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This paper describes the studied effects of thermal radiation and chemical reaction on unsteady MHD non-Newtonian (obeying
Walter’s B model) fluid in porous medium.The resulting problems are solved numerically. Graphical results for various interesting
parameters are presented. Also the effects of the different parameters on the skin-friction and the heat fluxes are obtained and
discussed numerically.

1. Introduction

Thermal convection in porous medium has attracted consid-
erable interest during the last few decades, because it has var-
ious applications in geophysics, soil sciences, ground water
hydrology, astrophysics, food processing, oceanography, lim-
nology, engineering, and so forth.There aremany elasticovis-
cous fluids that cannot be characterized by Maxwell’s consti-
tutive relations or Oldroyd’s constitutive relations. One such
class of fluids is Walter’s B model elasticoviscous fluid having
relevance in chemical technology and industry. However, the
interest and research activities regarding the boundary layer
flow of non-Newtonian fluids have increased considerably in
the past few decades and it is one of the thrust areas of current
research [1–7]. Of course, this is because of the industrial
and engineering applications of non-Newtonian fluids as well
as their interesting mathematical challenges in the form of
highly nonlinear equations governing the flows.

The effect of magnetic field on thermal instability of
Walter’s B model elasticoviscous fluid finds importance in
geophysics, particularly, in the study of Earth’s core where the
Earth’s mantle, which consists of conducting fluid, behaves
like a porous medium which can become convectively unsta-
ble as a result of differential diffusion.

Kumar and Srivastava [8] have worked on the effects
of chemical reaction on MHD flow of dusty viscoelastic
(Walter’s liquid model B) liquid with heat source/sink. Khan
et al. [9] have studied the hydromagnetic rotating flows of
an Oldroyd-B fluid in a porous medium. Khan et al. [10]
have investigated the viscoelastic MHD flow and heat and
mass transfer over a porous stretching sheet with dissipation
of energy and stress work. The numerical or approximate
solutions for both steady and transient flows of Walters’ B
fluid have been studied at great length in a diverse range
of geometries using a wide spectrum of computational or
analytical techniques [11–13]. Effects of thermal diffusion and
chemical reaction on MHD flow of dusty viscoelastic (Wal-
ter’s liquid model B) fluid have been inspected by Prakash
et al. [14]. Abdul Hakeem et al. [15] have found the effect of
heat radiation inWalter’s liquid B fluid over a stretching sheet
with nonuniform heat source/sink and elastic deformation.
Madhurai and Kalpana [16] have discussed thermal effect
on unsteady flow of a dusty viscoelastic fluid between two
parallel plates under different pressure gradients. Recently,
unsteady free convection flow in Walters’ B fluid and heat
transfer analysis have been presented by Khan et al. [17].

In the present problem, the effects of design viscoelastic
parameter, unsteadiness parameter,magnetic field parameter,
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Figure 1: Effect of Γ on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).

porosity parameter, thermal radiation parameter, heating
source parameter, and Prandtl number parameter on account
of fluid flow, heat transfer, the skin-friction, and the heat
fluxes are obtained and discussed numerically.

2. Mathematical Model

Consider unsteady MHD non-Newtonian (obeying Walter’s
B model) fluid in porous medium in the presence of thermal
radiation and chemical reaction over a vertical rigid plate at
𝑦 = 0. The fluid is assumed to be falling down vertically
over a vertical plane. The governing equations are given by
the following.

The momentum equations:
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the energy equation:
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The initial conditions are given by

𝑢 (𝑦, 𝑡) = 0,

𝑇 (𝑦, 𝑡) = 𝑇
𝑤
,

for 𝑡 < 0.

(3)

The boundary conditions for 𝑡 ≥ 0 are
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∞
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(4)

In the above equations 𝑢 is the velocity fluid phase, 𝑡 is the
time, 𝜌 is the densities of the fluid, 𝑔 is the acceleration due
to gravity, 𝜎 is the electrical conductivity, 𝜅 = 𝜅
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4
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and 𝑇
∞

is the uniform temperature. Using the Rosseland
approximation (Sparrow and Cess [18] and Abdel-Rahman
Rashed [19]), the radiative heat flux 𝑞

𝑟
could be expressed by

𝑞
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where 𝜎∗ represents the Stefan-Boltzmann constant and 𝑘∗ is
the Rosseland mean absorption coefficient.
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Figure 2: Effect of 𝐴 on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).

Assume that the temperature difference within the flow
is sufficiently small such that 𝑇4 could be approached as the
linear function of temperature:
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∞
. (6)

The similarity variables and parameters are as
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Substituting (5)–(7) in (1)–(4), we obtain
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where 𝐴 = 𝑎/]
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3. Skin-Friction Coefficient
and Nusselt Number

A quantity of interest for the present problem is the local
skin-friction coefficients 𝐶

𝑓
and the local Nusselt number

𝑁
𝑢
, which are defined as
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where 𝜏
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Figure 3: Effect of𝑀 on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).
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Figure 4: Effect of 𝑆 on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).

Using (10) and (11), we get

𝐶
𝑓
= (1 − 3Γ) 𝑓

󸀠󸀠

(0) ,

𝑁
𝑢
= −𝜃
󸀠

(0) .

(12)

4. Results and Discussion

The system of coupled nonlinear ordinary differential equa-
tions (8) subject to boundary conditions (9) is solved numer-
ically by using the shooting technique with forth order of
Runge-Kutta algorithm. In order to gain physical insight the
velocity and temperature profiles have been discussed.
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Figure 5: Effect of 𝑅 on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).

The velocity 𝑓
󸀠
(𝜂) and the temperature 𝜃(𝜂) profiles

increase with the increase of viscoelastic parameter Γ, shown
in Figures 1(a) and 1(b).

Figures 2, 3, 4, and 6 show the effect of unsteadiness
parameter, magnetic field parameter, porosity parameter, and
Prandtl number on the velocity 𝑓

󸀠
(𝜂) and the temperature

𝜃(𝜂) profiles. We found that 𝐴, 𝑀, 𝑆, and 𝑝
𝑟
increase with

decrease of the velocity and the temperature profiles.
Figures 5 and 7 confirm that the velocity profile decreases

and the temperature profile increases when thermal radiation
parameter and heating parameter increase.

The numerical values of the local skin-friction and the
local Nusselt number are given in Table 1. For an increase in
Γ, we observe that the local skin-friction coefficient decreases
and the local Nusselt number increases, while, with the
increase in each of 𝐴, 𝑀, 𝑆, and 𝑝

𝑟
, we observe that the

local skin-friction coefficient increases. But the local Nusselt
number decreases.

With an increase in each of 𝑅 and 𝑄, we observe that the
local skin-friction coefficient decreases but the local Nusselt
number increases.

5. Conclusions

We computationally investigate the effects of thermal radi-
ation and chemical reaction on unsteady MHD non-
Newtonian (obeying Walter’s B model) fluid in porous
medium.The following is observed.

(1) The velocity and the temperature profiles decrease
with the increase of each of the magnetic field and
porosity parameters.

Table 1: Numerical of the values skin-friction coefficient (𝐶
𝑓
) and

Nusselt number (𝑁
𝑢
) with Γ, 𝐴,𝑀, 𝑆, 𝑅, 𝑝

𝑟
, and 𝑄.

Γ 𝐴 𝑀 𝑆 𝑅 𝑝
𝑟

𝑄 𝐶
𝑓

𝑁
𝑢

0.1 0.3 4.0 1.0 1.0 0.71 0.0 1.32385 −0.764965
0.2 1.09487 −0.623587
0.3 0.95622 −0.544546
0.2 0.1 4.0 1.0 1.0 0.71 0.0 0.99741 −0.466889

0.3 1.09487 −0.623587
0.5 1.18435 −0.759761

0.2 0.3 2.0 1.0 1.0 0.71 0.0 0.91739 −0.588509
4.0 1.09487 −0.623587
6.0 1.24735 −0.661887

0.2 0.3 4.0 0.1 1.0 0.71 0.0 1.01884 −0.607028
1.0 1.09487 −0.623587
2.0 1.17359 −0.642623

0.2 0.3 4.0 1.0 0.2 0.71 0.0 1.10639 −0.658349
1.0 1.09487 −0.623587
10.0 1.08057 −0.580003

0.2 0.3 4.0 1.0 1.0 0.71 0.0 1.09487 −0.623587
7.0 1.23924 −1.04038
10.0 1.30247 −1.21198

0.2 0.3 4.0 1.0 1.0 0.71 −0.5 1.13492 −0.743195
0.0 1.09487 −0.623587
0.5 1.05331 −0.495614

(2) With the increase of each of thermal radiation
and heating source parameters, the velocity profile
decreases while the temperature profile increases.
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Figure 6: Effect of 𝑝
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on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).
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Figure 7: Effect of 𝑄 on (a) velocity profile 𝑓󸀠(𝜂) and (b) temperature profile 𝜃(𝜂).

(3) For an increase of each of the magnetic field and
porosity parameters, the local skin-friction coefficient
increases while the local Nusselt number decreases.

(4) With the increase of each of thermal radiation and
heating source parameters, the local skin-friction
coefficient decreases but the local Nusselt number
increases.
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