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By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrödinger-Boussinesq
equations are studied. Based on this method, the bounded exact travelling wave solutions are obtained which contain solitary wave
solutions and periodic travelling wave solutions. The solitary wave solutions and periodic travelling wave solutions are expressed
by the hyperbolic functions and the Jacobian elliptic functions, respectively. The results show that the presented findings improve
the related previous conclusions. Furthermore, the numerical simulations of the solitary wave solutions and the periodic travelling
wave solutions are given to show the correctness of our results.

1. Introduction

In laser and plasma physics, the significant problems under
interactions between a nonlinear real Boussinesq field and
a nonlinear complex Schrödinger field have been raised [1].
In particular, the investigation of the coupled Schrödinger-
Boussinesq equations has attracted much attention of physi-
cists andmathematicians. In [2], the existence of the solutions
for the equations was investigated. In [3], Guo and Du
studied the local and global well-posedness of the periodic
boundary value problem for the nonlinear Schrödinger-
Boussinesq system. In [4], the approximate solutions and
conservation law for the nonlinear Schrödinger-Boussinesq
equations have been studied. The study of the coupled
nonlinear Schrödinger-Boussinesq equations plays a crucial
role in the study of nonlinear scientific fields.

In this paper, we consider the following coupled nonlin-
ear Schrödinger-Boussinesq equations [5]:

𝑖𝐸
𝑡
+ 𝐸
𝑥𝑥
+ 𝛾𝐸 = 𝑁𝐸,

3𝑁
𝑡𝑡
− 𝑁
𝑥𝑥𝑥𝑥

+ 3 (𝑁
2
)
𝑥𝑥
+ 𝛿𝑁
𝑥𝑥
= (|𝐸|

2
)
𝑥𝑥
,

(1)

where 𝛾, 𝛿 are real parameters. 𝐸 is complex function and
𝑁 is real function. Equations (1) are known to describe
various physical processes in laser and plasma physics, such
as Langmuir field amplitude, modulational instabilities, and
intense electromagnetic waves [6]. The study of travelling
wave solutions of the coupled Schrödinger-Boussinesq equa-
tions has also attracted much attention of physicists and
mathematicians. In [7], Farah and Pastor used the (𝐺󸀠/𝐺)-
expansion method to construct travelling wave solutions for
the equations. In [8], Chen and Xu used the 𝐹-expansion
method to obtain some periodic wave solutions for (1). In
[9], Cai et al. studied coupled equations (1) by the modified
expansion method and so on. However, we notice that the
previous authors did not study the nonlinear dynamics of
(1) and did not find all possible travelling wave solutions.
Therefore, it is essential to study the nonlinear dynamics of
(1) and find all possible travelling wave solutions of (1). Here,
we use the approach of dynamical system to solve (1) and to
give some bounded travelling wave solutions of (1) [10, 11].

The rest of this paper is built up as follows. In Section 2,
we give the description of the dynamical system method. In
Section 3, we apply this method to solve (1) and numerical
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simulations are conducted for the solitary wave solutions and
the periodic travelling wave solutions to (1) with the aid of the
Maple software. Finally, a conclusion is given in Section 4.

2. The Dynamical System Method

In this section, we describe the dynamical systemmethod for
finding travellingwave solutions of nonlinearwave equations.
Suppose an (𝑛 + 1)-dimensional nonlinear partial differential
equation is given as follows:

𝑃(𝑡, 𝑥
𝑖
, 𝑢
𝑡
, 𝑢
𝑥𝑖
, 𝑢
𝑥𝑖𝑥𝑖
, 𝑢
𝑥𝑖𝑥𝑗
, 𝑢
𝑡𝑡
, . . .) = 0,

𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(2)

The main steps of the dynamical system method are as
follows.

Step 1 (reduction of (2)). Making a transformation 𝑢(𝑡, 𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑛
) = 𝜙(𝜉), 𝜉 = ∑𝑛

𝑖=1
𝑘
𝑖
𝑥
𝑖
− 𝑐𝑡, (2) can be reduced to a

nonlinear ordinary differential equation

𝐷(𝜉, 𝜙, 𝜙
𝜉
, 𝜙
𝜉𝜉
, 𝜙
𝜉𝜉𝜉
, . . .) = 0, (3)

where 𝑘
𝑖
are nonzero constant and 𝑐 is the wave speed.

Integrating several times for (3), if it can be reduced to the
second-order nonlinear ordinary differential equation

𝐸 (𝜙, 𝜙
𝜉
, 𝜙
𝜉𝜉
) = 0, (4)

then let 𝜙
𝜉
= 𝑑𝜙/𝑑𝜉 = 𝑦; (4) can be reduced to a two-

dimensional dynamical system

𝑑𝜙

𝑑𝜉
= 𝑦,

𝑑𝑦

𝑑𝜉
= 𝑓 (𝜙, 𝑦) ,

(5)

where𝑓(𝜙, 𝑦) is an integral expression or a fraction. If𝑓(𝜙, 𝑦)
is a fraction such as 𝑓(𝜙, 𝑦) = 𝐹(𝜙, 𝑦)/𝑔(𝜙) and 𝑔(𝜙

𝑠
) = 0,

𝑑𝑦/𝑑𝜉 does not exist when 𝜙 = 𝜙
𝑠
. Then we will make a

transformation 𝑑𝜉 = 𝑔(𝜙)𝑑𝜁; system (5) can be rewritten as

𝑑𝜙

𝑑𝜁
= 𝑔 (𝜙) 𝑦,

𝑑𝑦

𝑑𝜁
= 𝐹 (𝜙, 𝑦) ,

(6)

where 𝜁 is a parameter. If (2) can be reduced to system (5) or
(6), then we can go on to the next step.

Step 2 (discussion of bifurcations of phase portraits of system
(5)). If system (5) is an integral system, systems (5) and (6)
can be reduced to the differential equation

𝑑𝑦

𝑑𝜙
=
𝑓 (𝜙, 𝑦)

𝑦
,

𝑑𝑦

𝑑𝜙
=
𝐹 (𝜙, 𝑦)

𝑔 (𝜙) 𝑦
=
𝑓 (𝜙, 𝑦)

𝑦
,

(7)

and then systems (5) and (6) have the same first integral (i.e.,
Hamiltonian) as follows:

𝐻(𝜙, 𝑦) = ℎ, (8)

where ℎ is an integral constant. According to the first inte-
gral, we can get all kinds of phase portraits in the parametric
space. Because the phase orbits that defined the vector fields
of system (5) (or system (6)) determine all their travel-
ling wave solutions of (2), we can investigate the bifurcations
of phase portraits of system (5) (or system (6)) to seek the
travelling wave solutions of (2). Usually, a periodic orbit
always corresponds to a periodic wave solution; a homo-
clinic orbit always corresponds to a solitary wave solu-
tion; a heteroclinic orbit (or the so-called connecting orbit)
always corresponds to kink (or antikink) wave solution.
When we find all phase orbits, we can get the value of ℎ or
its range.

Step 3 (calculation of the first equation of system (5)). After ℎ
is determined, we can get the following relationship from (8):

𝑦 = 𝑦 (𝜙, ℎ) ; (9)

that is, 𝑑𝜙/𝑑𝜉 = 𝑦(𝜙, ℎ). If expression (9) is an integral
expression, then substituting it into the first term of (5) and
integrating we obtain

∫

𝜙

𝜙0

𝑑𝜑

𝑦 (𝜑, ℎ)
= ∫

𝜉

0

𝑑𝜏, (10)

where 𝜙(0) and 0 are initial constants. Usually, the initial
constants can be taken by a root of (9) or inflection points
of the travelling waves. Taking proper initial constants and
integrating (10), through the Jacobian elliptic functions [12],
we can obtain the exact travelling wave solutions of (2).

From the above description of the “three-step method,”
we can see that solutions of (2) can be obtained by studying
and solving the dynamical system simplified by (2). There-
fore, this approach is called dynamical system method. The
different nonlinear wave equations correspond to different
dynamical systems. The different dynamical systems corre-
spond to different travelling wave solutions.This is the whole
process of the dynamical system method.

3. Travelling Wave Solutions of (1)

3.1. The Reduced Dynamical System of (1). Following the
procedure described in Section 2, we solve (1) by using the
dynamical system method.

Use the transformation

𝐸 (𝑥, 𝑡) = 𝜙 (𝜉) 𝑒
𝑖𝜂
,

𝑁 (𝑥, 𝑡) = 𝜓 (𝜉) ,

𝜉 = 𝑘𝑥 − 𝑐𝑡, 𝜂 = 𝑝𝑥 + 𝑙𝑡,

(11)
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where 𝑘, 𝑐, 𝑝, and 𝑙 are travelling wave parameters. Substi-
tuting (11) into the first equation of (1), canceling 𝑒𝑖𝜂, and
separating the real and imaginary parts, we have

(2𝑘𝑝 − 𝑐) 𝜙
󸀠
= 0,

𝑘
2
𝜙
󸀠󸀠
− (𝑝
2
+ 𝑙 − 𝛾) 𝜙 − 𝜙𝜓 = 0.

(12)

Obviously, from (12), we know that if 𝜙󸀠 = 0, (1) has the trivial
solution. Otherwise, (12) must be satisfied:

2𝑘𝑝 − 𝑐 = 0. (13)

Substituting (11) into the second equation of (1) and integrat-
ing twice (integral constant is zero), we have

𝑘
4
𝜓
󸀠󸀠
− (𝛿𝑘

2
+ 3𝑐
2
) 𝜓 − 3𝑘

2
𝜓
2
+ 𝑘
2
𝜙
2
= 0. (14)

Therefore, (1) is reduced to

2𝑘𝑝 − 𝑐 = 0,

𝑘
2
𝜙
󸀠󸀠
− (𝑝
2
+ 𝑙 − 𝛾) 𝜙 − 𝜙𝜓 = 0,

𝑘
4
𝜓
󸀠󸀠
− (𝛿𝑘

2
+ 3𝑐
2
) 𝜓 − 3𝑘

2
𝜓
2
+ 𝑘
2
𝜙
2
= 0.

(15)

It is very difficult to solve these equations by some ordinary
methods because of the coupling of (1), so we consider the
special transformation in subtle ways:

𝜙 = 𝑛𝜓. (16)

Here, 𝑛 is a constant to be determined later. Although in the
ordinary course of events there is not linear relation between
𝜙 and 𝜓, the transformation is a key point to look for the
travellingwave solutions of (1). Substituting (16) into (15), (15)
is changed into

2𝑘𝑝 − 𝑐 = 0,

𝑘
2
𝜓
󸀠󸀠
− (𝑝
2
+ 𝑙) 𝜓 − 𝜓

2
= 0,

𝛽𝑘
3
𝜓
󸀠󸀠
− 𝑐𝜓 +

𝛼𝑘

2
𝜓
2
− 𝑚
2
𝑘𝜓
2
= 0.

(17)

Compared with coefficients of the second equation and the
third equation of (17), they follow

𝑛 = ±√2,

(𝑝
2
+ 𝑙 − 𝛾) =

𝛿𝑘
2
+ 3𝑐
2

𝑘2
,

2𝑘𝑝 − 𝑐 = 0.

(18)

A result of the freedom of these parameters is consistency;
under condition (18), (17) is simplified to the following
equation:

𝑘
2
𝜓
󸀠󸀠
− (𝑝
2
+ 𝑙 − 𝛾)𝜓 − 𝜓

2
= 0. (19)

Suppose that 𝑘 ̸= 0 andwrite that𝐴 = (𝑝2+𝑙−𝛾)/𝑘2,𝐵 = 1/𝑘2.
Thus, (19) has the following form:

𝜓
󸀠󸀠
− 𝐴𝜓 − 𝐵𝜓

2
= 0, (20)

which corresponds to the two-dimensional Hamiltonian
system

𝑑𝜓

𝑑𝜉
= 𝑦,

𝑑𝑦

𝑑𝜉
= 𝐴𝜓 + 𝐵𝜓

2
.

(21)

3.2. The Bifurcations of Phase Portraits of System (21). We
divided by (21) and solve the Bernoulli one-order differential
equation; we have the first integral

𝐻(𝜓, 𝑦) =
1

2
𝑦
2
−
1

2
𝐴𝜓
2
−
1

3
𝐵𝜓
3
. (22)

Let the integral constant be ℎ; that is, 𝐻(𝜓, 𝑦) = ℎ. Now
we consider the phase portraits of (21). Let the right hand
terms of system (21) be zeros; that is, 𝑦 = 0 and 𝐴𝜓 +
𝐵𝜓
2
= 0; we obtain that system (21) has two equilibrium

points 𝑆(−𝐴/𝐵, 0) and 𝑂(0, 0). For 𝐻(𝜓, 𝑦) = (1/2)𝑦
2
−

(1/2)𝐴𝜓
2
− (1/3)𝐵𝜓

3
= ℎ, we write ℎ

0
= 𝐻(0, 0) = 0, ℎ

1
=

𝐻(−𝐴/𝐵, 0) = −𝐴
3
/6𝐵
2. Because only bounded travelling

waves are meaningful to a physical model, we just pay our
attention to the bounded solutions of (1) which are physically
acceptable. In addition, because of 𝐵 = 1/𝑘2 > 0, here we
just consider the phase portraits of (21) when 𝐵 > 0. With
the change of the parameter group of𝐴 and 𝐵, the system has
different phase portraits for (21) which are shown in Figure 1
(drawn by software Maple).

From Figure 1, we summarize crucial conclusions as
follows:

(1) when 𝐴 = 0, 𝑂 is a cusp; when 𝐴 > 0 (< 0), 𝑂 is a
saddle point (center point) and 𝑆 is a center (saddle
point);

(2) if 𝐴 ̸= 0, system (21) has a unique homoclinic orbit
Γ which is asymptotic to the saddle and enclosing the
center;

(3) if 𝐴 ̸= 0, there is a family of periodic orbits which are
enclosing the center and filling up the interior of the
homoclinic orbit Γ.

In the first image of Figure 1, we take 𝐴 = 0, 𝐵 > 0. In the
second image of Figure 1, we take 𝐴 < 0, 𝐵 > 0. In the third
image of Figure 1, we take 𝐴 > 0, 𝐵 > 0.
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Figure 1: The bifurcations of phase portraits of (21).

3.3.The Exact TravellingWave Solutions of (1). We can get the
following relationship from (22):

𝑦 = √𝐴𝜓2 +
2

3
𝐵𝜓3 + 2ℎ; (23)

then substituting it into the first term of (21) and integrating
we use theMaple software and the Jacobian elliptic functions;
we have the following parametric representation.
(1) When 𝐴 > 0, 𝐵 > 0, and ℎ = ℎ

0
= 0 (see the

third image of Figure 1), there exists a smooth solitary solu-
tion which corresponds to a smooth homoclinic orbit Γ of
(21) defined by 𝐻(𝜓, 𝑦) = ℎ

0
= 0; we have the parametric

representation:

𝜓 (𝜉) =

−3𝐴 + 3𝐴tanh2 ((√𝐴/2) 𝜉)
2𝐵

. (24)

(2)When 𝐴 < 0, 𝐵 > 0, and ℎ = ℎ
1
= −𝐴
3
/6𝐵
2 (see the

second image of Figure 1), there exists a smooth solitary
solution which corresponds to a smooth homoclinic orbit
Γ of (21) defined by 𝐻(𝜓, 𝑦) = ℎ

1
; we have the parametric

representation:

𝜓 (𝜉) =
|𝐴|

𝐵
−
3 |𝐴|

2𝐵
sech2 (

√|𝐴|

2
𝜉) . (25)

(3) When 𝐴 > 0 (𝐴 < 0), 𝐵 > 0, and ℎ ∈ (ℎ
1
, 0) (ℎ ∈

(0, ℎ
1
)) (see the second image and third image of Figure 1),

similarly, there exist periodic travelling wave solutions which
correspond to the family of periodic orbits Γℎ of (21) defined
by𝐻(𝜓, 𝑦) = ℎ, ℎ ∈ (ℎ

1
, 0) (ℎ ∈ (0, ℎ

1
)); we have the following

parametric representation:

𝜓 (𝜉)

= 𝑧
3

+ (𝑧
2
− 𝑧
3
) sn2(

√6𝐵 (𝑧
1
− 𝑧
3
)

6
𝜉, √

𝑧
2
− 𝑧
3

𝑧
1
− 𝑧
3

),

(26)

xt

−2

−4

0

0.04

0.02

0.06

0.08

0.10
4

2

0

18

16

14

12

10

8

6

4

2

Figure 2:The 3D graphics of |𝐸
1
| (𝑛 = √2, 𝑘 = 𝑝 = 1, 𝑐 = 2, 𝑙 = −17,

𝛾 = −25, 𝛿 = −3, −5 ≤ 𝑥 ≤ 5, and 0 ≤ 𝑡 ≤ 0.1).

where the parameters 𝑧
1
, 𝑧
2
, and 𝑧

3
and 𝑧

1
> 𝑧
2
> 𝑧
3
are

defined by 𝑦2 = 2ℎ + 𝐴𝜓2 + (2/3)𝐵𝜓3 = (2/3)𝐵(𝑧
1
− 𝜓)(𝑧

2
−

𝜓)(𝜓 − 𝑧
3
).

By using the above results and considering condition (18),
according to (11), we obtain the travellingwave solutions of (1)
as follows. By using the numerical simulationmethod, the 3D
graphics of bounded solutions of (1) are also shown in Figures
2–7.
(1)When 𝐴 > 0, 𝐵 > 0, and ℎ = ℎ

0
= 0,

𝐸
1
(𝑥, 𝑡) = −

3𝐴𝑛

2𝐵
+
3𝐴𝑛

2𝐵
tanh2 (

√𝐴

2
𝜉) 𝑒
𝑖𝜂
,

𝑁
1
(𝑥, 𝑡) = −

3𝐴𝑛

2𝐵
+
3𝐴𝑛

2𝐵
tanh2 (

√𝐴

2
𝜉) .

(27)
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(𝑛 = √2, 𝑘 = 𝑝 = 1, 𝑐 = 2, 𝑙 = −17,
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Figure 4: The 3D graphics of |𝐸
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| (𝑛 = √2, 𝑘 = 1, 𝑝 = √1/11,

𝑙 = −27, 𝑐 = 2√1/11, 𝛾 = −25, 𝛿 = −3, −5 ≤ 𝑥 ≤ 5, and 0 ≤ 𝑡 ≤ 0.5).

(2)When 𝐴 < 0, 𝐵 > 0, and ℎ = ℎ
1
= −𝐴
3
/6𝐵
2,

𝐸
2
(𝑥, 𝑡) =

𝑛 |𝐴|

𝐵
−
3𝑛 |𝐴|

2𝐵
sech2 (

√|𝐴|

2
𝜉) 𝑒
𝑖𝜂
,

𝑁
2
(𝑥, 𝑡) =

𝑛 |𝐴|

𝐵
−
3𝑛 |𝐴|

2𝐵
sech2 (

√|𝐴|

2
𝜉) .

(28)
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(3) When 𝐴 > 0 (𝐴 < 0), 𝐵 > 0, and ℎ ∈ (ℎ
1
, 0) (ℎ ∈

(0, ℎ
1
)),

𝐸
3
(𝑥, 𝑡) = 𝑛𝑧

3
+ 𝑛 (𝑧

2
− 𝑧
3
)

⋅ sn2(
√6𝐵 (𝑧

1
− 𝑧
3
)

6
𝜉, √

𝑧
2
− 𝑧
3

𝑧
1
− 𝑧
3

)𝑒
𝑖𝜂
,
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= −243/4, −5 ≤ 𝑥 ≤ 5, and 0 ≤ 𝑡 ≤ 5).

𝑁
3
(𝑥, 𝑡) = 𝑧

3
+ (𝑧
2
− 𝑧
3
)

⋅ sn2(
√6𝐵 (𝑧

1
− 𝑧
3
)

6
𝜉, √

𝑧
2
− 𝑧
3

𝑧
1
− 𝑧
3

).

(29)

From Figures 2–7, it is easy to see that 𝐸
1
, 𝑁
1
, 𝐸
2
, and

𝑁
2
are solitary wave solutions which are expressed by the

hyperbolic functions. 𝐸
3
and𝑁

3
are periodic travelling wave

solution which is expressed by Jacobian elliptic functions.
Note that our solutions are different from the given ones in
[5, 8, 9].

4. Conclusion

To summarize, by using the dynamical system method,
the bounded exact travelling wave solutions (solitary wave
solutions and periodic wave solutions) have been obtained
for the coupled nonlinear Schrödinger-Boussinesq equations.
The dynamical system method is a good method to obtain
exact solutions, which can not only obtain exact solutions
but also understand nonlinear dynamics of travelling wave
equations. We show that the hyperbolic function solutions
and the Jacobian elliptic function solutions we found in
this paper are different from the solutions presented by
other authors before. The results enrich the diversity of wave
structures of the coupled nonlinear Schrödinger-Boussinesq
equations.

Furthermore, if there is not the condition that 𝐵 > 0,
system (21) has another case. When 𝐴 > 0 (𝐴 < 0), 𝐵 <
0, there exist periodic travelling wave solutions correspond-
ing to the family of periodic orbits Γℎ of (21) defined by

𝐻(𝜓, 𝑦) = ℎ, ℎ ∈ (ℎ
1
, 0) (ℎ ∈ (0, ℎ

1
)); we have following

parametric representation:

𝜓 (𝜉)

= 𝑧
1

− (𝑧
1
− 𝑧
2
) sn2(

√6 |𝐵| (𝑧
1
− 𝑧
3
)

6
𝜉, √

𝑧
1
− 𝑧
2

𝑧
1
− 𝑧
3

),

(30)

where the parameters 𝑧
1
, 𝑧
2
, and 𝑧

3
and 𝑧

1
> 𝑧
2
> 𝑧
3
are

defined by 𝑦2 = 2ℎ +𝐴𝜓2 + (2/3)𝐵𝜓3 = (2/3)|𝐵|(𝑧
1
−𝜓)(𝜓 −

𝑧
2
)(𝜓 − 𝑧

3
). Then we obtain additional travelling wave solu-

tions of (1) as follows:
𝐸 (𝑥, 𝑡) = 𝑛𝑧

1
− 𝑛 (𝑧

1
− 𝑧
2
)

⋅ sn2(
√6 |𝐵| (𝑧

1
− 𝑧
3
)

6
𝜉, √

𝑧
1
− 𝑧
2

𝑧
1
− 𝑧
3

)𝑒
𝑖𝜂
,

𝑁 (𝑥, 𝑡) = 𝑧
1
− (𝑧
1
− 𝑧
2
)

⋅ sn2(
√6 |𝐵| (𝑧

1
− 𝑧
3
)

6
𝜉, √

𝑧
1
− 𝑧
2

𝑧
1
− 𝑧
3

).

(31)
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