𝑓(𝑗)), 𝑠𝑖𝑗 = 0. The setup times are
sequence-dependent; that is, 𝑠𝑖𝑗 may not be equal to 𝑠𝑗𝑖, ∀𝑖, 𝑗,
𝑓(𝑖) ̸= 𝑓(𝑗).

Setup time is the time required to prepare the necessary
resource (machines) to perform a task (operation or job) [2].
Setup operations include obtaining tools, positioning work in
process material, return tooling, cleanup, setting the required
jigs and fixtures, adjusting tools, and inspecting material [1].
In the problem under study we do not consider the group
technology (GT) assumption; that is, a family of jobs is not
necessarily processed as a single batch [3]. Therefore a family
of jobs could be divided intomultiple nonconsecutive batches
in an optimal sequence and each of the batches incurs a setup
time.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2016, Article ID 9598041, 15 pages
http://dx.doi.org/10.1155/2016/9598041

http://dx.doi.org/10.1155/2016/9598041

2 Journal of Applied Mathematics

The goal of the problem is to find a production schedule
(sequence of jobs) that minimizes the total tardiness with
respect to the given due dates of the jobs. The tardiness of a
job 𝑗 (defined by 𝑇𝑗) is defined as the completion time of the
job (𝐶𝑗) minus the due date for the job if the job is completed
after the due date, and the tardiness is equal to zero if the
job is completed before the due date. 𝑇𝑗 can be expressed as
𝑇𝑗 = max (𝐶𝑗 − 𝑑𝑗, 0). If job 𝑗 is processed immediately after
job 𝑖, then 𝐶𝑗 = 𝐶𝑖 + 𝑝𝑗 if 𝑓(𝑖) = 𝑓(𝑗), and 𝐶𝑗 = 𝐶𝑖 + 𝑠𝑖𝑗 + 𝑝𝑗
if 𝑓(𝑖) ̸= 𝑓(𝑗). The total tardiness of jobs (objective function)
is computed as

TT =
𝑛

∑
𝑗=1

𝑇𝑗. (1)

The single-machine total tardiness (SMTT) problemwith
sequence-dependent family setup times is denoted by
1|STsd,𝑓| ∑𝑇𝑗 following the three-field notation 𝛼|𝛽|𝛾 pre-
sented by Graham et al. [4] and adapted by Allahverdi et
al. [1], where 1 is the single-machine environment, STsd,𝑓
is information of sequence-dependent family or batch setup
time, and∑𝑇𝑗 is the total tardiness objective function.

The total tardiness criterion is very important in manu-
facture systems because several costs may exist when a job
is delivered with tardiness. Among these the following can
be quoted: contractual penalties, loss of credibility resulting
in a high probability of losing a client for some or for all the
possible futures jobs, anddamage in the company’s reputation
that may distance other clients.

Since the SMTT problem without sequence-dependent
setup times is a binaryNP-hard problem [5], it follows that
the problem 1|STsd,𝑓| ∑𝑇𝑗 considered in this paper is at least
NP-hard in the ordinary sense [6].

Scheduling problems that consider explicitly setup times
are of great importance in manufacturing systems. Extensive
literature reviews for these problems, considering different
shop environments, were presented by [1, 2].The SMTTprob-
lem with sequence-dependent setup times (without consid-
ering the grouping of jobs into families), denoted by
1|STsd| ∑𝑇𝑗, is one of the most researched topics in the
scheduling literature. For this problem there aremany studies
on metaheuristics such as genetic algorithms [7–10], Sim-
ulated Annealing [11], Ant Colony Optimization [12, 13],
Greedy Randomized Adaptive Search Procedure [14, 15],
Iterated Local Search [16], and iterated greedy [17]. There are
also some studies on exact algorithms for 1|STsd| ∑𝑇𝑗 [18–21].

Some studies were realized on single-machine schedul-
ing problems with family consideration and sequence-
independent family setup times (ST𝑠𝑖,𝑓). To better understand
ST𝑠𝑖,𝑓, let us suppose that the jobs 𝑖, 𝑗, and 𝑘 belong to differ-
ent families. If job 𝑖 (or 𝑗) is processed immediately before job
𝑘, then𝐶𝑘 = 𝐶𝑖+𝑠𝑘+𝑝𝑘 (or𝐶𝑘 = 𝐶𝑗+𝑠𝑘+𝑝𝑘), where 𝑠𝑘 is the
considered sequence-independent setup time. Note that the
setup time 𝑠𝑘 does not depend on the family 𝑓(𝑖) (or 𝑓(𝑗))
previously processed; it only depends on family 𝑓(𝑘). Kacem
[22] addressed the 1|ST𝑠𝑖,𝑓| ∑𝑇𝑗 problem and proposed a set
ofmethods to obtain lower bounds for the optimal total tardi-
ness. Schaller [23] developedBranch andBound andheuristic
algorithms for the 1|ST𝑠𝑖,𝑓| ∑𝑇𝑗 problem. Exact methods
were used by Pan and Su [24] and Baker andMagazine [25] to

solve the 1|ST𝑠𝑖,𝑓|𝐿max problem, where 𝐿max is the maximum
lateness. To minimize the total earliness and tardiness cost
(∑𝐸𝑗 + ∑𝑇𝑗), exact and heuristic methods were developed
by Schaller and Gupta [26]. Gupta and Chantaravarapan [27]
considered the 1|ST𝑠𝑖,𝑓| ∑𝑇𝑗 problem where jobs in each
family are processed together; that is, the group technology
assumption is considered. These authors provided a mixed-
integer linear programming (MILP)model capable of solving
small-sized problems.

Single-machine scheduling problems involving sequence-
dependent family setup times have been much less studied
[2]. van der Veen et al. [28] addressed the 1|STsd,𝑓|𝐶max prob-
lem, where 𝐶max is the maximum completion time (makes-
pan). These authors proposed a polynomial time algorithm
for this problem. For the problem 1|STsd,𝑓| ∑𝐶𝑗, where∑𝐶𝑗
is the total completion time, Karabati and Akkan [29] pro-
posed a Branch andBound algorithm. Jin et al. [30] addressed
the 1|STsd,𝑓|𝐿max problem and developed a Simulated
Annealing heuristic. For the same problem, Jin et al. [31, 32]
proposed dominance relations and Tabu Search heuristics.
Sels and Vanhoucke [33] considered the 1|𝑟𝑗, STsd,𝑓|𝐿max
problem where each job 𝑗 has a release time 𝑟𝑗 (the earliest
time at which the job can star its processing).They developed
a genetic algorithmwith local search. Recently, Herr andGoel
[34] addressed a SMTT problem with sequence-dependent
family setup times and resource constraints; that is, each
job requires a certain amount of resource that is supplied
through upstream processes. Schedules must be generated in
such a way that the total resource demand does not exceed
the resource supply up to any point in time.This problem can
be denoted as 1|𝑞𝑗, STsd,𝑓| ∑𝑇𝑗, where 𝑞𝑗 is the quantity of
a resource required by the machine to process the job 𝑗. The
authors proposed a MILP model and a heuristic algorithm
to solve the problem.

To the best of our knowledge, there is only a paper in the
literature discussing the 1|STsd,𝑓| ∑𝑇𝑗 problem. Chantarava-
rapan et al. [6] propose a MILP model and a hybrid genetic
algorithm (HGA) for this problem. The effectiveness of the
HGA was evaluated by instances with up to 60 jobs. The
experiments presented in [6] showed that HGA performs
better than other heuristics.

Motivated by the computational complexity and the
practical relevance of the 1|STsd,𝑓| ∑𝑇𝑗 problem, in this work
we test the applicability of the metaheuristic Iterated Local
Search (ILS) to find good quality solutions for realistic size
problem instances. We use ILS because it is a simple and gen-
erally applicable heuristic that has proved to be very effective
for solving a wide range of difficult combinatorial optimiza-
tion problems, especially vehicle routing problems [35–39]
and scheduling problems [40–45]. Furthermore, ILS has very
few control parameters and it does not require specific knowl-
edge of the problem as in sophisticated heuristic algorithms.

The traditional ILS consists of an iterative process that
combines a perturbation phase and a local search phase [46,
47]. During the perturbation phase, the current solution is
modified in a probabilistic fashion similar to the mutation
operator used in genetic algorithms. In the local search phase,
the perturbed solution is improved leading to a local min-
imum solution. An acceptance criterion is used to decide

Journal of Applied Mathematics 3

whether the search continues from the local minimum
solution or from the one that served as the starting point of
the most recent perturbation phase.

Besides the standard ILS heuristic, this paper presents
other contributions: the ILS is enriched by two special
features. The first feature consists in using a variable per-
turbation size to escape from local optimal solutions. This
feature is inspired from the Variable Neighborhood Search
(VNS) heuristic that systematically changes the neighbor-
hood within the search [48]. The perturbation size at the
beginning is fixed at 𝑑 = 1 and incremented by 1, if the solu-
tion is not improved until a 𝑑max value (themaximumpertur-
bation size). If a solution improves in any perturbation size,
it is again fixed at 𝑑 = 1. The second feature consists in using
a Path Relinking (PR) technique [49] to intensify the search
of good solutions. PR generates new solutions by exploring
paths that connect elite solutions.The performance of our ILS
heuristic with the different features is carefully analyzed.

The remainder of the paper is organized as follows. In
Section 2, we present the mathematic formulation for the
problem under study. In Section 3, we describe all the phases
of the proposed ILS heuristics. In Section 4, we show the
design of instances and the calibration of our heuristics and
report the computational results. Finally, in Section 5, we
conclude this paper and give future directions.

2. Problem Model

In this section we present a mixed-integer linear program-
ming (MILP)model of the 1|STsd,𝑓| ∑𝑇𝑗 problem.Thismath-
ematical model is originally from [6]. The resulting MILP is
used to assess the performance of the developed heuristics
for small-size problem instances. The goal of the model is
to determine the optimal sequence of jobs to be processed
on the single machine. A sequence is a permutation of 𝑛
jobs (𝑗1, 𝑗2, . . . , 𝑗𝑛), where 𝑗𝑘 is the 𝑘th job of the processing
sequence (i.e., 𝑗𝑘 is the job processed in the position 𝑘).

The following parameters are used in the model (input
data):

𝐹 = number of families,
𝑛𝑙 = number of jobs in family 𝑙 (𝑙 = 1, . . . , 𝐹),
𝑛 = total number of jobs (𝑛 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝐹),
𝑑𝑗𝑙 = due date of the 𝑗th job in family 𝑙 (𝑙 = 1, . . . , 𝐹,
𝑗 = 1, . . . , 𝑛𝑙),
𝑝𝑗𝑙 = processing time of the 𝑗th job in family 𝑙 (𝑙 =
1, . . . , 𝐹, 𝑗 = 1, . . . , 𝑛𝑙),
𝑠𝑙𝑞 = sequence-dependent setup time of preceding
family 𝑙 and following family 𝑞 (𝑙, 𝑞 = 1, . . . , 𝐹),
𝑠0𝑞 = setup time of family 𝑞 before the first position
(𝑞 = 1, . . . , 𝐹).

The following decision variables are used within the
model:

𝑋𝑗𝑙𝑘 = { 1, if job 𝑗 from family 𝑙 is processed in position 𝑘.
0, otherwise.

𝑌𝑙𝑞𝑘 = { 1, if setup time 𝑠𝑙𝑞 is needed before a job at position 𝑘.
0, otherwise.

𝑌0𝑞1 = { 1, if setup time 𝑠0𝑞 is needed before the first job.
0, otherwise.

𝐶𝑘 = completion time of job at position 𝑘.
𝑇𝑘 = tardiness of job at position 𝑘.

The resulting MILP model is as follows:

min TT =
𝑛

∑
𝑘=1

𝑇𝑘 (2)

s.t.
𝐹

∑
𝑙=1

𝑛𝑙

∑
𝑗=1

𝑋𝑗𝑙𝑘 = 1, 𝑘 = 1, . . . , 𝑛, (3)

𝑛

∑
𝑘=1

𝑋𝑗𝑙𝑘 = 1, 𝑗 = 1, . . . , 𝑛𝑙, 𝑙 = 1, . . . , 𝐹, (4)

𝑛𝑞

∑
𝑗=1

𝑋𝑗𝑞1 = 𝑌0𝑞1, 𝑞 = 1, . . . , 𝐹, (5)

𝐶1 =
𝐹

∑
𝑞=1

𝑠0𝑞𝑌0𝑞1 +
𝐹

∑
𝑞=1

𝑛𝑞

∑
𝑗=1

𝑝𝑞𝑗𝑋𝑞𝑗1, (6)

𝑛𝑞

∑
𝑗=1

𝑋𝑗𝑞𝑘 +
𝑛𝑙

∑
𝑗=1

𝑋𝑗𝑙(𝑘−1) − 𝑌𝑙𝑞𝑘 ≤ 1,

𝑘 = 2, . . . , 𝑛, 𝑙 = 1, . . . , 𝐹, 𝑞 = 1, . . . , 𝐹, 𝑙 ̸= 𝑞,

(7)

𝐶𝑘 = 𝐶𝑘−1 +
𝐹

∑
𝑞=1

𝐹

∑
𝑙=1

𝑠𝑙𝑞𝑌𝑙𝑞𝑘 +
𝐹

∑
𝑞=1

𝑛𝑞

∑
𝑗=1

𝑝𝑗𝑞𝑋𝑗𝑞𝑘,

𝑘 = 2, . . . , 𝑛,

(8)

𝑇𝑘 ≥ 𝐶𝑘 −
𝐹

∑
𝑙=1

𝑛𝑙

∑
𝑗=1

𝑑𝑗𝑙𝑋𝑗𝑙𝑘, 𝑘 = 1, . . . , 𝑛, (9)

𝐶𝑘, 𝑇𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑛, (10)

𝑋𝑗𝑙𝑘 ∈ {0, 1} ,

𝑙 = 1, . . . , 𝐹, 𝑗 = 1, . . . , 𝑛𝑙, 𝑘 = 1, . . . , 𝑛,
(11)

𝑌𝑙𝑞𝑘 ∈ {0, 1} ,

𝑌0𝑞1 ∈ {0, 1} ,

𝑘 = 2, . . . , 𝑛, 𝑙 = 1, . . . , 𝐹, 𝑞 = 1, . . . , 𝐹.

(12)

The objective function (the total tardiness) to be mini-
mized is defined in (2). Constraint set (3) assures that one
position of the sequence can contain only one job. Constraint
set (4) guarantees that each job should be processed only
once. Constraint sets (5) and (6) calculate the completion
time of job in the first position of the sequence (𝐶1).
Constraint set (5) controls the setup time of the first position,
resulting in the completion time of the first position in
(6). Constraint sets (7) and (8) calculate the completion
times from the second position to the last position of the
sequence. For any two consecutive jobs, constraint set (7)

4 Journal of Applied Mathematics

output: Best Solution 𝑆∗
(1) begin
(2) 𝑆 fl CONSTRUCTION();
(3) 𝑆 fl LOCAL SEARCH(𝑆, 𝛾);
(4) 𝑆∗ = 𝑆; //the best solution
(5) while stop condition do
(6) 𝑆1 fl PERTURBATION(𝑆, 𝑑);
(7) 𝑆2 fl LOCAL SEARCH(𝑆1, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒);
(8) if 𝑓(𝑆2) < 𝑓(𝑆∗) then
(9) 𝑆∗ fl 𝑆2;
(10) if 𝑓(𝑆2) < 𝑓(𝑆) then
(11) 𝑆 fl 𝑆2;
(12) else
(13) 𝑆 fl ACCEPTANCE CRITERION(𝑆, 𝑆2, 𝛽);
(14) return 𝑆∗

Algorithm 1: ILS BASIC(𝑑, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽, 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛).

checkswhether or not the preceding job and the following job
are from the same family. If so, there is no setup time between
them (𝑌𝑙𝑞𝑘 = 0). Otherwise, setup time 𝑠𝑙𝑞 exists (𝑌𝑙𝑞𝑘 =
1). Constraint (9) computes the tardiness value (𝑇𝑘) of jobs
at each position 𝑘. Constraints (10) represent nonnegativity
conditions of the decision variables 𝐶𝑘 and 𝑇𝑘, while con-
straints (11) and (12) ensure that 𝑋𝑗𝑙𝑘 and 𝑌𝑙𝑞𝑘 are binary
variables.

3. Proposed ILS Heuristics

To solve the 1|STsd,𝑓| ∑𝑇𝑗 problem, in this section, we pro-
pose three heuristics based on the Iterated Local Search (ILS)
metaheuristic. ILS is a simple and generally applicable meta-
heuristic that iteratively applies a perturbation procedure as a
diversification mechanism and a local search (LS) as an
improvement heuristic. At each iteration, a new initial solu-
tion 𝑆1 is generated by randomly performing an appropriate
modification, called perturbation, to a good locally optimal
solution previously found (current solution). Instead of
generating a new initial solution from scratch, the pertur-
bation mechanism generates a promising initial solution by
retaining part of the structure that made the current solution
a good solution.The perturbed solution 𝑆1 is improved by the
LS heuristic obtaining a new solution 𝑆2. The solution 𝑆2 is
accepted as the new current solution under some conditions
defined by the acceptance criteria. A detailed explanation of
the ILS metaheuristic can be found in [47].

The first proposed heuristic, called ILS BASIC, is a stan-
dard implementation of ILS. The pseudocode of ILS BASIC
is described in Algorithm 1. To implement the basic
ILS algorithm, four procedures are specified: (i) CON-
STRUCTION, where an initial solution is constructed; (ii)
LOCAL SEARCH, which improves the solution initially
obtained and the perturbed solution; (iii) PERTURBATION,
where a new starter point is generated through a perturbation
of the current solution; (iv) ACCEPTANCE CRITERION,
which determines from which solution the search should
continue. The best solution 𝑆∗ found over all iterations is
returned by the ILS algorithm.

output: Best solution 𝑆∗
(1) begin
(2) 𝑆 fl CONSTRUCTION();
(3) 𝑆 fl LOCAL SEARCH(𝑆, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒);
(4) 𝑑 fl 1;
(5) 𝑐𝑜𝑛𝑡 fl 0;
(6) 𝑆∗ fl 𝑆; //the best solution
(7) while stop condition do
(8) 𝑆1 fl PERTURBATION(𝑆, 𝑑);
(9) 𝑆2 fl LOCAL SEARCH(𝑆1, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒);
(10) if 𝑓(𝑆2) < 𝑓(𝑆∗) then
(11) 𝑆∗ fl 𝑆2;
(12) 𝑐𝑜𝑛𝑡 fl 0;
(13) 𝑑 fl 1;
(14) else
(15) 𝑐𝑜𝑛𝑡 fl 𝑐𝑜𝑛𝑡 + 1;
(16) if 𝑐𝑜𝑛𝑡 mod 𝑁 = 0 then
(17) 𝑑 fl min(𝑑 + 1, 𝑑max);
(18) if 𝑓(𝑆2) < 𝑓(𝑆) then
(19) 𝑆 fl 𝑆2;
(20) else
(21) 𝑆 fl ACCEPTANCE CRITERION(𝑆, 𝑆2, 𝛽);
(22) return 𝑆∗

Algorithm 2: ILS DP(𝑁, 𝑑max, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽, 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛).

Our ILS BASIC algorithm has four input parameters: 𝑑,
𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽, and 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. Parameter 𝑑 defines the
perturbation size. Parameter 𝛾 is used to reduce the size of the
neighborhood in the LS procedure (this parameter defines
the probability to generate a neighbor solution). 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒
defines the way of selecting the next neighbor solution in the
local search process (two selection strategies are tested: first-
improvement and best-improvement). Parameter 𝛽 is used in
the ACCEPTANCE CRITERION (𝛽 defines the probability
to accept aworse solution).The iterations of the ILS algorithm
are computed until a stopping condition (defined by the
parameter 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖t𝑖𝑜𝑛) is satisfied.

It is important to mention that the perturbation param-
eter 𝑑 used in the ILS BASIC algorithm is static; that is,
𝑑 is fixed a priori before the beginning of the ILS search.
The performance of the algorithm strongly depends on the
intensity of the perturbation mechanisms. If it is small, not
many new solutions will be explored, while if it is too large, it
will adopt almost randomly starting solutions.

The second proposed heuristic, called ILS DP, improves
ILS BASIC by using a dynamic and adaptive perturbation;
that is, the value of 𝑑 (perturbation size) is defined dynam-
ically during the search according to updating of the best
solution found by the algorithm. ILS DP algorithm, besides
using the parameters 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, and 𝛽 of ILS BASIC, uses
two new parameters: 𝑁 and 𝑑max. 𝑁 controls the increment
frequency of 𝑑, and 𝑑max defines the maximum value for
𝑑. The steps of ILS DP are summarized in Algorithm 2. In
Step (2), an initial solution is constructed and it is improved
by local search (LS) procedure (Step 3). In Step (4) the
perturbation size is initialized (𝑑 = 1). The iterations of the
algorithm ILS DP are computed in Steps (7) to (21) until

Journal of Applied Mathematics 5

output: Best solution 𝑆∗
(1) begin
(2) 𝑆 fl CONSTRUCTION();
(3) 𝑆 fl LOCAL SEARCH(𝑆, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒);
(4) 𝑑 fl 1;
(5) 𝑐𝑜𝑛𝑡 fl 0;
(6) 𝑆∗ fl 𝑆; //the best solution
(7) 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 fl {𝑆∗};
(8) while stop condition do
(9) 𝑆1 fl PERTURBATION(𝑆, 𝑑);
(10) 𝑆2 fl LOCAL SEARCH(𝑆1, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒);
(11) 𝑆3 fl Randomly select a solution from 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡;
(12) 𝑆4 fl PATH RELINKING(𝑆2, 𝑆3);
(13) 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 fl UPDATE ELITE SET(𝑆4, 𝑛𝐸);
(14) if 𝑓(𝑆4) < 𝑓(𝑆∗) then
(15) 𝑆∗ fl 𝑆4;
(16) 𝑐𝑜𝑛𝑡 fl 0;
(17) 𝑑 fl 1;
(18) else
(19) 𝑐𝑜𝑛𝑡 fl 𝑐𝑜𝑛𝑡 + 1;
(20) if 𝑐𝑜𝑛𝑡 mod 𝑁 = 0 then
(21) 𝑑 fl min(𝑑 + 1, 𝑑max);
(22) if 𝑓(𝑆4) < 𝑓(𝑆) then
(23) 𝑆 fl 𝑆4;
(24) else
(25) 𝑆 fl ACCEPTANCE CRITERION(𝑆, 𝑆4, 𝛽);
(26) return 𝑆∗

Algorithm 3: ILS DP+PR(𝑁, 𝑑max, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽, 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖-
𝑡𝑖𝑜𝑛, 𝑛𝐸).

a stopping condition is satisfied. During each iteration, the
current solution 𝑆 is perturbed (Step 8) and improved by local
search, obtaining a solution 𝑆2 (Step 9). In Steps (10) to (13),
if solution 𝑆2 improves the best solution 𝑆∗ obtained so far,
the perturbation size is set to its lowest value (𝑑 = 1). If the
best solution is not improvedduring𝑁 consecutive iterations,
the perturbation size is incremented (Steps 15 to 17). The
maximum value of 𝑑 is 𝑑max. In Steps (18) to (21), if solution
𝑆2 improves the current solution 𝑆, it is accepted as the new
current solution; otherwise solution 𝑆2 is accepted if it meets
the acceptance criterion.

The third proposed heuristic, named ILS DP+PR, is an
extension of the second heuristic. ILS DP+PR combines ILS
and Path Relinking (PR) generating a hybrid heuristic. PR
is an approach that generates new solutions by exploring
trajectories that connect high-quality solutions [50]. PR uses
a set of 𝑛𝐸 high-quality solutions (𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡). We adapted PR
in the context of ILS as a form of intensification, which
consists in finding a path between the solution returned by
the LS procedure and an elite solution. A general pseudocode
description of ILS DP+PR is presented in Algorithm 3. The
algorithm has an additional parameter: 𝑛𝐸 (the maximum
size of the elite set). The algorithm ILS DP+PR differs from
ILS DP in the following steps. In Step (7), the elite set
EliteSet is initialized with the best solution 𝑆∗ obtained at
the beginning of the algorithm. During each iteration, in
Step (12), the PATH RELINKING intensification is applied
between the solution 𝑆2 (returned by local search) and the

Table 1: Input data for an instance with 7 jobs and 2 families.

(a) Families, due dates, and processing times

Job 𝑗 1 2 3 4 5 6 7
𝑓(𝑗) 1 2 1 2 2 1 2
𝑑𝑗 2 7 18 11 8 15 3
𝑝𝑗 1 2 4 2 4 3 2

(b) Setup times between families

𝑠𝑖𝑘 1 2
1 0 1
2 2 0

solution 𝑆3 selected randomly from 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 (Step 11). The
PR returns the best solution found (𝑆4). In Step (13), the elite
set is updated with solution 𝑆4.

The next subsections provide a detailed explanation of
the main components that are used in the proposed ILS
heuristics.

3.1. Representation of a Solution. A solution (schedule) of the
1|STsd,𝑓| ∑𝑇𝑗 problem is represented by a permutation of 𝑛
jobs. For an instance with 𝑛 = 7 and 𝐹 = 2, in Table 1 is pre-
sented an example of an input data. For each job 𝑗, the family,
processing time, and due date are presented in Table 1(a).The
setup times between the families are shown in Table 1(b).

For the schedule 𝑆 = {7, 1, 5, 4, 2, 6, 3}, illustrated in
Figure 1, the completion time and tardiness of each job are
𝐶7 = 2, 𝐶1 = 5, 𝐶5 = 10, 𝐶4 = 12, 𝐶2 = 14, 𝐶6 = 19, 𝐶3 = 23
and 𝑇7 = 0, 𝑇1 = 3, 𝑇5 = 2, 𝑇4 = 1, 𝑇2 = 7, 𝑇6 = 4, 𝑇3 = 5,
respectively. Therefore, the total tardiness for this schedule is
TT(𝑆) = 22.We can see that the schedule 𝑆 forms four batches
and three setup times are required (𝑠21, 𝑠12, and 𝑠21). In this
example, setup time is not considered at the beginning of the
sequence.

3.2. Construction of the Initial Solution. The CONSTRUC-
TION procedure used by the ILS algorithms is based on
the NEH heuristic [51]. In this work, to generate an initial
solution, we adapt the NEH heuristic for single-machine
scheduling and total tardiness minimization. In this heuristic
first, the jobs are arranged in nondecreasing order of the due
dates (EarliestDueDate dispatching rule) forming an ordered
list of jobs 𝐽 = {𝑗1, . . . , 𝑗𝑛}.The first job of 𝐽 is selected to form
a partial sequence 𝑆 (𝑆 = {𝑗1}). For each 𝑖 = 2, . . . , 𝑛, the next
job 𝑗𝑖 of 𝐽 is inserted in all possible positions of 𝑆 generating
𝑖 partial sequences. For example, for 𝑖 = 2, we obtain two
partial sequences by inserting job 𝑗2 in the two positions of
𝑆 = {𝑗1}: {𝑗2, 𝑗1} and {𝑗1, 𝑗2}. The best partial sequence (in
relation to the partial total tardiness) is selected to replace 𝑆.
The heuristic finishes when a complete sequence 𝑆 is obtained
(i.e., all the jobs of 𝐽 were inserted into 𝑆).

3.3. Local Search. TheLOCAL SEARCHprocedure is used to
improve a solution 𝑆 (which can be the initial solution or the
perturbed solution) and is based on the insertion neighbor-
hood.This procedure is shown in Algorithm 4.The iterations

6 Journal of Applied Mathematics

output: Improved solution 𝑆
(1) begin
(2) 𝑖𝑚𝑝𝑟𝑜V𝑒 fl true;
(3) while 𝑖𝑚𝑝𝑟𝑜V𝑒 do
(4) 𝑖𝑚𝑝𝑟𝑜V𝑒 fl false;
(5) 𝐽 fl {𝑗1, . . . , 𝑗𝑛} set of jobs determined at random;
(6) for 𝑖 fl 1 to 𝑛 do
(7) 𝑗 fl randomly select a job from 𝐽;
(8) 𝐽 fl 𝐽 − {𝑗};
(9) if rand(0 . . . 1) ≤ 𝛾 then
(10) 𝑆󸀠 fl best solution obtained by inserting job 𝑗 in all position of 𝑆;
(11) if 𝑓(𝑆󸀠) < 𝑓(𝑆) then
(12) 𝑆 fl 𝑆󸀠;
(13) 𝑖𝑚𝑝𝑟𝑜V𝑒 fl true;
(14) if 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1 then
(15) Go to step (4) /∗ First Improvement ∗/
(16) return 𝑆

Algorithm 4: LOCAL SEARCH(𝑆, 𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 2 345 67

T1 = 3 T5 = 2 T4 = 1 T2 = 7 T6 = 4 T3 = 5T7 = 0

s12 s21s21

Figure 1: A schedule S = {7, 1, 5, 4, 2, 6, 3}.

of the local search algorithm are determined in Steps (3)
to (15). In each iteration, neighbor solutions of the current
sequence 𝑆 are constructed by considering the set 𝐽 of all jobs.
Each job 𝑗 is removed from the current sequence (at random
andwithout repetition (Steps 7 and 8)) and then inserted into
all possible 𝑛−1 positions of 𝑆 (Step 10).The current solution
𝑆 is replaced by the best solution (𝑆󸀠) among the 𝑛−1 possible
ones, only if an improvement of 𝑆 can be obtained (Steps 11
and 12). If 𝛾 = 1.0, the entire neighborhood is evaluated;
that is, all jobs are selected to be inserted in all possible
𝑛 − 1 positions. In this case, the size of the neighborhood is
(𝑛−1)2.The parameter 𝛾 defines the job selection probability.
To reduce the size of the neighborhood, we can use 𝛾 < 1.0.
We also test two strategies to select the solution to be explored
in next iteration: first-improvement and best-improvement. If
𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1 (Step 14), the selection strategy is the first-
improvement; otherwise, it is the best-improvement. Note that,
with the first-improvement strategy (𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1), a new
iteration is started from the first improved solution 𝑆󸀠. The
iterations of the LOCAL SEARCH procedure are repeated
while there is improvement in the current solution 𝑆 (Steps
3–15); that is, the procedure ends when the solution is a local
optimum with respect to the insertion neighborhood.

3.4. Perturbation. The goal of the perturbation method in
an ILS heuristic is escape from a local optimal solution. In
this work, we used a perturbation mechanism based on jobs
exchanges. The perturbation size (parameter 𝑑) defines the

number of exchanges to be made. To perturb a solution 𝑆, a
position 𝑘 (1 ≤ 𝑘 ≤ 𝑛−2𝑑+1) is first randomly chosen.Then,
exchanges are applied between the jobs of positions 𝑘 + 𝑖 and
𝑘+2𝑑+1−𝑖 (𝑖 = 0, . . . , 𝑑).That is, the PERTURBATION pro-
cedure executes𝑑+1 exchanges. For example, let us consider a
schedule with 𝑛 = 8 jobs, 𝑆 = {𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗5, 𝑗6, 𝑗7, 𝑗8}.
Let 𝑘 = 3 be a position randomly chosen. For 𝑑 = 1, two
pairs of jobs are exchanged: (𝑗3, 𝑗6) and (𝑗4, 𝑗5). For 𝑑 = 2,
three pairs of jobs are exchanged: (𝑗3, 𝑗8), (𝑗4, 𝑗7), and (𝑗5, 𝑗6).
For 𝑑 = 1 and 𝑑 = 2, the perturbed schedules are 𝑆󸀠 =
{𝑗1, 𝑗2, 𝑗6, 𝑗5, 𝑗4, 𝑗3, 𝑗7, 𝑗8} and 𝑆󸀠󸀠 = {𝑗1, 𝑗2, 𝑗8, 𝑗7, 𝑗6, 𝑗5, 𝑗4, 𝑗3},
respectively.

In ILS BASIC algorithm, parameter 𝑑 has a fixed value. In
ILS DP and ILS DP+PR, the value of 𝑑 varies in the interval
[1, 𝑑max], where 𝑑max is a parameter to be tuned, such that
𝑑max ≤ (𝑛/2 − 1).

3.5. Path Relinking Intensification. The Path Relinking (PR)
technique was originally proposed by [50] as a mechanism to
combine intensification and diversification by exploring tra-
jectories connecting high-quality (elite) solutions previously
produced during the search. PR needs a pair of solutions, say
𝑆𝐼 (initiating solution) and 𝑆𝐺 (guiding solution), 𝑆𝐼 ̸= 𝑆𝐺. A
path that links 𝑆𝐼 to 𝑆𝐺 is generated by applying neighborhood
movements to the initiating solution, which progressively
introduces attributes from the guiding solution [49].

In ILS DP+PR algorithm, we use the PR variant called
Mixed Path Relinking (MPR) [52]. Instead of starting from

Journal of Applied Mathematics 7

a solution 𝑆𝐼 and gradually transforming it into the solution
𝑆𝐺, the MPR procedure performs one step from 𝑆𝐼 to 𝑆𝐺,
obtaining an intermediate solution 𝐴. Then 𝑆𝐺 becomes the
initiating solution and 𝐴 the guiding solution, obtaining
a new intermediate solution 𝐵. In the next step of the
procedure, 𝐴 becomes the initiating solution and 𝐵 the
guiding solution, obtaining an intermediate solution 𝐶, and
so on until the intermediate solution is equal to the guiding
solution.Themain advantage of this strategy is that it explores
deeply neighborhoods of both input solutions. The MPR
procedure returns the best solution obtained during the
construction of the paths that connect the solutions 𝑆𝐼 and 𝑆𝐺.

In this paper, the paths are generated applying exchange
moves. For example, let us consider the solutions 𝑆𝐼 = {2, 3,
1, 4, 5, 7, 6} and 𝑆𝐺 = {2, 7, 5, 3, 4, 6, 1} (𝑛 = 7 jobs). Since
these solutions have only one job in the same position (job 2
is in the first position in both solutions), the distance (or dif-
ference) between 𝑆𝐼 and 𝑆𝐺 is 6. Starting from 𝑆𝐼, six neighbor
solutions are generated by exchanging two jobs so that the
distance with respect to 𝑆𝐺 is reduced by one: {2, 7, 1, 4, 5, 3,
6}, {2, 3, 5, 4, 1, 7, 6}, {2, 4, 1, 3, 5, 7, 6}, {2, 3, 1, 5, 4, 7, 6}, {2, 3,
1, 4, 5, 6, 7}, and {2, 3, 6, 4, 5, 7, 1}. From these solutions, the
best one is chosen to be the intermediate solution𝐴 (e.g.,𝐴 =
{2, 3, 5, 4, 1, 7, 6}). Considering 𝑆𝐺 the initiating solution and
𝐴 the guiding solution, five neighbor solutions are generated.
From these five solutions the best one is chosen to be the
new intermediate solution 𝐵 (e.g., 𝐵 = {2, 6, 5, 3, 4, 7, 1}).
Note that the difference between 𝐴 and 𝐵 is 4. The procedure
ends when the difference between the solutions initiating
and guiding is 1.

The initiating solution 𝑆𝐼 is the solution returned by
the LOCAL SEARCH procedure and the guiding solution
𝑆𝐺 is selected at random from the elite set (EliteSet). This
set represents the pool of the best different solutions found
by the algorithm. The maximum size of EliteSet is 𝑛𝐸. The
UPDATE ELITE SET procedure tests if a solution will be
added or not to𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡.When the elite set is full (|𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡| =
𝑛𝐸), a solution 𝑆 is added to 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 if 𝑆 ∉ 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 and 𝑆 is
better than the worst solution in 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡. In this case, 𝑆 is
added to 𝐸𝑙𝑖𝑡𝑒𝑆𝑒𝑡 in place of the most similar worst solution,
that is, the solution with the smallest distance (or difference)
from 𝑆.

4. Computational Experiments

In this section, we describe the experiments carried out in
order to study the behavior of the developed heuristic algo-
rithms ILS BASIC, ILS DP, and ILS DP+PR.

To the best of our knowledge, Chantaravarapan et al.’s
study [6] is the only previous study to consider the problem
1|STsd,𝑓| ∑𝑇𝑗 addressed in this paper. Chantaravarapan et al.
[6] proposed a hybrid genetic algorithm (HGA) which uses a
local search heuristic in order to enhance performance. Once
the best-fit chromosome in the offspring pool is determined,
the local search heuristic is applied to that chromosome to
improve the fitness before it is replaced into the population
pool. The local search heuristic is based on two interchange
methods: Adjacent Pairwise Interchange (API) and Ran-
domized Pairwise Interchange (RdPI). The API swaps two

Table 2: Factors and the levels of the instances generated.

Factors Levels

𝑛 60, 80, 100 (large instances) and 10, 15, 20 (small
instances)

𝐹 2, 3, 4, 5 (large instances) and 2, 4, 6 (small instances)
ST S: [11, 20], M: [51, 100], and L: [101, 200]
𝑟 0.5, 1.5, 2.5, and 3.5

consecutive jobs from the first position of the sequence to
the last position. The RdPI randomly chooses any two jobs
and switches the positions. If the solution is improved after
switching, the initial sequence is updated and the process
starts from the first position of the sequence.The local search
continues until there is no improvement in solution.

We compare our ILS heuristics against HGA on 1440
randomly generated test instances. For small instances we
compare the performance of the best proposed heuristic
with respect to the MILP model solved by the commercial
optimization solver IBM-ILOG CPLEX 12.5, which we will
simply refer to as CPLEX. All of the heuristic algorithms and
the MILP model have been coded in C++ and run on a PC
with an Intel(R) Xeon(R) CPU X5650, 2.67GHz with 48GB
of RAM running Ubuntu Linux 14.04.

In the following subsections, we first describe the random
instance generation; then we present the parameter setting
of our ILS algorithms; next we analyze the results obtained
on large and small instances, and finally we analyze the
convergence of the algorithms.

4.1. Random Test Instances. To test the performance of the
proposed heuristic algorithms, random instances of the
1|STsd,𝑓| ∑𝑇𝑗 problem are generated according to Jin et al.
[32].The number of jobs is classified into two sets: 𝑛 ∈ {60, 80,
100} (large-size instances) and 𝑛 ∈ {10, 15, 20} (small-size
instances). The number of families is set to be 𝐹 ∈ {2, 3, 4, 5}
(large-size instances) and 𝐹 ∈ {2, 4, 6} (small-size instances).

The processing times of jobs (𝑝𝑗) are uniformly dis-
tributed in the interval [1, 99]. Three classes of setup times
(ST) are considered. Small (S), medium (M), and large (L)
setup times are uniformly distributed in the ranges [11, 20],
[51, 100], and [101, 200], respectively. The due dates (𝑑𝑗) of
jobs are integer numbers uniformly distributed in the interval
[0, 𝑟∑𝑛𝑗=1 𝑝𝑗], where 𝑟 is a factor used to control the range of
due dates, 𝑟 ∈ {0.5, 1.5, 2.5, 3.5}. Small and large due dates are
generated with 𝑟 = 0.5 and 𝑟 = 3.5, respectively.

The factors and the levels of the generated instances are
shown in Table 2. Combining the factors 𝑛, 𝐹, 𝑟, and ST,
there are 144 categories of large instances and 108 categories
of small instances. For each category of small and large
instances, 10 and 2 instances are generated, respectively.There-
fore, a total of 1440 large instances and 216 small instances
were generated. All the generated instances are available for
download at http://www.dpi.ufv.br/projetos/scheduling/smtt
.htm.

4.2. Performance Measures. Themost common performance
measure used in the literature to compare the results of

http://www.dpi.ufv.br/projetos/scheduling/smtt.htm
http://www.dpi.ufv.br/projetos/scheduling/smtt.htm

8 Journal of Applied Mathematics

heuristicmethods is the Relative PercentageDeviation (RPD)
from the best known solution [53]. The RPD is computed
according to the following equation:

RPD (%) = 100 ×
𝑓method − 𝑓best

𝑓best
, (13)

where 𝑓method is the solution (objective function value)
obtained by a given method and 𝑓best is the best solution
obtained among all the methods or the best known solution,
possibly optimal. With this performance measure, good
methods will have RPD close to 0.

In the 1|STsd,𝑓| ∑𝑇𝑗 problem, the minimum total tar-
diness (best solution) could be zero, so the RPD gives a
division by zero. In this case, the Relative Deviation Index
(RDI) measure is used to avoid division by zero. The RDI is
computed as follows:

RDI% = 100 ×
𝑓method − 𝑓best
𝑓worst − 𝑓best

, (14)

where 𝑓best and 𝑓worst are the best and the worst solutions
obtained among all the compared methods, respectively.
With this performance measure, a RDI between 0 and 100 is
obtained for each method such that a good method will have
a RDI close to 0. Note that if the worst and the best solutions
take the same value, all the compared methods provide the
best (same) solution and, hence, the RDI value will be 0 (best
index value) for all the methods.

4.3. Calibration of Parameters. In this subsection we present
the parameter setting of the developed heuristic algorithms
ILS BASIC, ILS DP, and ILS DP+PR. In order to calibrate
the parameters of the heuristics, we generate a set of 100
random large instances (calibration instances) according to
Section 4.1.

To make a fair comparison, the stopping condition
(𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) for all the heuristics is set to a maximum
CPU elapsed time equal to 0.5 ∗ 𝑛 seconds. Setting the
time limit in this way allows more computation effort as the
number of jobs increases [53]. In the calibration experiments,
all the heuristics are run five independent times to obtain a
final average of the results.

A Design of Experiments (DOE, [54]) is carried out to
calibrate the proposed heuristics, where the factors are the
parameters that need calibration and the response variable
is the performance of the different algorithm configurations.
Since the best known solution of each calibration instance
is nonzero, the performance of each algorithm configuration
is measured by RPD determined by (13). The experimental
results were analyzed by means of a multifactor analysis
of variance (ANOVA) technique [54]. In this statistical
technique two hypotheses are tested, (i) null hypothesis:
the medians (or performances) of all algorithms are equal;
and (ii) alternative hypothesis: the median of at least one
algorithm is different. To apply ANOVA, we checked its three
main hypotheses, that is, normality, homoscedasticity, and
independence of residuals. Statistical analysis showed that all
of the three hypotheses could be accepted.

99 10
2

10
5

10
8

11
1

11
4

11
7

12
0

12
3

12
6

12
9

13
2

13
5

13
8

14
1

14
4

Configuration

0

10

20

30

40

50

RP
D

%

Figure 2: Means plot and Tukey’s HSD intervals at the 95%
confidence level for 47 configurations of ILS BASIC.

The first heuristic ILS BASIC depends on four param-
eters: 𝑑 (perturbation size), 𝛾 (probability to generate a
neighbor solution in the LS procedure), 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 (which
defines the selection strategy, best-improvement (0), or first-
improvement (1)), and 𝛽 (which defines the probability to
accept a worse solution). We carry out a full factorial exper-
iment with these four parameters. A series of preliminary
experiments were conducted in order to determine a suitable
set of levels to test. The following levels were tested: 𝑑 ∈
{⌈𝑛/10⌉, ⌈𝑛/5⌉, ⌈𝑛/4⌉, ⌈𝑛/3⌉, ⌈𝑛/2⌉ − 1}, 𝛾 ∈ {0.1, 0.3, 0.6, 1.0},
𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 ∈ {0, 1}, and 𝛽 ∈ {0.0, 0.3, 0.6, 1.0}. All combina-
tions of values of the four parameters give 160 configurations
of ILS BASIC. Each ILS BASIC configuration is run five
different times on each calibration instance. The results of
ANOVA technique indicate that there is statistically signifi-
cant difference between the obtained results at a 95% confi-
dence level. Since the𝑝 V𝑎𝑙𝑢𝑒 of ANOVA test is less than 0.05,
the null hypothesis should be rejected in favor of the alterna-
tive hypothesis. Figure 2 shows, for some configurations of
ILS BASIC, the means plot and Tukey’s Honestly Significant
Difference (HSD) confidence intervals with 95% confidence
level from the statistical test. For easy viewing, Figure 2
only shows the confidence intervals of configurations 99–145.
Overlapping intervals indicate that no statistically significant
difference exists among the overlappedmeans.We can clearly
see that there are statistically significant differences among
some configurations of ILS BASIC. For example, the config-
urations 99, 100, and 104 are statistically different. Configura-
tion 99 is statistically better than configuration 100 which in
turn is statistically better than configuration 104. Also, we can
see that configurations 99, 101, 102, and 103 are statistically
equivalent. However, configuration 143 presents the smallest
average RPD. This configuration of ILS BASIC corresponds
to 𝑑 = ⌈𝑛/3⌉, 𝛾 = 1.0, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1, and 𝛽 = 0.3. Thus,
these parameter values will be used for ILS BASIC in the next
experiments.

The ILS DP algorithm is calibrated in the same way as
ILS BASIC. For ILS DP, five parameters should be calibrated:
𝛾, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽, 𝑁, and 𝑑max. The first three parameters are
the same parameters of ILS BASIC. Parameter𝑁 controls the
increment frequency of the perturbation size (𝑑) and 𝑑max is
the maximum value of 𝑑. For the five parameters of ILS DP,
the following levels were tested: 𝛾 ∈ {0.1, 0.3, 0.6, 1.0},

Journal of Applied Mathematics 9

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

Configuration

0

4

8

12

16

20

RP
D

%

Figure 3: Means plot and Tukey’s HSD intervals at the 95%
confidence level for 16 configurations of ILS DP.

𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 ∈ {0, 1}, 𝛽 ∈ {0.0, 0.3, 0.6, 1.0}, 𝑁 ∈ {1, 3, 5, 10},
and 𝑑max ∈ {⌈𝑛/10⌉, ⌈𝑛/5⌉}.The combination of these param-
eters (factors) yields a total of 256 different configurations
of ILS DP algorithm. Each configuration is run five different
times on each calibration instance. The results of ANOVA
test indicate that there is statistically significant difference
between the obtained results at a 95% confidence level. The
results of 16 configurations (including the best configuration)
are shown in Figure 3. This figure shows the means plot and
Tukey’s HSD confidence intervals with 95% confidence level
from the statistical test. We can see that there are statistically
significant differences among some configurations of ILS DP.
For example, the configurations 141, 142, and 143 are statisti-
cally better than the other configurations.These three config-
urations are statistically equivalent. However, configuration
142 presents the smallest average RPD. This configuration
corresponds to following parameters: 𝛾 = 0.6,𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1,
𝛽 = 0.6, 𝑁 = 1, and 𝑑max = ⌈𝑛/5⌉. Since the value found for
parameter 𝑑max = ⌈𝑛/5⌉ is a threshold value, other levels were
tested for this parameter: 𝑑max ∈ {⌈𝑛/4⌉, ⌈𝑛/3⌉, ⌈𝑛/2⌉ − 1}.
The best results were obtained with 𝑑max = ⌈𝑛/3⌉. Thus, the
parameters 𝛾 = 0.6, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1, 𝛽 = 0.6, 𝑁 = 1, and
𝑑max = ⌈𝑛/3⌉will be used for ILS DP in the next experiments.

Finally, we calibrate the ILS DP+PR algorithm. Six
parameters affect the performance of this algorithm: 𝛾,
𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒, 𝛽,𝑁, 𝑑max, and 𝑛𝐸. Parameter 𝑛𝐸 is the maximum
size of the elite set used in the Path Relinking intensification.
Since the first-improvement strategy (𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1) gives
the best results in the algorithms ILS BASIC and ILS DP,
parameter 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 is set to be 1 in ILS DP+PR. For
the other parameters of ILS DP+PR, the following levels
were tested: 𝛾 ∈ {0.1, 0.3, 0.6, 1.0}, 𝛽 ∈ {0, 0.3, 0.6, 1.0},
𝑁 ∈ {1, 3, 5, 10}, 𝑑max ∈ {⌈𝑛/10⌉, ⌈𝑛/5⌉}, and 𝑛𝐸 ∈
{10, 20}. All combinations of values of these parameters give
256 configurations of ILS DP+PR. For some configurations,
Figure 4 shows the means plot and Tukey’s HSD confidence
intervals with 95% confidence level from the ANOVA test.
We can see that the configurations 121, 123, and 132 present
the best results. However, configuration 123 (with 𝛾 = 0.6,
𝛽 = 0.3, 𝑁 = 1, 𝑑max = ⌈𝑛/5⌉, and 𝑛𝐸 = 10) presents the
smallest average RPD. Since the values found for parameters
𝑑max and 𝑛𝐸 are threshold values, other levels were tested for

Table 3: Parameters setting.

Algorithm Values of the parameters
ILS BASIC 𝛾 = 1.0, 𝛽 = 0.3, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1, and 𝑑 = ⌈𝑛/3⌉

ILS DP 𝛾 = 0.6, 𝛽 = 0.6, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1,𝑁 = 1, and
𝑑max = ⌈𝑛/3⌉

ILS DP+PR 𝛾 = 0.6, 𝛽 = 0.3, 𝑝𝑖V𝑜𝑡 𝑟𝑢𝑙𝑒 = 1,𝑁 = 1,
𝑑max = ⌈𝑛/3⌉, and 𝑛𝐸 = 5

120 121 122 123 124 125 126 127 128 129 130 131 132
Configuration

0

3

6

9

12

15

18

RP
D

%
Figure 4: Means plot and Tukey’s HSD intervals at the 95%
confidence level for 13 configurations of ILS DP+PR.

these parameters: 𝑑max ∈ {⌈𝑛/4⌉, ⌈𝑛/3⌉, ⌈𝑛/2⌉ − 1} and 𝑛𝐸 ∈
{3, 5}. New six configurations of ILS DP+PR are generated
by combining the values of these two parameters. The best
configuration was obtained with 𝑑max = ⌈𝑛/3⌉ and 𝑛𝐸 = 5.

Based on the above results, the final parameter settings
used in the proposed heuristic algorithms are shown in
Table 3.

4.4. Comparison of the Heuristics on Large-Size Instances. In
the first experiment, we present the comparison of solution
quality generated by the proposed three ILS heuristics,
ILS BASIC, ILS DP, and ILS DP+PR, on 1440 large instances.
We also compare our heuristics against the heuristic HGA
proposed in [6].

Since the heuristics are stochastic methods, each instance
is solved 30 times by each heuristic. All the heuristics are run
with the same stopping criterionwhich is based on an amount
of CPU time (0.5 ∗ 𝑛 seconds).

The performances of all the heuristics are measured by
the RDI from the best and worst known solutions obtained
among all the methods. The RDI is computed for each
instance according to (14), where 𝑓best and 𝑓worst are the best
and the worst solutions obtained among all the compared
heuristics, respectively. Since each heuristic is run 30 times
for each instance, for each heuristic three RDI values are pre-
sented: (i) the Best, (ii) theWorst, and (iii) the Average (Avg).

The obtained numerical results of the heuristics are
reported in Table 4, where we have averaged the 120 instances
of each group 𝑛 × 𝐹. For the heuristics HGA, ILS BASIC,
ILS DP, and ILS DP+PR, the Best, Worst, and Average (Avg)
results are presented.

Considering the Best RDI values, the three ILS heuristics
are better than HGA heuristic. For a total of 1440 large

10 Journal of Applied Mathematics

Table 4: Average RDIs (%) of the heuristics on large size instances.

𝑛 × 𝐹 HGA ILS BASIC ILS DP ILS DP+PR
Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

60 × 2 0.83 28.33 12.70 0.00 10.32 1.93 0.00 11.52 1.98 0.00 2.77 0.12
60 × 3 0.83 40.00 26.58 0.00 14.06 1.91 0.00 15.45 2.33 0.00 9.32 0.73
60 × 4 4.64 48.33 35.48 0.00 22.43 3.04 0.00 20.79 3.26 0.00 17.03 2.23
60 × 5 2.89 52.50 38.62 0.00 33.19 4.94 0.00 30.86 5.73 0.00 23.93 4.69
80 × 2 4.79 33.33 22.48 0.00 21.12 4.40 0.00 18.03 4.15 0.00 7.09 0.73
80 × 3 10.08 45.00 33.87 0.00 26.61 5.39 0.00 26.22 4.38 0.00 17.88 2.78
80 × 4 16.36 52.50 43.48 0.00 31.66 5.38 0.00 30.19 5.32 0.00 29.87 4.75
80 × 5 17.03 54.17 46.86 0.00 38.82 6.74 0.00 36.73 6.61 0.00 35.65 7.00
100 × 2 14.38 39.17 29.03 0.27 21.38 5.35 0.00 20.55 3.79 0.00 11.86 1.85
100 × 3 22.85 50.83 41.42 0.00 26.33 7.03 0.00 25.32 5.55 0.00 24.78 4.51
100 × 4 27.40 53.33 45.14 0.00 24.70 4.87 0.00 23.21 4.01 0.00 21.78 4.02
100 × 5 30.41 59.17 47.43 0.00 32.80 7.01 0.00 30.69 7.00 0.00 31.27 6.62
Average 12.71 46.39 35.26 0.02 24.95 4.83 0.00 24.80 4.51 0.00 19.60 3.34

Table 5: Average RDIs (%) for instances grouped by number of jobs
𝑛.

(𝑛, 𝐹, 𝑟, ST) HGA ILS BASIC ILS DP ILS DP+PR
(60, ∗, ∗, ∗) 28.34 2.95 3.32 1.94
(80, ∗, ∗, ∗) 36.67 5.48 5.09 3.81
(100, ∗, ∗, ∗) 40.76 6.06 5.11 4.25

instances tested, the heuristicsHGA, ILS BASIC, ILS DP, and
ILS DP+PRfind the best known solution in 1182 (82.1%), 1343
(93.2%), 1351 (93.8%), and 1398 (97.1%) instances, respectively.
These results show that all the heuristics, in 30 runs, are able
to find the best known solution for most instances.

For all groups of instances, the heuristic ILS DP+PR
presents low Worst RDIs. For all groups of instances, except
for groups 60×2 and 60×3, theWorst RDIs values of ILS DP
are better than the respective values of ILS BASIC.

Considering the Avg RDI values, the performance of the
heuristic ILS DP+PR is notoriously better than the other
heuristics, except for groups of instances 80 × 5 and 100 × 4.
The heuristic ILS DP outperforms, on average, ILS BASIC
for all groups of instances with 𝑛 = 80 and 𝑛 = 100 jobs.
ILS BASIC is better than ILS DP for instances with 𝑛 = 60
jobs. The obtained average results indicate that the proposed
ILS heuristics have a superior performance compared to
HGA heuristic. Considering all groups of instances, the
heuristicsHGA, ILS BASIC, ILS DP, and ILS DP+PRpresent
overall Average (Avg) RDIs of 35.26%, 4.83%, 4.51%, and
3.34%, respectively.

Tables 5, 6, 7, and 8 show the Average RDIs of the
heuristics, where the instances are grouped by the number of
jobs (𝑛), number of families (𝐹), due date range (𝑟), and setup
class (ST), respectively. In Tables 5 and 6 we can see that the
Average RDI values of the heuristics increase as the number
of jobs (𝑛) and number of families (𝐹) increase, respectively.

In Table 7 we can clearly see that the performance of the
heuristics improves as the due date range increases. For all the
heuristics, the greatest variation in the results occurs when

Table 6: Average RDIs (%) for instances grouped by number of
families (𝐹).

(𝑛, 𝐹, 𝑟, ST) HGA ILS BASIC ILS DP ILS DP+PR
(∗, 2, ∗, ∗) 21.40 3.90 3.31 0.90
(∗, 3, ∗, ∗) 33.96 4.43 4.08 2.67
(∗, 4, ∗, ∗) 41.37 4.77 4.20 3.67
(∗, 5, ∗, ∗) 44.30 6.23 6.44 6.10

Table 7: Average RDIs (%) for instances grouped by due date ranges
(𝑟).

(𝑛, 𝐹, 𝑟, ST) HGA ILS BASIC ILS DP ILS DP+PR
(∗, ∗, 0.5, ∗) 84.66 10.90 8.27 4.54
(∗, ∗, 1.5, ∗) 45.61 5.01 5.37 4.45
(∗, ∗, 2.5, ∗) 8.98 2.75 3.05 3.24
(∗, ∗, 3.5, ∗) 1.78 0.66 1.34 1.11

Table 8: Average RDIs (%) for instances grouped by setup time
ranges (ST).

(𝑛, 𝐹, 𝑟, ST) HGA ILS BASIC ILS DP ILS DP+PR
(∗, ∗, ∗, S) 22.46 5.34 4.21 2.43
(∗, ∗, ∗,M) 36.55 3.59 3.65 2.69
(∗, ∗, ∗, L) 46.76 5.57 5.67 4.88

the due date ranges vary. All the heuristics present short RDIs
for instances with large due dates. Generally, for instances
with large due dates, zero total tardiness is determined. The
heuristic ILS DP+PR presents the best results for all group
of instances, except for instances with large due dates (𝑟 =
2.5 and 𝑟 = 3.5), where the ILS BASIC presents the best
results (Table 7). Instances with large due dates, generally,
are easy to solve because almost all jobs are completed before
their due dates. In these instances, ILS DP+PR is inferior to
ILS BASIC probably because the dynamic perturbation used
in ILS DP+PR is relatively strong that easily allows leaving
local minimum solutions.

Journal of Applied Mathematics 11

Table 9: Multiple comparisons test. (∗) denotes a statistically
significant difference.

Pair of heuristics Significant Difference Limits
HGA and ILS BASIC (∗) 30.4259 0.3043
HGA and ILS DP (∗) 30.7494 0.3043
HGA and ILS DP+PR (∗) 31.9216 0.3043
ILS BASIC and ILS DP (∗) 0.3235 0.3043
ILS BASIC and ILS DP+PR (∗) 1.4956 0.3043
ILS DP and ILS DP+PR (∗) 1.1721 0.3043

3
6
9

12
15
18
21
24
27
30
33
36

RD
I%

H
G

A

IL
S_

BA
SI

C

IL
S_

D
P

IL
S_

D
P+

PR

Figure 5: Means plot and Tukey’s HSD intervals at 95% confidence
level for all heuristics and all large instances.

In Table 8 we can observe that ILS DP+PR presents the
best results and all heuristics have large RDIs for instances
with large (L) setup times.

In order to guarantee that the observed differences in the
average results are indeed statistically significant, we carry out
a parametric ANOVA statistical test using the RDI measure
as response variable. We check the three main hypotheses
of ANOVA test: normality, homoscedasticity, and indepen-
dence of the residuals.No significant deviationswere found in
the fulfillment of the hypotheses.The results of this statistical
test indicate that there is statistically significant difference
between the obtained results at a 95% confidence level, with a
𝑝 V𝑎𝑙𝑢𝑒 = 0.0 < 0.05. Since the ANOVA test does not specify
which heuristics differ significantly, we carry out a Multiple
Comparisons test to compare each pair of heuristics with a
95% confidence level. Table 9 shows the result of this test. Col-
umnDifference displays the samplemean of the first heuristic
minus that of the second. Column Limits shows an uncer-
tainty interval for the difference. Any pair for which the abso-
lute value of the difference exceeds the limit (|Difference| >
Limits) is statistically significant at the selected confidence
level and is indicated by (∗) in the column Significant. In
Table 9, we can see that there is a significant difference
between each pair of heuristics, and the heuristics ILS BASIC
and ILS DP present the smallest difference (Difference −
Limits = 0.0192).

The same analysis can be displayed in Figure 5.This figure
shows, for the four heuristics and all the large instances,
the means plot and Tukey’s HSD confidence intervals with

IL
S_

BA
SI

C

IL
S_

D
P

IL
S_

D
P+

PR

9,1

11,1

13,1

15,1

17,1

RD
I%

Figure 6: Means plot and Tukey’s HSD intervals at 95% confidence
level for heuristics ILS BASIC, ILS DP, and ILS DP+PR.

95% confidence level from the ANOVA test. We can see
that ILS DP+PR is statistically the best heuristic because its
confidence interval does not overlap with the intervals of
any of the other heuristics. The second best algorithm is
ILS DP followed by ILS BASIC. The proposed ILS heuristics
are statistically better than HGA heuristic.

In order to have a clearer picture, the heuristic HGA is
removed for subsequent statistical analyses and we carry out
another statistical test considering only the three proposed
ILS heuristics. In Figure 6 we can clearly see that ILS DP+PR
is statistically better than ILS DP which in turn is statistically
better than ILS BASIC. These results show that a basic ILS
heuristic can be considerably improved by using a dynamic or
variable perturbation size and Path Relinking intensification
technique.

The obtained average results show that the effectiveness of
the heuristic ILS BASIC is considerably improved by using
a dynamic perturbation and an intensification mechanism
based on the Path Relinking technique. We believe that our
ILS heuristics are better than HGA because we use a local
search procedure based on the insertion neighborhood.HGA
uses a local search heuristic based on the interchange neigh-
borhoods API and RPI. In scheduling problems which have
a permutation representation, insertion neighborhoods are
efficient and strongly preferable over the interchange neigh-
borhoods [55]. Furthermore, local search based metaheuris-
tics are generally more effective than population based algo-
rithms such as Ant Colony Optimization, Particle Swarm
Optimization, and genetic algorithm [40, 56]. In order to facil-
itate follow-up research, the results obtained in this paper are
available at http://www.dpi.ufv.br/projetos/scheduling/smtt
.htm.

4.5. Experimental Results on Small-Size Instances. In this sub-
section the best ILS heuristic (i.e., ILS DP+PR) is compared
with CPLEX solver on the 216 small-size instances. This
solver is applied to solve the MILP formulation (presented in
Section 2)with a thresholdCPU time of 1800 seconds for each
small instance.That is, if after the established time no optimal
solution is obtained, the best current solution (upper bound)
is returned by CPLEX. Each small instance is solved 30 times
by ILS DP+PR heuristic using 0.5 ∗ 𝑛 seconds as stopping

http://www.dpi.ufv.br/projetos/scheduling/smtt.htm
http://www.dpi.ufv.br/projetos/scheduling/smtt.htm

12 Journal of Applied Mathematics

Table 10: Relative percentage improvement of ILS DP+PR with
respect to CPLEX.

(𝑛, 𝐹, 𝑟, ST) ILS DP+PR CPLEX RPI
(20, 4, 1.5, M) 710 826 14.04%
(20, 6, 0.5, M) 7458 7972 6.44%
(20, 6, 1.5, M) 965 1125 14.22%
(20, 6, 1.5, L) 2589 3272 20.87%
(20, 6, 2.5, L) 1965 2128 7.66%
Average 2737.4 3064.6 12.64%

Table 11: Average CPU times (in seconds) of CPLEX and
ILS DP+PR.

Instance CPU times (s)
𝑛 × 𝐹 CPLEX ILS DP+PR
10 × 2 81.20 5.00
10 × 4 105.8 5.00
10 × 6 94.02 5.00
15 × 2 314.23 7.00
15 × 4 393.62 7.00
15 × 6 358.82 7.00
20 × 2 835.83 10.00
20 × 4 931.20 10.00
20 × 6 1029.11 10.00

criterion. In the comparison analysis, for each instance, we
consider the best solution obtained by each heuristic. The
CPLEX is only run one time for each each instance, because it
uses a deterministic method. Since the used computer has 12
cores, the CPLEX is run using all the cores and the heuristic
is run using a single core.

For a total of 216 small instances, 201 optimal solutions
were generated by CPLEX, fromwhich all these optimal solu-
tions were found by ILS DP+PR heuristic. On 11 instances
with 𝑛 = 20 jobs, CPLEX was not able to generate a feasible
solution, and on 5 instances ILS DP+PR was better than
CPLEX. Table 10 shows the results for these 5 instances.
This table reports the factors of the instances (first column),
the total tardiness (TT) values obtained by ILS DP+PR
and CPLEX (second and third columns, resp.), and the
relative percentage improvement (RPI) of ILS DP+PR with
respect to CPLEX (final column). The RPI is determined
by 100 × (TTCPLEX − TTILS DP+PR)/(TTCPLEX)%. As can be
seen, the solutions obtained by ILS DP+PR are on average
12.64% better than the solutions (upper bounds) generated by
CPLEX. The improvement of ILS DP+PR varies from 6.44%
to 20.87%.

The average CPU times spent by CPLEX and ILS DP+PR
are presented in Table 11. The CPU times of ILS DP+PR are
equal to 0.5∗𝑛 seconds.We can see that CPLEX spendsmuch
more CPU time than ILS DP+PR for all small instances.
When the number of jobs is increased, the performance of
CPLEX (considering solution quality and computational
time) worsens significantly. We tested CPLEX solver on
instances with 𝑛 = 30 jobs. For most of these instances

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Time to target solution (s)

HGA
ILS_BASIC

ILS_DP
ILS_DP+PR

Figure 7: TTT plots of HGA, ILS BASIC, ILS DP, and ILS DP+PR.

CPLEX was not able to find feasible solutions in the estab-
lished CPU time. Thus, it can be asserted that to solve large
instances of the problem under study the most appropriate
methods are heuristic algorithms, although they do not
guarantee finding optimal solutions.

4.6. Time Analysis. The experiments presented in previous
subsections were done considering solution quality of the
heuristics. To give additional information concerning the
computational effort required by the heuristic algorithms, we
use the time-to-target (TTT) plot analysis [57]. A TTT plot is
generated by executing an algorithm 𝑞 times and measuring
the computational time required to reach a solution at least
as good as a target solution. The running times are sorted in
increasing order. The 𝑖th running time 𝑡𝑖 is associated with a
probability 𝑃𝑖 = (𝑖 − 0.5)/𝑞 and the points (𝑡𝑖, 𝑃𝑖), 𝑖 = 1, . . . , 𝑞,
are plotted. Each plotted point indicates the probability
(vertical axis) for the algorithm to achieve the target solution
in a given running time (horizontal axis).Themore to the left
is the plot, the better is the corresponding algorithm.

For this analysis we used an instance with 100 jobs and
4 families, where the heuristic algorithms HGA, ILS BASIC,
ILS DP, and ILS DP+PR found the best known solution
(target solution) at least one time. We performed 100 runs
for each algorithm, varying the random number generator
seed. The algorithms were made to stop whenever a solution
better than or equal to the target solution was found. Figure 7
displays the TTT plot for the four algorithms. It can be seen
that the proposed ILS algorithms find solutions as good as the
target solution clearly faster than HGA. All ILS algorithms
have similar behaviors and a 2-second run time is enough to
ensure a 98% probability of obtaining the target solution.The
probability of HGA finding the target solution in 2 seconds

Journal of Applied Mathematics 13

is about 20%. Moreover, within 14 seconds, HGA reaches
the target solution with a maximum probability of 98%. This
analysis indicates that the proposed ILS algorithms converge
to good solutions with short CPU times.

5. Conclusions

In this paperwe have considered a single-machine scheduling
problem with sequence-dependent family setup times, so
as to minimize the total tardiness. The main contribution
of this work was the development of three effective heuris-
tics based on ILS metaheuristic to solve the 1|STsd,𝑓| ∑𝑇𝑗
problem. The ILS DP extended the standard ILS BASIC
heuristic by using a dynamic perturbation size. Moreover,
the ILS DP+PR heuristic extended ILS DP by using a Path
Relinking intensification procedure that keeps a set of elite
solutions. To the best of our knowledge, ILS heuristic has not
been applied to solve single-machine scheduling problems
with sequence-dependent family setup times. To improve
the efficiency of the proposed heuristics, their parameters
were fine-tuned using aDesign of Experimentsmethodology.
The heuristics were compared on the basis of computational
experiments performed on a comprehensive set of large-
size problem instances. The experiments demonstrated the
effectiveness of our ILS heuristics. They outperformed a
hybrid genetic algorithm (HGA) consistently. The heuristics
ILS DP and ILS DP+PR performed better than the basic ILS
(ILS BASIC); that is, the results of the standard ILS were
improved significantly by using a dynamic perturbation size
and Path Relinking intensification. All the obtained results
have been statistically validated.

We believe that the LS DP+PR heuristic presented in
this paper is a significant contribution, worthy of future
study. Future research is to apply the proposed heuristic to
other single-machine scheduling problems, for example, the
problem with sequence-dependent family setup times and
resource constraints, as the one studied very recently by Herr
and Goel [34]. Other objectives could also be explored, such
as the total completion times and total earliness and tardiness.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthors are thankful to the financial support of CNPq and
FAPEMIG, Brazilian research agencies.

References

[1] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov,
“A survey of scheduling problems with setup times or costs,”
European Journal of Operational Research, vol. 187, no. 3, pp.
985–1032, 2008.

[2] A. Allahverdi, “The third comprehensive survey on scheduling
problems with setup times/costs,” European Journal of Opera-
tional Research, vol. 246, no. 2, pp. 345–378, 2015.

[3] J.-B. Wang and J.-J. Wang, “Single machine group scheduling
with time dependent processing times and ready times,” Infor-
mation Sciences, vol. 275, pp. 226–231, 2014.

[4] R. L.Graham, E. L. Lawler, J. K. Lenstra, andA.H. RinnooyKan,
“Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics, vol.
5, pp. 287–326, 1979.

[5] J. Du and J. Y. Leung, “Minimizing total tardiness on one
machine is NP-hard,” Mathematics of Operations Research, vol.
15, no. 3, pp. 483–495, 1990.

[6] S. Chantaravarapan, J. N. D. Gupta, and M. L. Smith, “A hybrid
genetic algorithm for minimizing total tardiness on a single
machine with family setups,” in Proceedings of the Production
and Operations Management Society Meeting (POMS ’03), pp.
1–35, Savannah, Ga, USA, April 2003.

[7] P. A. Rubin and G. L. Ragatz, “Scheduling in a sequence
dependent setup environment with genetic search,” Computers
& Operations Research, vol. 22, no. 1, pp. 85–99, 1995.

[8] V. A. Armentano and R. Mazzini, “A genetic algorithm for
scheduling on a single machine with set-up times and due
dates,” Production Planning & Control, vol. 11, no. 7, pp. 713–720,
2000.

[9] P.M. França, A.Mendes, and P.Moscato, “Amemetic algorithm
for the total tardiness single machine scheduling problem,”
European Journal of Operational Research, vol. 132, no. 1, pp.
224–242, 2001.

[10] A. Sioud, M. Gravel, and C. Gagné, “A hybrid genetic algorithm
for the single machine scheduling problem with sequence-
dependent setup times,” Computers & Operations Research, vol.
39, no. 10, pp. 2415–2424, 2012.

[11] K. C. Tan andR.Narasimhan, “Minimizing tardiness on a single
processor with sequence-dependent setup times: a simulated
annealing approach,” Omega, vol. 25, no. 6, pp. 619–634, 1997.

[12] C.Gagné,W. L. Price, andM.Gravel, “Comparing anACOalgo-
rithm with other heuristics for the single machine scheduling
problem with sequence-dependent setup times,” Journal of the
Operational Research Society, vol. 53, no. 8, pp. 895–906, 2002.

[13] C.-J. Liao and H.-C. Juan, “An ant colony optimization for
single-machine tardiness scheduling with sequence-dependent
setups,” Computers & Operations Research, vol. 34, no. 7, pp.
1899–1909, 2007.

[14] S. R. Gupta and J. S. Smith, “Algorithms for single machine
total tardiness scheduling with sequence dependent setups,”
European Journal of Operational Research, vol. 175, no. 2, pp.
722–739, 2006.

[15] H. Akrout, B. Jarboui, P. Siarry, and A. Rebäı, “A GRASP based
on DE to solve single machine scheduling problem with SDST,”
Computational Optimization and Applications, vol. 51, no. 1, pp.
411–435, 2012.

[16] J. E. C. Arroyo, G. V. P. Nunes, and E. H. Kamke, “Iterative local
search heuristic for the singlemachine scheduling problemwith
sequence dependent setup times and due dates,” in Proceedings
of the 9th International Conference on Hybrid Intelligent Systems
(HIS ’09), vol. 1, pp. 505–510, IEEE, Shenyang, China, August
2009.

[17] K.-C. Ying, S.-W. Lin, and C.-Y. Huang, “Sequencing single-
machine tardiness problems with sequence dependent setup
times using an iterated greedy heuristic,” Expert Systems with
Applications, vol. 36, no. 3, pp. 7087–7092, 2009.

[18] G. L. Ragatz, “A branch-and-bound method for minimum
tardiness sequencing on a single processor with sequence

14 Journal of Applied Mathematics

dependent setup times,” in Proceedings of the 24th Annual
Meeting of the Decision Sciences Institute, pp. 1375–1377, John
Wiley & Sons, 1993.

[19] X. Luo and F. Chu, “A branch and bound algorithm of the single
machine schedule with sequence dependent setup times for
minimizing total tardiness,” Applied Mathematics and Compu-
tation, vol. 183, no. 1, pp. 575–588, 2006.

[20] E. C. Sewell, J. J. Sauppe, D. R. Morrison, S. H. Jacobson, and G.
K. Kao, “A BB’R algorithm for minimizing total tardiness on a
single machine with sequence dependent setup times,” Journal
of Global Optimization, vol. 54, no. 4, pp. 791–812, 2012.

[21] S. Tanaka and M. Araki, “An exact algorithm for the single-
machine total weighted tardiness problem with sequence-
dependent setup times,” Computers & Operations Research, vol.
40, no. 1, pp. 344–352, 2013.

[22] D. Kacem, “Lower bounds for tardiness minimization on a
single machine with family setup times,” in Proceedings of
the IMACS Multiconference on Computational Engineering in
Systems Applications, vol. 1, pp. 1034–1039, Beijing, China, 2006.

[23] J. Schaller, “Scheduling on a single machine with family setups
to minimize total tardiness,” International Journal of Production
Economics, vol. 105, no. 2, pp. 329–344, 2007.

[24] J. C.-H. Pan and C.-S. Su, “Single machine scheduling with
due dates and class setups,” Journal of the Chinese Institute of
Engineers, vol. 20, no. 5, pp. 561–572, 1997.

[25] K. R. Baker and M. J. Magazine, “Minimizing maximum
lateness with job families,” European Journal of Operational
Research, vol. 127, no. 1, pp. 126–139, 2000.

[26] J. E. Schaller and J. N. Gupta, “Single machine scheduling
with family setups to minimize total earliness and tardiness,”
European Journal of Operational Research, vol. 187, no. 3, pp.
1050–1068, 2008.

[27] J. N. D. Gupta and S. Chantaravarapan, “Single machine group
scheduling with family setups to minimize total tardiness,”
International Journal of Production Research, vol. 46, no. 6, pp.
1707–1722, 2008.

[28] J. A. van der Veen, G. J. Woeginger, and S. Zhang, “Sequencing
jobs that require common resources on a single machine: a
solvable case of the TSP,” Mathematical Programming, vol. 82,
no. 1-2, pp. 235–254, 1998.

[29] S. Karabati and C. Akkan, “Minimizing sum of completion
times on a single machine with sequence-dependent family
setup times,” Journal of the Operational Research Society, vol. 57,
no. 3, pp. 271–280, 2006.

[30] F. Jin, S. Song, and C. Wu, “A simulated annealing algorithm
for single machine scheduling problems with family setups,”
Computers & Operations Research, vol. 36, no. 7, pp. 2133–2138,
2009.

[31] F. Jin, S. Shiji, and W. Cheng, “Dominance property based
tabu search for singlemachine scheduling problemswith family
setups,” Journal of Systems Engineering and Electronics, vol. 20,
no. 6, pp. 1233–1238, 2009.

[32] F. Jin, J. N. D. Gupta, S. Song, and C. Wu, “Single machine
schedulingwith sequence-dependent family setups tominimize
maximum lateness,” Journal of the Operational Research Society,
vol. 61, no. 7, pp. 1181–1189, 2010.

[33] V. Sels and M. Vanhoucke, “A hybrid genetic algorithm for the
single machine maximum lateness problem with release times
and family setups,” Computers & Operations Research, vol. 39,
no. 10, pp. 2346–2358, 2012.

[34] O. Herr and A. Goel, “Minimising total tardiness for a single
machine scheduling problem with family setups and resource
constraints,” European Journal of Operational Research, vol. 248,
no. 1, pp. 123–135, 2016.

[35] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D.
Van Oudheusden, “Iterated local search for the team orien-
teering problem with time windows,” Computers & Operations
Research, vol. 36, no. 12, pp. 3281–3290, 2009.

[36] P. H. V. Penna, A. Subramanian, and L. S. Ochi, “An iterated
local search heuristic for the heterogeneous fleet vehicle routing
problem,” Journal of Heuristics, vol. 19, no. 2, pp. 201–232, 2013.

[37] I. Ribas, R. Companys, and X. Tort-Martorell, “An efficient iter-
ated local search algorithm for the total tardiness blocking flow
shop problem,” International Journal of Production Research,
vol. 51, no. 17, pp. 5238–5252, 2013.

[38] P. Vansteenwegen andM. Mateo, “An iterated local search algo-
rithm for the single-vehicle cyclic inventory routing problem,”
European Journal of Operational Research, vol. 237, no. 3, pp.
802–813, 2014.

[39] J. Brandão, “A deterministic iterated local search algorithm for
the vehicle routing problem with backhauls,” TOP, vol. 24, no.
2, pp. 445–465, 2016.

[40] X. Dong, H. Huang, and P. Chen, “An iterated local search
algorithm for the permutation flowshop problem with total
flowtime criterion,” Computers & Operations Research, vol. 36,
no. 5, pp. 1664–1669, 2009.

[41] L. Fanjul-Peyro and R. Ruiz, “Iterated greedy local search
methods for unrelated parallel machine scheduling,” European
Journal of Operational Research, vol. 207, no. 1, pp. 55–69, 2010.

[42] F. Della Croce, T. Garaix, and A. Grosso, “Iterated local search
and very large neighborhoods for the parallel-machines total
tardiness problem,” Computers & Operations Research, vol. 39,
no. 6, pp. 1213–1217, 2012.

[43] H. Xu, Z. Lü, and T. C. Cheng, “Iterated local search for single-
machine scheduling with sequence-dependent setup times to
minimize total weighted tardiness,” Journal of Scheduling, vol.
17, no. 3, pp. 271–287, 2014.

[44] X. Dong, M. Nowak, P. Chen, and Y. Lin, “Self-adaptive
perturbation and multi-neighborhood search for iterated local
search on the permutation flow shop problem,” Computers &
Industrial Engineering, vol. 87, pp. 176–185, 2015.

[45] V. L. A. Santos, J. E. C. Arroyo, and T. F. Carvalho, “Iterated local
search based heuristic for scheduling jobs on unrelated parallel
machines with machine deterioration effect,” in Proceedings of
the Genetic and Evolutionary Computation Conference Compan-
ion, pp. 53–54, ACM, Denver, Colo, USA, July 2016.

[46] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local
search,” in Handbook of Metaheuristics, F. Glover and G. A.
Kochenberger, Eds., vol. 57 of International Series in Operations
Research & Management Science, chapter 11, pp. 320–353,
Kluwer Academic, 2003.

[47] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local
search: framework and applications,” in Handbook of Meta-
heuristics, pp. 363–397, Springer, Berlin, Germany, 2010.

[48] P. Hansen and N. Mladenović, “Variable neighborhood search,”
in SearchMethodologies, pp. 313–337, Springer, Berlin, Germany,
2014.

[49] M. Laguna and R. Mart́ı, “GRASP and path relinking for 2-
layer straight line crossingminimization,” INFORMS Journal on
Computing, vol. 11, no. 1, pp. 44–52, 1999.

Journal of Applied Mathematics 15

[50] F. Glover, “Tabu search and adaptive memory programing-
advances, applications and challenges,” in Interfaces in Com-
puter Science andOperations Research, R. S. Barr, R.V.Helgason,
and J. L. Kennington, Eds., Operations Research/Computer
Science Interfaces Series, pp. 1–75, Springer, New York, NY,
USA, 1996.

[51] M. Nawaz, E. E. Enscore Jr., and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[52] M. G. C. Resende and C. C. Ribeiro, “Handbook of meta-
heuristics,” in Greedy Randomized Adaptive Search Procedures:
Advances, Hybridizations, and Applications, M. Gendreau and
J. Y. Potvin, Eds., pp. 219–249, Springer, Berlin, Germany, 2nd
edition, 2010.

[53] E. Vallada, R. Ruiz, and G. Minella, “Minimising total tardiness
in the m-machine flowshop problem: a review and evaluation
of heuristics and metaheuristics,” Computers & Operations
Research, vol. 35, no. 4, pp. 1350–1373, 2008.

[54] D. C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New York, NY, USA, 2006.

[55] M. den Besten and T. Stützle, “Neighborhoods revisited: an
experimental investigation into the effectiveness of variable
neighborhood descent for scheduling,” in Proceedings of the 4th
Metaheuristics International Conference, pp. 545–549, 2001.

[56] A. Subramanian, M. Battarra, and C. N. Potts, “An Iterated
Local Search heuristic for the single machine total weighted
tardiness scheduling problem with sequence-dependent setup
times,” International Journal of Production Research, vol. 52, no.
9, pp. 2729–2742, 2014.

[57] R. M. Aiex, M. G. Resende, and C. C. Ribeiro, “Ttt plots: a perl
program to create time-to-target plots,” Optimization Letters,
vol. 1, no. 4, pp. 355–366, 2007.

